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A Class of Perturbations of Molecular Levels
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By following Van Vleck and Kronig, the conditions for
the occurrence of perturbations are investigated in detail
for a simple case. Class A perturbations which are produced
by the rotation of the molecule must have A'= A +1, The
vibrational levels cannot be perturbed in this case. There
will be a constant shift between the rotational levels before
and after the perturbations. When the electronic motion

can be described approximately by the precession of a
constant angular momentum about the figure axis, the
components of the perturbation matrix can be completely
calculated. For class B perturbations h. =A.'. The vibra-
tional levels may be perturbed and there is no constant
shift between the levels for high and low values of J.

F, in the regular sequence of rotational levels
- - of a molecule, one or several of these levels
are displaced from their expected positions, such
a phenomenon is called a perturbation. Very
often the lines originating from these perturbed
rotational levels show also abnormal intensities.

'Since Krgnig' showed first the general rules for
the occurrence of such perturbations, several
cases have been investigated and were shown in
accordance with Kronig's theory to result from
the interaction of two rotational levels with the
same Jof two electronic states which accidentally
come very close together. However, except
demonstrating that the occurrence of the per-
turbations found was in agreement with Kronig's
general rules, not much has been done in a further
theoretical analysis of such perturbations. There-
fore it may be useful to investigate in detail a
particularly simple case, and show that the
magnitude of the perturbations and all its other
characteristics can be correlated with other
properties of the levels. This case has been
chosen because it is the simplest representative
of one of the two classes of perturbations, and
because it gives a key to the understanding of
some pecularities of the molecular spectrum of
hydrogen, It is, however, of sufficient importance
to merit a special treatment. The general treat-
ment follows closely that of Van Vleck and
Kronig. The chief aim of this paper is to bring out
clearly the conditions under which the different

types of perturbations can occur so that a clear
theoretical background is available for the dis-

cussion of some empirical perturbations which

will be given in a subsequent paper.

' R. de L. Kronig, Zeits. f. Physik 50, 347 {1928).

$1. GENERAL ASSUMPTIONS

An electronic state of a diatomic molecule can
be specified by a number of quantum numbers.
If we were dealing with electrons in a central
symmetric field of force, the total orbital angular
momentum would be constant and to it would
correspond a quantum number J. In a real mole-
cule, the orbital momentum is not constant, and
therefore L not a true quantum number, but for
higher levels of light molecules the deviations
from a central symmetric fieid of force are not
large enough to cause any trouble. The projection
A of L on the internuclear axis is constant, no
matter whether L is a good quantum number or
not, if we can disregard the inHuence of the spin
which we shall do throughout this paper. ' Besides
L and A, there may be several other quantum
numbers, but they are not important for the
following and we represent them collectively by
n. It is well known that the term symbols S,
I', D ~ and Z, II, 6 mean that L and A. ,

respectively, have the values 0, 1, 2, ~ ~ ~ .' Of
course we have always A~L. All the L+1 states
(L of them double) belonging to a given n and L
but different A. are called a complex. On the
electron motion of the molecule is superimposed
the vibration characterized by the quantum

2 We restrict ourselves therefore to singlet states. The
results, however, will be also applicable to many cases
where the multiplicity is diferent from one, but the spin
so loosely coupled to the rest of the molecule that its in-
fluence can be neglected. It would not Pe difficult to take
into account the spin also in the general case, but the
example would lose ther' much of its simplicity.' In order to avoid difficulties about the internal coupling
of the electrons, we may assume that I and A. come from
a single electron only, that therefore the rest of the rnole-
cule is in an sZ state. Some of the results apply also in more
general cases, but the one stated is by far the simplest and
most important one.
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number V and the rotation characterized by the
total angular momentum J and its projection m
on an axis fixed in space. As we are not dealing
with external forces, nz is of no importance to us.
Any given energy level is now specified com-
pletely by n, I-, A. , Vand J.

In order that we may have a perturbation two
energy levels must come very close together.
They will have to be rotational levels belonging
to two different electronic states. But the close
proximity of two levels is not sufficient for a
perturbation. It is necessary that the matrix
component 5„.of a perturbing potential 5 must
be different from zero, and we shall say that two
states can perturb each other when that is the
case. Kronig gave some general rules which re-
strict the number of perturbing pairs consider-
ably, the chief one of these restriction rules is
that J must be the same for both levels, the
others we shall have to deal with later.

We can distinguish two distinct classes of per-
turbations. For class A perturbations, the per-
turbing force is caused by the rotation of the
molecule, whereas for class 8 the perturbing
forces have a different origin. Class 8 might
again be subdivided into several subclasses, but
that is unnecessary here as this paper will deal
almost exclusively with class A perturbations.
An investigation of the exact nature of this type
of perturbations will be the subject of the rest of
the paper. At the same time it will become ap-
parent that the same cause is responsible for
irregularities in the A-doubling observed in
several molecules. These irregularities usually are
riot called perturbations because they are
of a more systematic character. The regular
A-doubling is al'so closely connected with this
kind of interaction.

)2. THE HAMILTONIAN OF A DIATOMIC

MOLECULE

The necessary foundation for a detailed treat-
ment of the perturbations have been given in a
very thorough paper by Van Vleck4 and there-
fore it is best to start with a brief resume of Van
Vleck's results with the necessary modifications
and simplifications. The principle is that first the
complete wave equation of the rotating and

4 J. H. Van Vleck, Phys. Rev. 33, 467 (1929).

oscillating diatomic molecule is set up. This
equation can only be solved if certain small
terms in the Hamiltonian are omitted. After an
approximate solution of the simplified wave
equation has been obtained, the result can be
corrected by introducing the neglected terms as
perturbing potentials and calculating their
inHuence by the method of perturbations. The
inHuence of these small terms will be in general
small except possibly when two unperturbed levels
fall close together. In that case perturbations in
the special sense defined at the beginning of this
paper may result.

If the nuclei of the molecule are kept fixed, i.e. ,
if the molecule is not vibrating nor rotating, the
motion of the electrons is determined by a
Hamiltonian H&'& and the wave equation

(H&'& —W"&)4 =0.

4 is a function of the coordinates of the electrons,
and H~'&, W&'& and C contain the internuclear
distance r as a parameter. C is represented by as
many quantum numbers as there are degrees of
freedom. It depends in a very simple way on X,
the azimuth about the internuclear axis. |A'e have

4' ~, l., p= y~, l„p cos AX,

C' ~, 1„~=%~,L,. »» ~X~

in which q is independent of X. The energy
belonging to C+ and C is the same. For A. =o
there is only one term 5+ with C+, l„~.'

If the molecule is left to rotate and vibrate
freely, three degrees of freedom are added which
are represented by the internuclear distance r,
the angle 8 which the internuclear axis makes with
a Axed direction in space, and y, the azimuth
about this axis. If the very small motion which
the center of gravity of the nuclei makes with
respect to the center of gravity of the total mole-

' Because of the degeneracy for the molecule with fixed
nuclei, which is due to the fact that the energy is not
changed if the sense of rotation of all the electrons is re-
versed any linear combination of C+ and C would serve
just as well. The particular form (2) is most useful because
it must be taken if the degeneracy is removed by the inter-
action of electron motion and rotation. 4+ remains un-
changed and C changes its sign when the sense of the
electron motion is reversed. If there is more than one elec-
tron we may also have Z terms. We prefer to write here
II+ and II, etc. , rather than the more customary II, and
IIq because the latter, more empirical, designation does not
always make it quite clear which of the two doublet com-
ponents belongs to the cos Az and which to the sin Az.
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M~, M„and Mt. are operators corresponding to
the P, r) and f components of the angular mo-

mentum with respect to a coordinate system
moving with the molecule. This equation is valid
also if the spin is included', but in our case M
represents the orbital angular momentum only.

A direct solution of (3) is obviously impossible.
An approximate solution can be obtained by
neglecting certain terms so that a separation of
the variables is possible. We can write then

Q=Cn, (y, 8)R(r)

(4) is the solution of the approximate equation

(H('&+H&'&+H&') —W)lt =0,

whereas (3) is equivalent to

(H&'&+H('&+H&'&+H&'&+H&'& —W)/=0, (6)

which contains the two extra terms H(@ and H~4)

H&'& = —8[ctg 8B/B8+8'/B8'

+cosec' 8(B/B p iA cos 8)'], —(7a)

H&'&I( = BC u(B/Br—)(r'BR/Br),

H&'& =Bi[ctg 8(M( —iM„Mr —iMIM„)

(7b)

+2 cosec 8M„B/B@+2MIB/B8], (7c)

B4'
H"'P=B (M '+M ')4 —2r

Bf

B24 2r2 BR B4
r' — — —RN, (7d)

Br' R Br Br

8 =6'/8~2pr' is also a function of r.
The procedure in solving (5) is as follows:

First solve (1)
(H(0) W(o))@= 0

cule (electrons included) is neglected, the wave
equation becomes

)&&2 B (' B'& (B
H — —

(
r' )—+ctg8] ——iM, [

8+2pr' Br 4 By) EB8

which gives the electronic energy 8"' and wave
function 4 both containing the parameter r.
Then solve

(H &'& —W& '&)u =0

from which we obtain the rotational energy

W'" =B[J(J+1)—A'],

which also contains r as parameter and the rota-
tional wave function' u(«, 8) which is independent
of r. The next step is the solution of

[H&'&+ W&'&(r)+ W&" (r) —W]R= 0. (10)

This gives the vibrational eigenfunction R and
the total energy W of the approximated molecule.
We have reached now the same stage of approxi-
mation which is employed in the elementary
theory of band spectra in which W(r) is as-
sumed to be given as a power series in r ro (ro is-
the equilibrium distance). We have then the
energy as function of the total angular momen-
tum J and the vibrational quantum number U.

W= Wo+Q Y&),(U+-')'[J(7+1)—A']" (11)

This is for A. =O, the familiar expression for the
energy of a rotating anharmonic oscillator. '

f3. OCCURRENCE OF CLASS A PERTURBATIONS

We can take care now of the terms H(') and
H'4~ neglected so far by considering them as
perturbing potentials. H&4' is independent of the
rotational coordinates and therefore any pertur-
bations resulting from it will be of class B. We
shall not be any further concerned with perturba-
tions of this type in this paper. The matrix ele-
ments II„&4& are different from zero under almost

' The u(q, 0) are the well-known wave functions of the
symmetrical top as (7a) represents the Hamiltonian of the
symmetrical top.' Except for terms of higher order (11) is identical with
the approximate expression

,(v+ —',) —x( v+ -',)'+
+I ~.—~(~+1)3IJ(J+1)—~'j.

IVp is the electronic energy, i.e., the eigenvalue of (1) for
the value r =ra of the parameter and is independent of the
masses of the nuclei. As can be easily seen from the deriva-
tion sketched above, the higher terms in J are of the form
LJ(J+1)—A.'$~ and not simply J~(J+1)~, as is usually
found. For most practical purposes, however, the difference
is negligible. The coefficients Yif, have been calculated to a
high approximation by Dunham (Phys. Rev. 41, 721 (1932)).
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the same conditions as those of H"' (see below).
The essential difference is that we must have
A. '=A for H&') whereas we have A'=A~i for H&').

In order to calculate the influence of H'@, we

have to know the matrix components

with the internuclear axis has no effect on the
equilibrium position, i.e. , that ro is independent
of A.. Then

Mo(n, L, A, V;n, L, A&1, V)

S„=II&o&„.= fg, *Sf;dv (12)
= -,'-[L(I.+1)—A(A &1)]~ (15)

S„=n[(I+-,'- —A)( J+-', +A)]&,

n(n, I-, A, V; n', L', A', V')

(13)

= 2(&~o) ~, r., o, v; ~, r'x', v, , (, 14)

in which 2A =A+ A'.

(13) and (14) are still quite general, but in
order to go further it is convenient to consider
some specialized cases.

1. Assume that the influence of the inter-
nuclear axis is comparatively weak. Then the
angular momentum M has a constant magnitude
L and precesses about the internuclear axis. Let
us assume further that the angle which 3E makes

' In contrast to H(') there are also diagonal elements in
H(4). Their significance has been discussed elsewhere.
{G.H. Dieke, Phys. Rev. 47, 661 (1935).

We write from now on S instead of H&3) for the
perturbing potential in order to avoid writing

, too many indices. The integration is extended
over all the electronic coordinates, the inter-
nuclear distance r, and the rotational coordinates

q and 0. As Kronig showed first, and as can be
verified easily, from (12) and (7c) by taking the
nature of the wave functions into account, the
matrix components S, are different from zero
only if the two states 7 and 7-' fulfill the following
conditions.

(a) Both levels must have the same value of J.
(b) Both levels must be positive or both negative.
(c) If the two nuclei are identical, both levels must be even

or both odd; furthermore, both must be symmetrical or
both antisymmetrical.

These conditions are based entirely on the
symmetry properties of the molecule and do not
involve any further assumptions.

The integration in (12) over the rotational co-
ordinates can be separated from that over the
other coordinates, so that the integral can be
split into two factors, one of which is independent
of J. If we call it n then Van Vleck showed that

and all other matrix components are zero. In
that case cx is zero except when n=n', L=L',
U= U', and A'=A&1.

n(n, A, V; n, A&1, V)

=Bv[L(L+1)—A(A&1)]'. (16)

This gives the regular A-doubling, as levels which
differ only by the quantum number A, can never
come accidentally close together. Perturbations,
therefore, cannot occur.

2. Assume that the motion is still a regular
precession of the constant angular momentum
about the figure axis, but that the equilibrium
internuclear distance ro depends on A. In that
case (15) still holds true, but

I3&v = fRBR'r'dr

is not even approximately diagonal as R' belongs
to a different equilibrium distance than R. We
have here a case very similar to that found when
the Franck-Condon principle is applied to the
matrix components of the electric moment. As
long as the equilibrium distance is affected only
slightly by the value of A the nondiagonal ele-
ments of 8 will be small compared with the ele-
ments diagonal in U.

We have now

n(n, I., A, V, n, L, A&1, V')

= [Bvv + (ro' ro) J'BR'R(BC '—/Br). ..4 dv]

&& [L(L+1)—A(Aa1)]l. (17)

Bp~ can be completely calculated if the rota-
tional and vibrational structure of the two per-
turbing states is known. In general it will be
small compared with (16) if V+ V', and the
term in ro' —ro will be small compared to By~
and can be neglected in first approximation.

It may happen now that the levels of n, L, A, U
and n, L, A~i, U' come very close together.
For instance in IZo we have that the pII levels lie
several thousand cm ' above the corresponding
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pZ levels and a high vibrational level of pZ can
come very close to a low vibrational level of PII.
The magnitude and character of the perturba-
tions in such a case can then be completely pre-
dicted. It is also apparent that if the rotational
states of two such vibrational levels do not actu-
ally cross over (see )4) but are choose enough that
they inHuence each other notwithstanding the
small value of n, irregularities in the h.-doubling
must occur which do not have the character of
typical perturbations. From what was said
above, we must expect such irregularities to be
more pronounced when the equilibrium distance
is much affected by the value of A.

3. In heavy molecules the motion may be
different from a regular precession of a constant
angular momentum about the figure axis. In that
case (15) does not hold any more and neither the
restriction e'=n nor L=L' can be used any
longer. However, the restriction A'=A. +1 will

still hold true as long as the dependence on the
azimuth x about the internuclear axis is given by
(2), i.e. , as long as everything is symmetrical
about the internuclear axis. As soon as this sym-
metry is disturbed, e.g. , by the rotation of the
molecule, deviations from the A.-restriction rule
must be expected. ' Levels can perturb each
other now even though their L or n are different.
A calculation of the perturbation matrix is then
only possible with a more detailed knowledge of
the wave function. Very often we can know that
the deviations from the motion under 2 cannot be
very large, and in that case we can be sure that
the interaction elements which are absent in

case 2 will be small now.

higher levels of light molecules. But even in the
latter case there can be no crossing over. (By
crossing over is meant that if the levels of the
first state are below those of the second state for
small values of J, they are above them for large
values of J. For intermediate values then they
must come very close together and cross over. )
Ke do not have perturbations in the proper sense
in this case, but the regular A-doubling which is
called L-decoupling, when it is very large owing
to the proximity of the two states. Although
these phenomena are due to exactly the same
causes as the real perturbations and there are
transition cases between them, they are distin-
guished from them, because they seem more
systematic in character, whereas the real per-
turbations seem always erratic at a first glance.
The reason for th'is is that the perturbing matrix
elements are so much smaller that their in-

fluence is not felt, except when the two per-
turbing states are very close together.

If we are interested in the perturbations of a
given state we can restrict ourselves, therefore,
on the inHuence of only those states able to inter-
act with it which are very close. Except for rare
cases of coincidence we have, therefore, to con-
sider only one pair of interacting states and shall
differentiate them by indices 1 and 2. As. the
changes in the energy due to the perturbations
may be of the order of the distance between the
perturbing levels, we must apply the perturbation
theory for semidegenerate states. If we call e

the energy shift due to the perturbations and 5

the energy difference between the unperturbed
levels we have

f4. THE PERTURBATIONS AS FUNCTIONS OF J S11
=0

We shall investigate now a little more in detail
the influence of the perturbation due to I&@

on the rotational energy levels. We saw that
ordinarily the elements of the perturbation
matrix are large only when the two levels per-
turbing each other have all quantum numbers
identical except that their value of A. differs by
~i. Such states are far apart except for the

'This disturbance of the symmetry about the inter'-
nuclear axis which results in the L-decoupling will be much
more efI'ective in the cases 1 and 2 and therefore the devia-
tions from the A-restriction rule will be more pronounced in
these cases. A case where this happens is given in $5.

Smi 822+~ —~

or in the case of class A perturbations for which
Sii=S22=o

If 5 is taken positive and e' and e" are the roots
with the negative and positive sign of the square
root, respectively, the perturbed energies are

lV~+c' and S'&+~"=%2+~"—&=8'2 —~'.

The perturbations of the two levels are of equal
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magnitude and opposite sign, so that the levels
seem to repel each other. For 8» ~$~2j we have

The maximum disturbance occurs when the un-
perturbed levels coincide. fn this case eo ——&

~
S» ~.

The wave functions belonging to the two per-
turbed levels are linear combinations of the
unperturbed ones

may have any value between 0 and I&+I2
depending on the particular value of the a;; and
of Pl and J.'2.

As is well known everything in this paragraph
so far applies equally well to any kind of inter-,

action. We shall apply this now to our special
case for which the perturbation matrix is given
by (13).

We can write with sufficient approximation

4'1 a114'1+a»$2&

42 a21$1+a22$2y
If a is positive b must be negative to have a
perturbation. For large b this gives (18)and the coefficients a;; are the solutions of the

linear equations

W;=A;+B,J(J+1) (22)

(20) or 8=Am —A&+(B&—B,)J(J+1)=a+bJ(J+1).

(S11 &)al 1+S»a»

Smia»+ (S22+ &
—~)a22 =0.

(J~,' —A)( J-+-', +A)= CL

a+b J(J+1)
(23)

As in all similar cases the values of the coefficients
are for the limiting cases

aii=a2a=1; a»=apt=0 for 8» iS»(,
a„=a)2 ——aug ———a22 ——1/W2 for 8 =0.

Pg' fPg'*Pf,dv =a»P g—+—a»P2,

y'2'= +21pl+ +22+2)

from which it follows that the intensities are
proportional to

Il +11 11++1212+2+11+12112)

I2 =Q21 11++22 12+2+21+22112
(21)

in which Ii= (P&~', I,= ~P2(' and I» the real
part of Pl*F2. Always we have, as the matrix of
the a;; is a unitary matrix,

Il'+ I2' =Il+I2,

but the intensities of the two individual lines

The first of these relations means that when
the two states do not perturb each other ap-
preciably, the perturbed states are identical with
the unperturbed ones. When the interaction is
not negligible either perturbed state acquires
because of (20) the properties of both unper-
turbed states. For 8 =0 these properties are
shared in equal parts. The amplitudes of the
electric moment become

Let us simplify matters still further by restricting
ourselves to Z, II perturbations for which A=-', .
Then

e'=a'J(J+1)/(a+b J(J+1)). (24)

If a is sufficiently large the perturbation is
negligible for small values of J. For J=O it is
exactly zero which can be seen also without any
calculation, as there is a level with J=0 only for
the Z state which. cannot interact with any level
of the II state. For large values of J we have

= —cP/b.
We have therefore the following picture: Let

us assume that the two states cross over near a
certain value Jo of J. For J«JO the infiuence of
the perturbation is negligible. The rotational
levels are represented by the ordinary quadratic
formula (21). The vibrational level which is ob-
tained by extrapolation to J=O, can therefore
never show any perturbation.

For very large values of J the inhuence of the
perturbation does not disappear, however large
the distance between the unperturbed levels may
become. The reason for this is that the perturbing
forces are originated by the rotation of the mole-
cule itself and increase with increasing angular
velocity. For large J the interaction results in the
constant term n'/b in the energy so that also in
this case the rotational levels are represented by a
simple quadratic formula. They are shifted how-
ever by the constant amount n'/b with respect



876 G. H. D I E KE

I I

5
I I I

l0

FIG. 1. Class A perturbation. Maximum at J=4. FIG. 2. Class 8 perturbation. It has a maximum of the
same magnitude and at the same place as the perturbation
in Fig. 1.

to the levels for low J. In the vicinity of Jo the
levels show strong deviations from the quadratic
formula and the lines originating from them may
have abnormal intensities.

The occurrence of the constant shift of magni-
tude n'/b for large J may be used as a criterion
for differentiating between class A and class 8
perturbations. (See Figs, I and 2.) For class 8
perturbations there is no such constant shift, and
the inAuence of the perturbation disappears com-
pletely for large J.

Also for small J the two classes, as we saw
above, may show a pronounced difference. Class
A perturbations are small for small J and must
be completely absent, e.g. , in the J=O Z level.
The vibrational levels which are obtained by
extrapolating the rotational states to J=O can
therefore never be perturbed. For class B per-
turbations there are no such restrictions and as
in Fig. 2, the vibrational level can be perturbed.

)5. COMPARISON WITH EXPERIMENTAL DATA

Unfortunately the empirical material for test-
ing the results of the preceding paragraph is
extremely limited. There are only a few cases
known in which both perturbing levels have been
investigated, Of these, most represent more com-

plicated cases. The best examples are the per-
turbations between the p'Il and p'Z levels of the
hydrogen molecule. They will be treated fully
elsewhere. The numerous perturbations found in
the levels of the CO molecule are complicated by
the fact that several perturbations come close
together and make accurate calculations im-

possible.
The perturbations of the He2 levels' offer an

interesting example. They are perturbations be-
tween nsZ and. ndZ levels. As A'=A. one might
think that these perturbations must be of class B.
But the fact that there seems to be a constant
displacement between the levels with low J
values and those with high Jvalues suggests that
we may have here nevertheless class A perturba-
tions. This seems to contradict the A restriction
rule. But as the dZ levels show almost complete
I.-decoupling, their wave function is a linear
combination of the If's of a dZ, dII and dA state
each depending on X according to (2). The dII
part can produce perturbations with the sZ levels.
Because of the L-decoupling of dZ the exact
dependence on J is somewhat different from the
case treated in f4 and the experimental data are
too meager to warrant going further into this.

"G.H. Dieke, Phys. Rev. 38, 646 {1931).


