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Quantum Theory of Metaliic Refiection

L. I. SGHIFF AND L. H. THQMAs, Mendenhall Laboratory of Physics, Ohio State University

(Received April 6, 1935)

In the classical (Drude) theory of the reflection and
transmission of light at a metal surface, the component of
electric intensity perpendicular to the surface is discon-
tinuous there, the remaining components of the field vec-
tors being continuous. In a more detailed description the
interaction of the light with the metal is expressed as
scattering by the conduction electrons according to quan-
tum theory. Those components of the field vectors which
were continuous in the classical theory retain very ap-
proximately their values in that theory, The electric in-
tensity perpendicular to the surface, though given ap-
proximately elsewhere by the classical theory, fluctuates
widely within a few electron wavelengths of the surface.

If this fluctuating field is used to calculate the surface
photoelectric effect by Mitchell's method, the agreement
of his result for a clean potassium surface with observation
is improved. To a first approximation, the new theory
predicts that the frequency at the peak of the spectral
distribution curve for a clean surface of a metal depends
only on the number N of free electrons per unit volume,
and for different metals varies approximately as E'~',
although the experimental results are uncertain, this is
roughly the case. No calculations have been made for
sensitized surfaces, but arguments based on the use of the
Drude form seem to be precarious.

INTRODUCTION

'HE classical phenomenological theory of the optical properties of metals assumes a discontinuous
change in the optical constants at the surface of the metal. This implies a discontinuity in the

normal component of the electric vector of the light at the surface, and hence a periodically varying
surface charge density there. On the other hand, we should expect a quantum-mechanical treatment
to give us a continuous electric field at the surface, and a transition layer near the surface in which the
optical constants may be regarded as varying continuously from the values outside the metal to the
values some distance within the metal, the latter being given by either the. Drude or the Kronig
theory.

In order to be able to write down the wave functions of the electrons within the metal, we must
first make some simplifying assumptions about its internal structure. Kronig's' theory assumes that
each electron moves effectively in a triply periodic potential field due to the positive ions of the lattice
and the remaining electrons. It follows as a consequence of this theory that if the frequency is suffi-

ciently greater than the reciprocal of the "relaxation time" of a current set up in the lattice, the
effects of the lattice are negligible, and the electrons may be treated as effectively free; for the alkali
metals this seems to hold in the visible and ultraviolet regions. Zener' has shown indeed that the
limits of transparency to ultraviolet light of the alkali metals as calculated from a free electron theory
are in fair agreement with experiment. Under these circumstances, then, the electrons inside the
metal may be treated as a Fermi gas. In such a treatment, we assume that apart from external
disturbances, a particular electron moves in a field free space, the field of the rest of the electrons and
that of the positive ions just cancelling each other. Darwin has shown that -in this case, the force
acting on each electron is the "tube-force" or molar electric field, and not the Lorentz force.

2. THEORY FOR A GENERAL SURFACE BARRIER

We take for the wave equation representing an electron moving in a vector potential A and a scalar
potential V (when the charge on an electron is —e):

h' eh Lh BQ
~'u+ (A ~)u —eVu ———=0

8+'rn 2ximc 2~ Bt

' R. de L. Kronig, Proc. Roy. Soc. A124, 409 (1929); A133, 255 (1931).
2 Reference 1, p. 415 of the 1929 paper.
'C. Zener, Nature 132, 968 (1933).
4 C. G. Darwin, Proc. Roy. Soc. A146, 17 (1934).
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for the light wave:

pj —B (X)e
—2siv(t (—z sin 8)/c)+Btv (X)e2s iv(t (z sin—8)/c) V=O

(U= 0 being provided by a change of gauge'), and for the surface barrier:

V= U(x), V( —~) = Vi, V(+ tx) ) = U'p.

The metal is taken to fill the half-space on the negative side of the ys plane. V(x) is an arbitrary known
function representing the eRect of the surface, that has the limiting values at ~ ~, and B(x) is an
unknown, but definite vector function. %'e first find the solutions m of the unperturbed equation
(A=0): —(hp/8trpm) ~ 'w eV—w (ih—/2tr) (t)w/&&t) = 0,

which, for energy E(—e Vo and coefficients k„and k, of y and s in the exponent take the form:

where'
w = {A)tt 1 (x)+Apht 2(x) }et(h»+hvz&e 2z'st/h

41( ~ ) e ttt2(
—~ ) =e"*, A i|t'i(+ 2 ) +A 2/2(+ ct) ) =Ape

ks'= (Str'm /h')(E+evi) —k ' kz' P'—= —(Str'm/h')(EyeUP)+k '+kz'

(k, and p are positive). Then putting 28 =v+w, &/ is given to a first approximation as a solution of:

where tttl (x) &11(x)(t'1 (x) +&12(x)f2"' (x), tttp (x) = bi (x) tt'1'" (x) + b2(x) ttb2 (x) ~

—(hp/St&pm)2tt pv eVv ——(ih/2 r) p(t&t//t&t) = —(eh/2trimc) (A ~)w.

After putting in the values of A and m, this may be solved by writing v in the form:

2/
w /Xhei(hstt+hz-)e (2zi/h)(tt+hv)te2siv(z sin 8)/c t w )/X( ethsttz+zh) e(2si/h)(&8 hv)te 2ziv—(z sin —8)/c+At

(6)

(7')

(8)

Neglecting t/c in comparison with k.. (for the greater part of the electrons, the latter is about a
thousand times the former) we obtain:

&ti (x) =ci+ (2tre/ehq) f8'tt'2(') {iB,(s) (A tht'1'+A 2/2') —(k„B (s) +k,B,(s) ) (Aint'1+Apl/2) }ds,
(9.1)

&1 2 (x) = e 2
—(2 ire / ch g )f8*/ 1

& ' & {iB,(s ) (A 1 tt' 1
' +A 2 lt' 2

'
) —(k „8„(s)+k,B,(s ) ) (A 1ht' 1+A 2 tt' 2) }ds

Here, pt('& and $2('& are the unperturbed solutio'ns for E(') =E+ht, k„, k, ; pt(') and ttp(" are the
unperturbed solutions for B&'& =A —hv, k„, k, ; also:

gp= (Strpm/h2) (8('&+eV ) —k ' —k '=/tt+4 '
/t = Strpm/h

(g is positive). Since 8(2& is generally negative (for potassium this is so for &&(6000A), we have for
bi(x) and b, (x):

bi(x) =di —(28(ie/chp) fp*ttp
"&{iB,(s) (A 1|t1'+A2&2') —(k„B„(s)+k,B,(s)) (Aifi+Aptttp) }ds,

(9.2)
bp(x) =d2+ (2tri%hp) f p pi('& {iB,(s) (A iht 1'+Apts 2') —(k,B„(s)+k,B,(s) ) (A itt 1+A 2/2) }ds,

where p'= —( S'trm/h)p(Z("+e Ui)+k„'+k. '=/ht k,'—(10.2)

(p is positive). The primes (not to be confused with the superscripts) as in (9.1) and (9.2) will always
denote differentiation with respect to x. The constants of integration in the above expressions must be
adjusted so that outside the metal, 1/ falls oR exponentially, and inside, &/ represents (at large distances
in) either waves moving away from the surface or a.n exponentially decreasing solution. In calculating

' J. Frenkel, 8'ave 3fechanics —Advanced Genera/ Theory, 1934, p. 368.' If E & —eUI, we get exponential forms for the unperturbed solutions:

&1(—~) =et&*, f2{—oo) =e to~, p = —(8m'm/h')(E'+eUI)+k '+k (p is positive. )
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j = —e I (h/4zim) (u*~u —u~u*) + (e/mc) Auu* }

To obtain the total current J, we must integrate j over all the states of the conduction electrons
according to Fermi statistics. This J, which combines the polarization and conduction currents, is
then the same as that which appears in Maxwell's equations:

[&XH3 —(1/c)E = (4)r/c) J, E = —(1/c)A, (12)H=[yXA],

photoelectric emission, we are concerned only with the pj term, as that involving E—hv corresponds
to stimulated emission; for the coherent scattering, however, both terms must be considered.

The current coherent with the incident light is given in terms of the vector potential by means of
the well-known formula:

from which we obtain the relation:

[p X [~XAgg+ (1/c')A= (4)r/c) J (13)

between A and J. Eliminating J between (13) and the integrated form of (11),we obtain an integral
equation in the vector potential -A. In the above theory, we have neglected effects due to photoelectric
emission and incoherent scattering. These two are of the same order of magnitude, and the former
is known experimentally to be negligibly small for calculations of this type (there is generally about
one photoelectron produced per 200 incident quanta).

We simplify the integral equation in the vector potential as much as possible before approximating
to its solution. Outside the metal, J=0, and well inside the metal (where the electrons are not under
the influence of the surface barrier), we have from classical theory that J=foA, where:

fo —e'X/m——c, I)l'= number of electrons per cc
e = 1+cf()/7r) ',

(14.1)
(14.2)

the latter relating fa with the dielectric constant e of the phenomenological theory; thus at large
distances within the metal, A has the form:

C~yxfv —2z'iv(t —(z sin 8)/c)+CW&yx~2m'iv(t —(z Sin 8)/c}
S

where C is a constant vector. Since we have assumed that the electrons are effectively free (except
for the surface barrier), we expect the Drude results to apply everywhere except near the surface.
The same argument. that shows in the Drude theory that B„(x),B.(x), and ((4x/c) J +(4)r'p'/c')A, ),
(the tangential components of A and the normal component of [VXHj) a.re continuous at the
surface, now shows that these expressions vary only slowly, and to a first approximation may be taken
to have everywhere the values given by the Drude theory. Thus we may put:

B„(x)=C„e&', B.(x) =C.e&',

((4)r/c) J + (4~2 p2/c2)A ) —
I xe

—2m'iv(( —(z sin ())/c)+ x@e2w(v(&—(z sin 8)/c) }e) a
(16)

We must now find C„, C„p, and p from the Drude~ theory in terms of the amplitude of the vector
potential of the incident light wave. Using (15) for the light wave within the metal, we put:

j A(0)&—2miv(t+(x eoa 8/c) —(z 8in f))/c) ~A(l)~—2n. iv(t —(x eos 8)/c —(z sin 8)/c) t +Cpniunate

for the wave outside, where A(0) = (I~ sin 0, I„I~ cos 0) is the amplitude of the incident wave, and
A(') = (R„sin 0, R„—R„cos (/) is the amplitude of the reflected wave. I„and I, are the components of
the incident light vector parallel and perpendicular to the plane of incidence (xz-plane) respectively,
0 being the angle of incidence, and E.„and R, are similar quantities for the reHected beam. We find

E and H from Maxwell s Eq. (12), and apply the boundary conditions (continuity of the tangential
components of E and H) at x =0. We also require the relation:

~ P. Drude, Theory of Optics (English translation, 1907), part 2, section 2, chapter 4.
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fpA= J= (c/4ii)[~XI) —(1/4pi)E.

The y-component of this vector equation gives us the value of y.
y'= —(4pr/c)(fp+ ( pr'vcos' 8)/c)

863

(12.1)

(17.1)

(y is real and positive). The x- and s-components of (12.1) are equivalent, and with the boundary
conditions may be made to give:

21„
C, =

~ ~ ~

sin 8 —(1/cos 0 cy/—2iri v) (cy/2iiiv sin 8)
(17.2)

C„=
1 —cy/2irzv cos t/

2I„
C =—z f

1/cos f/ cy/27ri v —(2iriv sin'—//) /cy

x = (4zrfp/c+4zr'v'/c') C„
in terms of the amplitude of the incident light.

(17.3)

(17.4)

(17.5)

3. THEORY FOR AN INFINITE BARRIER

The form of the potential function V(x) that is easiest to treat from a mathematical standpoint is
that which gives a square barrier:

V(x) =0, x&0; V(x) = Vp, x&0. (3.1)
We shall consider in detail here the case of an infinite barrier (Up= pp). The changes in the results
necessary when a finite barrier is used will be discussed later. We retain the form of A given by (2)
for x(0 (the form outside the metal is unimportant). Then (5) becomes:

re ipse eik-zc)ei(pvv+pzz)e paiiri/h—
04 (5.1)

which satisfies the boundary condition at x = 0 for an infinite barrier (w vanishes); A p is a normalizing
constant [which equals (1/4prz)&, for two electrons per h' of phase space). Replacing B„(x)and B,(x)
by their Drude values as in (16), and neglecting the slowly decreasing exponential term e'r' (which is
important only for producing convergence at —pp, and is practically unity near the surface), we find
that the terms involving B„and B.cancel out of the current expression (11),and can therefore be left
out of the coefficients (9.1) and (9.2) of the perturbed wave function (7). After evaluating the
constants of integration in /zi(x), /zp(x), bi(x) and bp(x), we obtain:

/zi(x) = —ap(0)+ (2pieA p/chq) fp*e'"k,B,(s) (e 'p" +e'p -')ds

/zp(x) = —(2neA p/chg) f* e 'P'k, B,(s) (e 'P"+e'P*')ds,

bi (x) = —bp (0) —(2pizeA p/chp) fp'e &'k.B,(s) (e '""+e"**)ds, —

bp(x) = (2prieAp/chp) f' e&'k,B,(s) (e 'p" +e'"*')ds

The part of the current given by (11) depending linearly on A is:

j= —e I (h/4prizrz) (w*~v —v&w*+v*@'w —wp'v*) + (e/vzc) Aww*I.

The current J is obtained from this by the integration:

J=fpPpi(kP k') jdk—

(9.3)

(9 4)

(11.1)

over the sphere of radius k in k k„k,-space; here k = (3m'cV)&, for X electrons per cc of metal, and two
electrons per h' of phase space.
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To obtain the integral equation in 3,(x), we first find the current j, by substituting (5.1) for re, and
(7) for v, with coefficients given by (9.3) and (9.4), into the current expression (11.1). Since the
exponentia1s cancel out, except for e~' '"&' (' ""'&'&, and 3 comes out as a factor, it is convenient to
express Pg and yg as integrals of the form:

4i= f'~gi(x, s)3.(s)ds; @g=f' „gg(x, s)3„(s)ds.

Doing this, we find directly that gi(x, s) and g~(x, s) are given by:

gi (x, s) = —(2 exA0/chg) 4ik, sin gxe
—'" cos k,s;

gi {x,s) = —(2seA 0/chg)4ik, sin use '&' cos k,s;
g2(x, s) = —(2xeAO/ch p)4ik, sinh pxe&' cos k.s;

g2(x, s) = —(2s.eAO/chp)4ik, sinh pse&' cos k,s;

Then, with (11.1), these give for j,:
j„=Pf' (eh/4xim) I ( -e"~ e'" —)(Aogs*'+yogi')+ik„(e-"*+e" )(Aog2"+yogi) IB,(s)ds

(20.1)

(20.2)

(20.3)

(20.4)

—(e'/mc)A Os4 sin' k,xB (x)je ' '"~' &* 8'" '&!'&+conjugate. (21)

x=h(x)3.(x)+f' K(x, s)3,(s)ds (22)

(neglecting the factor e&* in x), where

4m'v' 4xe'A0'
4 sin' k,x(k' —k,') 7rdk,

c' mc'

(The primes denote differentiation with respect to x, as before. ) Substituting the value of J, obtained
from (18) and (21) into the last of (16), and equating coefficients of e—"'"~'—&' ""'&",we obtain finally

the integral equation in 3,(x):

2~ehA0
E(x, s) = I

—sin k xLgi'(x, s)+gg*'(x, s)j
tFEC

+k. cos k.xfgi(x, s)+g2'(x, s)]I (k' —k.')dk, . (23.2)

This equation cannot be so1ved by the usual method for treating integral equations, because the
(real) function h(x) has a zero on the negative real axis. However, we may rewrite (22) in the foi'm:

3,(x) =g/Lh(x)+ f' IX(x, s)3.(s)/3, (x) Ids] (24)

and obtain a flrs't approximation 'to tile solutloii by takiilg 3 collstailt (tile Drude value, except for
the exponential term) under the integral sign. This gives us:

3,(x) = x/Lh(x)+ f' K(x, s)dsg. (25)

We have obtained explicitly in {16) and (25) approximate expressions for the vector potential

existing inside a metal when we assume an inhnite potential barrier at the surface. Before examining

these in more detai1, we sha11 consider what changes are necessary in the existing theory of the
photoelectric e8ect to accommodate our new expressions for the vector potential, as the photoelectric
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effect gives us a good opportunity to apply the present theory. A very complete treatment of the
surface photoelectric effect has been given by Mitchell. He assumes a finite square barrier at the
surface (representing a clean surface), the vector potential inside the metal given by classical theory,
and has calculated the perturbed wave functions by both the stationary and nonstationary methods.
We wish to recalculate his Eq. (26), which gives the whole wave function of electrons outside the
metal, by the stationary method, but using our value for the vector potential instead of that given

by classical theory, and then to obtain the photoelectric current from this.
The calculation of the unperturbed function will be the same (except that we have used throughout

the opposite sign fori). It should be noted that Mitchell calls the potential energy of the electron (not
the scalar potential) V, and assigns to it the value —hv, inside the metal, and zero outside; this change
of notation does not, of course, affect the final results. We shall use Mitchell's Eq. (13) for the light
wave outside the metal, but our form (2) for the potential inside. Since we have assumed that the
amplitudes of the y and z components of the vector potential are essentially constant within the
metal, we are led (as he was) to the conclusion that his functions pv and @.do not contribute ap-
preciably to the current, as they are continuous across the boundary to a first approximation. The
calculation of p„however, will now be different, since we must replace his a, which was constant, by
our function B,(x) inside the metal. It is necessary then to solve the differential equation in the
perturbed function [Mitchell's Eq. (15)$ by the method of the variation of parameters, and then
to put in the condition that at large positive and large negative distances, p, is to represent a wave
moving away from the surface. Doing this, we obtain instead of Mitchell s Eqs. (22) and (23):

= (k /2ga ) I c e
—i«z+ fz e—i« &«—z& (e

—ik z ake kzz)B (~)de'

fz eiz(z —z& (e
—ikzz a eikzz)B (k)dg} ei(k««+kzzi ~ x &0. (26.1)

eizz (pb /+v)e
—pz}e&(k«v+kzz) . x&0. (26.2)

(It will be noted that the sign of i is changed here. ) We evaluate the constants b, and c, by means of
the continuity conditions on @ and &&&&&,/&&x at x=0, and obtain for b, :

k, Pbk (&I+zP)
b, = — — e '"(e "".* a—ke*"*)B (x—)dx+

a.(V+r) & v(V+r)
(27)

instead of his expression (25). It is easy to show that these two expressions are equivalent when
B,(x) is taken constant (except for an exponential term that produces convergence at —0(& ) and equal
to a,. Then, finally, we obtain, corresponding to Mitchell's (26), the complete wave function outside
the metal;

zz= {akbke "*e &' "k&ek'+X,[b,e'"z (pbk/&kv—)e "*je (z«"k&&ek+k"&'}e'&k»+k *& (28)

which is formally the same (except for the change in sign of i), but which has the value of b, from our
Eq. (27) instead of from his Eq. (25). The quantities &kk, bk, ak, P, &I, r, k„&(„and &k have the same
significance as in Mitchell's paper, and are tabulated here for convenience:

~ &kk
~'=-', (mean electron density inside metal);

bk = 2ik./(zk. +p); ak ——(ik. p)/(ik. +p);—
P=( v.—k.')'; q= (k '+&((v)*; r= [k,'+&k(v —v )g«; (29)

k '= (8&r'm/h') (Ek+hv. ) —k ' —kzz z

&&, = —(4zrie/ch) a kc&k, &(i
= 8m'm/h.

' K. Mitchell, Proc. Roy. Soc. A146, 442 (1934).' We shall use only the first term of (2) since the stimulated emission does not contribute to the photoelectric current,
as Mitchell points out (reference 8, p. 448).
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(k„k„,k„q and p have the same meaning as we assigned to them earlier in this paper. ) That part of
the normal component of the current density outside the metal which contains neither exponentially
decreasing terms nor oscillating time factors (the photoelectric current) may then be obtained from
our Eq. (11), or from Mitchell's (27) (which gives the correct result even though he omits the term
involving Auu. *).This gives us:

j,= —(skr j2xm) (
)..b.

~

';

This current must, of course, be integrated over the conduction electrons before it gives the whole
photoelectric current. However, because of the difficulties involved in eA'ecting this integration even
with the simpler value of the vector potential that Mitchell considers, we shall not attempt to do this
here. But we can obtain a rough comparison with Mitchell's photoelectric yield curve by considering
the ratio between our value and his value for 6, and the manner in which it varies with the frequency
of the incident light. In doing this, we use his Eqs. (73) and P4) for b, and X„where he has taken
account of reHection and refraction at the surface of the metal according to classical theory (and
change the sign of i). If we put:

J0 s—jets(s—4kgx g s~kgs)g (x)dx

we have for the ratio E. of our value of b to Mitchell's value of b, :
k,p vIO—+pb v(q+op) ap,R=

(ik, ' pq) bl a—g,+phd(q jip)ao,

(3I)

(32)

where ao, I„sin tt+Rv si——n 8 is the total (incident and reHected) x component of the amplitude of the
vector potential outside the metal, and a&, =C is the x component of the classically calculated
transmitted amplitude. We wish, then, to 6nd roughly the value of R and its dependence on the
frequency v. First, however, we must evaluate Io, using the value of 8, from (25).

Consider the relative magnitudes of the terms in the denominator of (25). The Hrst term k(x) is

real. Put for the second term:
4=f' E(x, s)ds.

The s-integration of A may be carried out simply and exactly and gives:

4ie~ k.
A — s " —

~
sm k,x cos qx ——cos k,x sm qx

~
(cq cos k,x—k, sm k,x)

mBSC ~0 @pe Q ]
k, ) (q cos (q+k, )x cos (q —k,)x)

+~ 'sink, x+—*co.k„x I~—
q ) &pv 2(q+k, ) 2(q —k.) )

ev*-
f k.——

~

sm k,x cosh px ——cos k,x sinh px
~ (p cos k,x+k, sin k,x)

pv )P

(33)

( k~
+(p —p cosh px cos k,x—k, sinh pxsm k,x)

~

sin k,x——cos k,x
~

(k' —k, ')krak, . (34)
p

The k integration, on the other hand, is exceedingly complicated, as both g and p contain k, under a
radical. However, we can get an idea of the order of magnitude by assuming for purposes of inte-

gration that k(((pv)'*, when we can put approximately:

sin kg/ k~x q cos kgx~ 1; q= (p, v)&; p = (pv)'
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We then obtain for the real and imaginary parts of A:

4e2 2k' 1
Pc[A]= —{sin $ —$ cos $},

Ãmc 15 pv

4e' 2k' 1
@[A]= —{cos,"+$ sin $+e&(1—$) —2},

m.mc 15 pv

(35.1)

(35.2)

where t = (po)&x. (35.3)

Several points now present themselves. First, h(x) is an even oscillating function that has one zero
on the negative real axis, and an in6nite number of complex zeros a considerable distance from the
real axis. Second, h(x) approaches a definite limit (x/C, ) as x becomes negatively infinite. Third,
%[A] is small compared to h(x), except of course where the latter is zero. Fourth, /[A.] is also small
compared to h(x), and is positive for 0)$) —1.78, after which it is negative for some distance.

The zero point" of h(x) may be calculated approximately from the equation:

wv'm 1 cos g sin y g2 g4
=—+

3e'X 3 g' g' 30 840
(36)

where s= 2kx. We take the value 5 10"for o, and 1.35 ~ 10" for N (for potassium). These give:

qo ———1.90; xo= —1 29 10 s cm $p = —0.95; (&h/Bx) o = (4eoko/ormc') (0 094) )0

Thus B (x), which is of the form:

g/{ (Bk/Bx) p(x —xp) +%[A]+if[A]}

near xo, has a pole approximately at:

x = xo —{[5&]+o3[&7}/(&&/&x)o.

If ~~[A] is positive (i is such that 0)$)—1.78), this is just below the negative real axis, and Ip
consists of its principal value (neglecting i1) minus mi times the residue of the integrand at the pole.
Again, if 3'[A] is negative (v such that $ & —1.78), the pole lies just above the negative real axis, and
Io consists of its principal value plus mi times the residue at the pole. Thus Io changes its value ab-
ruptly near that frequency for which t = —1.78. We can And this critical frequency approximately by
putting:

g = —i (30orm/3eoN) &

from (36), and substituting for x in $ in terms of s. We then have (in the case of potassium):"

v,&=2k 1.78/(ii 10m.m/e'N)i. v, =8.45 10'4.

We break up the integral Io into two parts of the same form:

Ii ——fo B,(x)e-'o&'d

Io ——f' „B,(x)e-'"'dx;
8j =g+k, &0

S,=g —k.&0

such that: ID=I&—akI2. We must remember that x in reality has a small exponential term e&

multiplying it, which is negligible except for producing convergence at —00. We thus have to evaluate
an integral of the form:

I=f' „(e "*
h/( )x) xd. — b&0. (37)

~ This is approximately the point where the dielectric constant e vanishes.
"For diferent metals, v. c N", since k ~ N'I'.
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FrG. j.. The function k(x).

After inserting the form (23.1) for k(x) into (37), this is quite a formidable integral to evaluate,
especially with the pole at pep. However, the important features of k(x) as seen in Fig. 1 (solid line)
are its values at zero and —~, and the point at which it vanishes. Therefore we should expect to get
a good approximation to the integral by putting instead:

1 4
where k(0) =———=

k(x) = 1/(r+ ex') —1/f',

P 1 4''v' 47rfp

k( —ao) = ——=
C2 C2 C

k(ppp) =0;

(38)

zp = ((f —)r /—e)'= —K

represented by the dotted line in the figure.
The integral (37) can then be expressed in terms of sine and cosine integrals:"

I= —(is/5)+(if'P/eK) }Ci(SK) sin 8K si(bK) —cos 5K —e~e P }, (39)

where 8= 1, if the pole is below the negative real axis (v(v, );
0=0, if the pole is above the negative real axis (v) v,).

Putting (39) into the expression for Ip, we obtain:

Ip XI if/ftl+ ( f /eK)L (~1K) i ~1K (~1 K) ~1K

+r»»if/5p G»(ii'/oK)[Ci (5pK) sin 8&K si (8&K) cos 5p—K —Are'" j}. (40)

Then, by inserting (40) into the ratio R given by (32), the latter reduces to

—k pvxl»i
&=1+ — I[Ci(8»K) sin b»K si(5~K) cos—5~K —gate'" $

}(ik, ' prI)a~ + (q+—ip) pap, }oKb»

a»[Ci(—5pK) sin 6pK si(hpK) co—s 6pK Hxe" )}. (—41)

From (41) it is impossible to obtain a simple form for the variation with v of
~

R
~

', this being the ratio
of the new photoelectric current to that of Mitchell (for a given k»). However, we can roughly estimate
R by assigning numerical values to the quantities involved. The function Ci(s) sin s —si(s) cos s falls
off monotonically from pr/2 at 0 (0.62 at 1, 0.40 at 2) approaching zero like 1/s as s—&~, and is

therefore never large. Using a value of the frequency near v„we find that ~R
~

=6, when 9= 1, and

~

R
~

= 1, when 0= 0. Although these results will be smoothed out somewhat when the k, integration is

"See Jahnke-Emde, Tables of Functions (2nd ed. ), p. 79, for the notation used here.
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performed, it will still be true that the resulting photoelectric current will decrease rather suddenly
as u passes through the critical value, and 0 changes from one to zero.

This last point is quite important, as it brings Mitchell's theoretical curve (his Fig. 2) into better
agreement with experiment. On the abscissa of this curve, (v —v,)/v„our critical frequency (8.45 10")
lies at about 0.7'. This means that our correction mill raise his curve to the left of this point, and lower
it towards the right. This will make a rather sharp peak on the low frequency side of v„ the position of
which will nearly coincide with that of the experimental curve. "Detailed calculations of

~

R ~' would
be necessary before the exact forms of the experimental curve and this new theoretical curve could
be compared.

This seems to indicate that the peak of the spectral selectivity curve is due principally to the effect
of the pole of the vector potential function. This conclusion is confirmed by a comparison of the values
of v, obtained by this rather rough theoretical approximation (v, "¹")with the rather uncertain
experimental values for the peak of the spectral distribution curve, which in fact varies approximately
as N& for the metals in the first three columns of the periodic table. "

5. CHANGES FOR A FINITE BARRIER

The vector potential used in the above calculations was that obtained by assuming an infinite
barrier at the surface. The principal effect of making the barrier of finite height is that then the
wave functions do not vanish identically at the surface, but have a small value there. This extends the
transition layer slightly beyond the surface, and moves the singularity closer to the surface. Such
changes would be unimportant in the theory as developed here, and the additional complications
involved hardly warrant more detailed investigation at this time.

For the more complex forms of surface barriers, the theory becomes exceedingly complicated; for
example, we need no longer have only one point at which the dielectric constant becomes zero. In
particular, Zener's" argument in favor of Suhrmann's" theory of the selective photoelectric eff'ect

for sensitized surfaces as against that of Fowler" may now require reconsideration.

6. GENERAL CONCLUSIONS

We thus arrive at the conclusion that the Drude theory of the reHection of light at a metal surface,
modified where necessary by Kronig's results, gives the electromagnetic field correctly except within a
transition layer extending a few electron wavelengths from the surface. In this transition layer, the
continuously varying electric intensity perpendicular to the surface, discontinuous in the Drude
theory, does not have values near those given by that theory, but Huctuates considerably. "These
Huctuations depend on the nature of the surface potential barrier in a complicated way, but their
calculation seems to be required in the theory of the surface photoelectric effect."

"This curve in Mitchell's paper was taken from a paper of R. Suhrmann and H. Theissing, Zeits. f. Physik 52, 453
(1928). .

"Hughes and Duaridge, Photoelectric Phenomeno„1932, table on p. 162; the values given there may not be, and cer-
tainly are not in the case of potassium, for really clean surfaces."C.Zener, Phys. Rev. 47, 15 (1935).

~6 R. Suhrmann, Ergebnisse der Exakten Naturwissenschaften 13, 148 (1934).'' R. H. Fowler, Proc. Roy. Soc. A128, 123 (1930).
"cp. the Gibbs phenomenon in Fourier series.
"Even in the simple case of a square barrier, it would hardly improve the results of that theory merely to average

over the position of the surface, as suggested by Mitchell (reference 8, p. 461).


