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whose origin is unknown but which possibly
arise from the configuration 4d'Ss5p. These
terms are designated by numbers with the
assigned j value as subscript. A few additional
lines arising from the transition 4d'5p —4d'Sd
have been identified. Among these, the line
4d 5p P1 —4d Sd Sp is of interest in that it
confirms Blair's 4d'5d 'Sp term.

The extension of the 4d'ns ' 'D series permits
the calculation of the series limit by means of a
Ritz formula. The application of this formula to
the 4d'6s, 7s and 8s 'D3 terms yields 1.34, 110cm '
as the limit of this series with respect to the
4d 'D2~ term of Ag III.The 4d' 'Sp term of Ag II
is 39,164 cm ' below 4d'5s 'D3. Thus the absolute
value of the 4d' 'Sp term of Ag II is 173,274 cm
with respect to the 4d''D2~ level of the Ag III
ion. This corresponds to an ionization potential of
21.4 volts. By the application of a Rydberg
formula to the 4d'Ss and 6s 'D3 terms, Shenstone7
obtained a value of 21.9 volts for this quantity.
The Ritz formula for the 4d'ns'D3 series is:

T = 134,110—v

=RZ'/$m 3 07—285. —8 047X10 7(T )$'

Of the 4d'ns ' 'D series, the 'D3 and 'D2 series
converge to the 4d' 'D~~ state of Ag III and the

'D1 and 'D2 series converge to 4d''D1g. The
calculation of the limits for these four series by
means of a Ritz formula should yield the
separation of the 4d''D terms of Ag III with
considerable accuracy. The results are as follows:

Series *Term value of 4d'Ss 'D2 Limit in Ag III
ns 'D3 134,110cm ' 4dg 2D )

3D2 134,111 2D ('D 138,716 2D )
'D2 138,718 'D1)
* As obtained from the series indicated in column one

and referred to the limit indicated in column three.

From the average of these results, the separa-
tion of, the 4d' 'D terms of Ag III should be 4607
cm '. This is in agreement with the separation
reported by Gibbs and White" and with that
recently found by the author in his analysis of
the Ag III spectrum the results of which will soon
be published. Thus the correctness of the classi-
fications here reported is further confirmed.

The author acknowledges with pleasure the
advice and criticism of Professor R. C. Gibbs
during the course of this investigation. He is also
indebted to Dr. C. W. Gartlein for the design of
the Schuler tube and for assistance in some of the
experimental work.

"Gibbs and White, Phys. Rev. 32, 318 (1928).
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In the present state of nuclear theory it is reasonable to assume, for particles bound in the
same nucleus, that the neutron-proton interaction operator can be represented fairly well by a
potential function J(r). By taking J(r) to have the form Ae "', which is well adapted to the dis-
cussion of the three- and four-body problems, A and a have been determined to fit the binding
energies of the deuteron and the alpha-particle. The results are roughly A = 170 mc', 1/a'12 = 1.3
)&10 "mc, with both the Wigner and Majorana theories. The computed binding energy of H'
has the value 12.7 mc' (Wigner) or 11.2 mc' (Majorana), not very far below the experimental
value of 16 mc'. The two theories appear to be about equally good.

SEcTIoN I. INTRQDUcTIoN

HE proton-neutron nuclear model' ' ' in
which the important internuclear interac-

' Heisenberg, Zeits. f. Physik 77, 1 (1932);78, 156 (1932);
80, 587 (1933).

2 E. Majorana, Zeits. f. Physik 82, 137 (1933).
3 Wigner, Phys. Rev. 43, 252 (1933).

tions are those between neutrons and protons
provides a satisfactory explanation of the most
striking features of nuclear structure. 'Ihese are:

(a) The large ratio of binding energies of the
alpha-particle and deuteron and the general
linear increase of binding energy with mass
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number for the light and intermediate nuclei.

(b) The existence of a long series of light nuclei
for which the mass number is exactly double the
charge number.

(c) The general tendency, for intermediate and
heavy nuclei, of the mass charge ratio to increase
with increasing charge.

The 6rst part of (a) can be understood in terms
of a very large neutron-proton interaction with a
range of about 10 "cm. The small binding energy
of the deuteron results then from the almost com-
plete cancelation of a large kinetic energy against
an only slightly larger potential energy. 4 The
second part of (a) can be understood in terms of
the Majorana form of exchange interaction. Item
(b) implies that the neutron-neutron interaction
is relatively small so that in a hypothetical
series of light nuclei of given mass the most stable
arrangement is the one with the largest possible
number of proton-neutron interaction terms. '
The long range Coulomb repulsive force between
the protons decreases the binding energy by a
term proportional to the five-thirds power of the
charge number' and hence with increasing charge
number tends to shift the most stable arrange-
ment toward a neutron-proton ratio greater than
unity. This is the explanation of (c).

For particles bound in the same nucleus, it is
a plausible assumption that the neutron-proton
interaction operator can be represented fairly
well by a potential operator J(r)P„„with J(r) a
function of the separation r and P„„an "ex-
change" operator which works on the coordinates
of the two particles. This assumption is basic to
the nuclear theories of Heisenberg, of Majorana
and of Wigner. In the Heisenberg theory P„„
interchanges both the space and spin coordinates
of the particles, in Majorana's theory only the
space coordinates are interchanged. In Wigner's
theory P„„drops out (in other words the Wigner
theory is a direct application of the Schrodinger
wave equation). Only the latter two theories
yield a stable alpha-particle. Because it is un-
satisfactory in this respect the Heisenberg form
of the exchange operator will not be considered
further.

The Majorana theory provides that two parti-
cles with non-overlapping wave functions do not

interact thus making long range interaction
forces compatible with the observed roughly
linear increase of binding energy with charge
number. Under the same conditions the Wigner
theory yields a dependence roughly quadratic in
the charge number. With the short range forces
required by the physical facts both theories, in
conjunction with the Pauli principle applied
separately to neutrons and to protons, make the
alpha-particle a particularly stable system ca-
pable of playing the part of a secondary unit in
the structure of complex nuclei. It was thought
best to carry through calculations for both
theories even though the signer theory is not
acceptable for heavy nuclei.

The immediate problem is the determination
of J(r), a problem which Wigner3 has already at-
tacked with considerable success. In this paper
the variation method of calculation is simplified
and extended to the Majorana theory. A non-
rigorous method of reducing the three- and four-
body systems to "equivalent" two-body systems
is also developed. It is believed that the results
obtained are more accurate than those of Wigner.

The Hamiltonian operator in the Wigner
theory is

and in the Majorana theory

(&b)

The units are ns, c'=510,000 e.v. for energy and
(h'/4~'c'm, m„)' = 8.97 X 10 " cm for length.
The operator Pp;n; changes a function

(' ' xp ' ' xn ' ') 1nto ~1'( . xn x&"") and's 1 'T X

thus merely multiplies by +1 any function which
is symmetric or anti-symmetric with respect to
interchange of the space coordinates of the
particles pi and nj. The energy is given by the
equation'

8'= f fPHPdr

in terms of the Hamiltonian, H, and the normal-
ized wave function P.

The experimental facts to be correlated and
explained are summarized in Table I. In com-
puting the energies, the mass of the neutron is

4 Wigner, Zeits. "f. Physik 83, 253 (1933).' Gamow, Atomic Nuclei and Radioactivity, p. 19.
The superscript 0 will be used to designate energies

computed by the variation method.
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TABLE 'I. Masses and binding energies of hydrogen and
begum isotoPes.

Atom

H'
H'
He'
He4

Mass

2,0136 &0.0001'
3.0151 W(?)8
3,0163 ~0.0004'
4.00216+0.0002

Binding energy*

4.0+1.1
16.0~1.7 (?)
13.4~1 ~ 7
54.0+2,2

+ With respect to free neutron and hydrogen atoms.

taken as 1.0080~0.0005' and of the hydrogen
atom as 1.0078..

SEcTIoN II. THE Two-BoDY EQUATIQN

We write J(r) in the form Af(o. 'r) It wil. l be
necessary to make a definite assumption about
the form of f, but, for the moment, all that need
be stated is that f is a positive valued function
which vanishes rapidly for large values of the
argument. The positive valued parameters A and
cx are to be determined to fit the binding energies
of the deuteron and the alpha-particle. Evidently
A and 1/n'* are directly proportional to the depth
and breadth, respectively, of the potential well.
We are looking for a solution of the equation

I d'/dr'+E+A f(cx'r) I y =0 (3)

which vanishes at both r = 0 and r = ~ and does
not vanish anywhere else. In our problem we
know the value of E(E= —4.0) and will use the
differential equation to obtain a relation between
A and a; thus A =A(44) or, more conveniently
A/n=g(a). Anywhere on this line in A, n space
the normal state solution of (3) has the eigen-
value E= —4. This procedure reduces the two-
parameter potential to a one-parameter function.

It is convenient to insert here the proof of a theorem
which will be needed later. Suppose that the relation
A/a=g(n) is known. Then it can be used to compute the
normal state eigenvalue for arbitrary values of A a.nd n
which do not satisfy the relation: say A =B, cx =P. For let
r =m'I's with m a positive constant. The differential equa-
tion becomes

I d'/ds'+mE+mBf((mp)'~'s) J y =0. (4)

Now if mE = —4, the quantities mB and mp are related by
the equation mB =A (mp), or mB/mp =B/p =g(mp).
Hence mp is known and from it the required value of m.
The desired eigenvalue is just —4/m.

Considerations of simplicity and elegance 'lead

to the assumption that J(r) belongs to the two
parameter family of functions 2 e "'. With
J=Ae "' the relation A =A(n) was determined
by a number of numerical integrations. Table II

TABLE II,. A(n) for —E(II2) =4.0.
A /a 3.45 3.66 3.88 4.11 4.35 4.60 4.85 5.10 5.36
1/a'/' 0.12 0.15 0.18 0.21 0.24 0.27 0.30 0.33 0.36

gives A/a as a function of 1/ni. The relation is
almost linear.

With the approximate wave function

y = (v/m)'"re-""' '

the variation Eq. (2) has the explicit form

E = (3/2) cxo —A (o/(o+ 1))&, o = vn. (5)

Eq. (5) is needed for comparison with later
results.

SEcTIoN III. TIIE THREE- AND FoUR-80DY
PROBLEMS

A suitable and fairly fiexible wave function for
use in (2) is obtained if we approximate to P by a
product of functions each depending only on the
distance between one pair of particles: thus

P(1, 2, 3) =u(12) u(13)v(23)

for H' and He' and

P(1, 2, 3, 4) =u(13)u(14)u(23) u(24) v(12)v(34) (7)

for the alpha-particle. The I's tie together unlike
particles while the v's serve to increase the average
potential field in which the particles move by
holding like particles together. It turns out that
the v's are important in both theories and
absolutely essential in the Majorana theory.
With these wave functions (2) can be put in the
form

E'(H') =X(H')+ F(H') —Z(H'), (8)

(9)Eo(He4) = —Q(H4)+X(He4)+ F(He4) —Z(He4),
'r Bainbridge, Phys. Rev. 44, 56 (1933).

Oliphant, Harteck and Rutherford, Nature 133, 413 (1934); Proc. Roy. Soc. 4144, 692 (1934); and Dee, Proc.
Roy. Soc. A148, 623 (1935).

9 Chadwick and Goldhaber, Nature 134, 237 (1934).
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in which

X(H') =-',fff I3 lingu(13) l' —u(13)Aalu(13) I fffu'(12)v'(23)drmdr(3,

Y(H') = —5ffv(23) 62v(23) ffju'(12) u'(13)drgdr23,

Z(H') 2=fffu'(13) J(13)fff[u'(12)v'(23) jdr2drgg,

Q(He') =f fu'(23)p&u'(13) q v'(12)f fu'(24)u'(14)v'(34)dTgdr4dTyg,

X(He') =2fj j( I p &u(13) t 2 u(13)g,u(13) I f . ju'(14)u'(23)u'(24)v'(12)v'(34)dT2dr4dryg,

I'(He') = —2fffv(12)A&v(12) f ~ ~ ~ fu (13)u (14)u2(23)u'(24)v2(34)dr3dr4drgg,

Z(He ) =4fffu (13)J(13)f ~ ~ .fu (24) [u2(23)u2(14)v2(12)v2(34) jdr2d&4dr f3.

(10)

Eq. (10) is correct for the Wigner operator and
with the exception of Z(H') and Z(He') also for
that of Majorana; the correct Z's in the latter
theory are obtained if in the square brackets the
functions u'(a1), u'(b3) are replaced by u(a1)

u(a3) and u(b3) u(h1), respectively, and the same
substitution applied to v'(a1), v'(b3) The .sym-
bols (W) and (M) will be used to refer to the
two theories.

One result we get immediately from (10) with-
out further calculation: In the H'(W) problem, if
v is replaced by a constant, P vanishes and X
and Z each reduce to twice the corresponding
-terms in the two-body variation problem. Hence
for a. constant v, the u which minimizes the
three-body energy integral is the solution of the
two-body equation. ' Consequently

There is another more general argument which
gives (11)again and a corresponding lower bound
for the alpha-particle. The ratio of the numbers
of potential and kinetic energy terms in the
energy operator increases in passing from O' to
O' and again in passing from O' to He4. More-
over, the wave functions overlap, causing the
potentials to overlap also, so that the magnitude
of the effective potential in which each particle
moves increases along the series O', H', He4.

Also the wave functions in all three problems
have no nodes. For these reasons, and most im-
portant of all, because both the depth and
breadth of the potential hole are changed to-
gether in such a manner that the binding energy
of the two-body problem remains fixed at the
experimental value, the exact binding energies of
the three- and four-body problems must increase

20
30
50

K.E.*

18.4
22.6
27.2

19.4
22.7
24.7

1.4
0.1—2.5

+ K.E.—kinetic energy.
P.E.—potential energy.

with decreasing effective width of the potential
hole and more rapidly for the alpha-particle than
for the three-body nucleus. With a hole of infinite
width the kinetic energy vanishes and the poten-
tial energy is just the number of particles times
the limiting value of A which is 4. This gives
(11) again and the following lower bound for the
binding energy of the alpha-particle:

—Z(He4) )—4Z(H') = 16.0, (W). (12)

To make clear the difficulties which must be
overcome in applying the variation method to the
three- and four-body problems a brief discussion
of the two-body variation problem is inserted
here. As the breadth of the potential well is nar-
rowed the average correct kinetic and potential
energies grow rapidly larger. This is associated
with a constant value of the difference which,
except for very broad holes, is a small fraction of
either energy term alone. It is evident that an
approximate wave function must meet more and
more rigorous conditions as the hole is narrowed
if the variation method is to give uniformly good
results. If the wave function is not continually
improved the computed binding energy will fall
more and more below the correct value and for a
sufficiently narrow hole will become negative.
This conclusion is brought out clearly in Table
III which is based on Eq. (3). At &x =20 the com-

TABLE III. The emanation method applied to II'.
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puted energy is only thirty-hve percent of the cor-
rect value. However, a comparison of the correct
and approximate wave functions reveals that
they agree quite well up to a distance of separa-
tion which includes eighty percent of the proba-
bility density. If —E'(H') is plotted against o. the
resulting curve is a straight line with an intercept
at n = 0 having exactly the correct value,

E(IP)—=4. Evidently for a, sugcierttly broad

potential hole the variation method gives excellent

results. From Table III we draw the conclusion
that if the binding energy of the three-body
problem increases quite slowly with increasing n,
a simple variation method is likely to yield values

v=¹Ir2I2 (13)

we find after an elementary calculation the fol-
lowing explicit expressions for the energies with
the Wigner Hamiltonian:

for —Eo(H') which decrease with increasing n.
Returning to the many-body problem it is

evident that in general the inside integrations in

(10) present formidable difficulties. Fortunately
there does exist a functional form for which the
integration is elementary and the result simple.
This form is the Gaussian error function which
has already been taken for the potential. Setting

E'(H') =3/2{(2+3n+n')/(1+2n) }aa—2A(o/a+1)t,

Ea(He4) =3/4{(6+Sn+n~)/(1+n) }na—4A(o/(a+1))',

na= v(1 +2n)/(1+ r)t, (14)

no =4v(1+n)/(3+n). (15)

The substitution into (14) and (15) of the value of e for which the energies are as small as possible

leaves expressions for the energies containing only one variable parameter:

E (H') = 2.7991(xa—2A (a/(a+1))t,

E (He') =4.3713oa—4A (a/(o+1))i,

2n= +3—1, v =0.7887no. ,

v =0.6036no-.

(16)

(17)

The corresponding results for the Majorana Hamiltonian are

E'(H') =6{ (2+I)/(5+n) }na 16A {(1+2n)/(5—+6n+n') }'*(o/(o+1))'*,

rt =ti/v, 4na = (5+vn), (18)

E'(He') =6{(2+n)/(3+n) }na—64X2~A {(n +1)i/(n +)3'}(a/(a+1))',
2a.a = v(3+n) (19).

In this case the best choice of n depends on the value given to o-, but the dependence is so slight that
it may be ignored. It was found by trial that n =0.5 and rt =0.7 give about the best results in (18)
and (19), respectively. With these values of n the expressions for the energies are

E'(H') =2.7273na —1.9098A (o /(a+1)) i,

E'(He') =4.3784a.a —3.9606A (o /(o +1)):,

n=o.s,

n =0.7,

v =0.7273no-,

v =0.5405no. .

(20)

(21)

The coulomb energy corrections 0B for He' and He' due to repulsion between the protons are com-

puted by a 6rst order perturbation calculation and prove to be

AE(He') = (v+2ti)'/4, EE(He') = (2v+2ti) |/4. (22)

Numerical results obtained from (16), (17), (20), (21), (22) in conjunction with Table II are collected
in the Tables IV and V.
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TABLE IV. The variation method app/ied to He'.

Effective
radius

~»2 &&10»cm
Eq. (17) (S") Eq. (21)

K E P E Bo E0C.E.*

20 0.224 2.00 84.4
30 0.183 1.64 117.1
40 0.158 1,42 148 8
50 0.141 1.27 180.0
75 0.116 1.04 256.4

90.2
121.7
151.2
179.6
247.2

122.1 31.9 30,6 1.5
156.4 34.7 1.7
187.9 36.7 1.9
218.1 38 5 36.1 2.1
289.0 41.8 38.6 2.5

* C.E.—Coulomb energy.

TABLE V, The variation method aPP/i ed to H', He'.

Eq. (16) (W)
K.E. —P.E. —Ep

Eq. (20) (3f) He' only—Ep C.E.*

20
50
75

39.5 44.9
67.9 67.2
83 ~ 7 780

5.4-
—0.7—5.7

4.5—2.0—7.0

1.1
1.4
1.6

*C.E,—Coulomb energy.

The rapid increase of —Eo(He') with n indi-
cates that the variation method works quite well
when applied to the four-body problem. It yields
values for 8'(He') lying between 3/5 and 4/5 of
the experimental binding energy, the largest
value occurring for the smallest effective radius
in the range 10 " cm to 2 & 10 " cm. However
the method is unsatisfactory in the three-body
problem as Table V shows. The striking feature
of Table V is that —8 (H') decreases with de-
creasing effective radius and actually becomes
negative for sufficiently small values of 1/nl.
But this result we had reason to anticipate. It is
proper to compare 2Eo(H') with Eo(H') (because
there are two potential terms in the three-body
Hamiltonian and only one in the equation for the
deuteron. The tables show that the kinetic energy
of H'is less than half that of H'). From the tables
it is seen that 2B'(H') —8'(H') increases as the
effective radius is made smaller showing that the
variation method is less unsatisfactory for H'
than for H'.

The energy intercept at + = 0 is equal to the
limiting value of the coefficient of (o/(o+ 1))& in
the energy formula. The minimum property of
the variation method and the fact that the actual
binding energy —E(H') must increase with n

yields (11) again and a new result

above those of the Wigner theory as required by
a general theorem due to Eckart" on the relation
between the two forms of the interaction operator,

2'=3P'o/4m —B(o/(o+ 1))& (24)

with suitable choice of m, P' and B. But in the
case of the general two-body problem with re-
duced mass m (24), is obtained from the equation

Id'/ds'+8'+Be o"
I q =0 (25)

in which p= p'/2m and s = (2m)'r (cf. fine print
in Section II). We therefore associate with each
many-body problem an equation of the form (25)
in which B and P have the following values fixed
by direct comparison of (24) with (16), (17), (20)
and (21):

He'(W),
P =2.9142n

H', He', (W),
P =1.8660n

8=3.96062
He', (1III)

P =2.9189n

8= 1.90982

(26)

SEcTIoN IV. THE METHoD oF THE EQUIvALENT
TWO-BODV EQUATION

The results of the preceding section indicate
that the effective radius of interaction falls
somewhere in the range 10 " to 2 & 10 "cm. To
get a more definite result we might attempt to
improve the variation method by using better
wave functions. But any simple change in the
wave function immediately. complicates the cal-
culation many-fold and is not likely, in the case
of H', to yield better results than we already have
in (11) and (23). We must help ourselves in some
other way. The method adopted by the writer is
based on analogy and considerations of plausibil-
ity although it appears that a rigorous justifica-
tion may be possible.

We observe that the variation Eqs. (5), (16),
(17), (20) and (21) all have the form

—Z(H'))7. 64, (M). (23)
H', He', (M).

P =1.8182n

The energies given by the Majorana theory lie "Eckart, Phys. Rev. 44, 109 (1933).
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TABLE VI. The "eglivalent" two-body method.

He (5') 80.0 27.5 43.7 He'(M)
104.9 36.0 49.1
120.0 41.2 51.9
157.4 54.0 59.3
200.0 68.6 66,8 H'(~)

He'(IV) 37.3 20.0 10.2
93.3 50.0 11.7

140.0 75.0 12.8

105.1 36.0 47.2
157.6 54.0 57.1
200.3 68.6 64.0

36.4 20.0 9.0
90.9 50.0 10.1

136.4 75.0 10.7

IV and V based on the cruder method of Sec-
tion III. It is seen that B'(He') cros—ses the
experimental binding energy in the neighborhood
of n = 50. Here the computed coulomb energy for
He' has the. value 1.4. If this coulomb correction

Note that in each case 8 and P are uniquely de-
termined without regard to the value assumed for
m. Now by the minimum property of the varia-
tion method, the lowest eigenvalue of (25), say
8', lies below the corresponding 8'.

For the deuteron E' is the correct eigenvalue.
In the case of the alpha-particle the depth and
breadth of the "equivalent" potential are so
large that (24) is able to yield fairly good results
and hence is closely correlated with the diReren-

tial Eq. (25). Since (25) is the correct deuteron
equation and is closely related to the He4

problem, the correlation between (24) and (25)
should also be reasonably close for H'which falls
between the deuteron and the alpha-particle and
possesses the same type of nodeless wave func-

tion. We are led to suppose that E' should lie

fairly close to the eigenvalue of the associated
many-body problem. It is then obviously possible,
although not necessary, to interpret (25) in terms
of a physical model: for H', a neutron interacting
with a deuteron, the neutron spins being parallel;
in the case of the alpha-particle, the interaction
of two deuterons with antiparallel spins or a
neutron interacting with He' (neutron spins anti-
parallel). Values of B' computed in part directly

by numerical integration and partly by the
method described in Section II are presented in

Table VI which should be compared with Tables

is subtracted from the experimental diAerence
Z(He') —Z(H') =2.6 there is left a remainder of
1.2 mc' which must be ascribed primarily to small
attractive forces acting between the neutrons in
O'. But the approximate wave functions are too
large for small separations and too small for
large separations. Also the second order coulomb
correction is negative. Hence this coulomb cor-
rection is probably excessive. Furthermore it is
likely that for small separations the actual
proton-proton potential lies far below the
coulomb value and even changes sign. "All these
considerations indicate that the proton-proton
interaction in He' may be somewhat smaller than
1.4 mc' with the consequence that the neutron-
neutron interaction energy in H' may be larger
than 1.2 mc'. In any event the sum of the two
corrections should be small enough to permit a
direct comparison of —Z(He') with the experi-
mental value of 54 mc'.

We then find with the Wigner theory that
—Z(He4) = 54 at the point n= 45(1/ui= 0.149 or
1.34)& 10 " cm), A. = 165. The corresponding
point for the Majorana theory is n=48(1/n'*
=. 0.144 or 1.29X10 " cm), A =174. At these
points the computed binding energy of H' is
greater than —B'(H')+1.2= 12.7 (W) or
—Z'(H')+1. 2=11.2 (3I). The agreement with
the experimental value of 16.0~1.7 is good
enough to serve as a justification for the original
assumption that the neutron-proton interaction
operator can be represented fairly well by a po-
tential function in the case of binding. The un-

certainty in the method of calculation is too great
to permit any conclusion about the relative
merits of the two theories for the light nuclei.
Incidently in all cases the normal state eigenvalue
of the "equivalent" equation is the only energy
level in the discrete spectrum.
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Vleck. The writer is very much obliged to
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the first draft of the paper.

White, Phys. Rev. 47, 573 (1935).


