# The Infrared Absorption Spectrum of Silane

## WENDELL B. STEWARD AND HARALD H. NIELSEN, Mendenhall Laboratory of Physics, Ohio State University (Received April 15, 1935)

The spectrum of silane has been investigated to beyond 13.0 $\mu$ . Bands, enumerated in the order of their intensities, were located at  $11.0\mu$  (910 cm<sup>-1</sup>),  $4.6\mu$  (2183 cm<sup>-1</sup>),  $3.17\mu$  (3153 cm<sup>-1</sup>),  $3.23\mu$  (3095 cm<sup>-1</sup>),  $5.5\mu$  (1820 cm<sup>-1</sup>) and  $2.3\mu$  (4360 cm<sup>-1</sup>). Four of these regions have been investigated under higher dispersion and partially resolved. The spectrum appears quite similar, except for certain details,

to that of methane and by analogy the above bands have been identified as  $\nu_4$ ,  $\nu_3$ ,  $\nu_1 + \nu_4$ ,  $\nu_3 + \nu_4$ ,  $2\nu_4$  and  $2\nu_3$ . From these values one may determine  $\nu_1$  which takes the value 2243 cm<sup>-1</sup>. By the methods developed by Dennison and Johnston one may determine the moment of inertia which from the most probable value for the spacing between lines takes the value  $I_0 = 8.9 \times 10^{-40}$  g cm<sup>2</sup>.

### INTRODUCTION

**'HE** absorption by methane in the infrared has been extensively studied by a number of investigators.1 Two very intense bands were measured by Cooley, each of which showed a very simple rotational structure. The data of Cooley have served as very convincing evidence that the methane molecule is a regular tetrahedron in shape with the hydrogens at the corners and the carbon atom at their center of gravity. As is well known such a model would have only two optically active vibration frequencies both of which are triply degenerate and both arising from what is essentially a vibration of the carbon atom in the field of the hydrogen atoms. Moreover, such a model should have an extremely simple rotational character since all of its principal moments of inertia would be alike. In fact, all the bands should be of the parallel type with a separation between lines equal to  $\Delta \nu = h/4\pi^2 I_0$ where h is Planck's constant and  $I_0$  the moment of inertia. Cooley verified these general characteristics, but found that the spacing between lines in the two optically active fundamental bands was different, an effect which has been explained by Teller and Tisza<sup>2</sup> and more recently by Dennison and Johnston<sup>3</sup> as due to an interaction between rotation and vibration.

It has seemed very likely that the silane molecule would be very similar to that of methane and it was therefore thought of interest to in-

vestigate its spectrum, looking for many of the same details observed in the spectrum of methane. In an earlier communication<sup>4</sup> a preliminary report of this experiment was made. Four regions of absorption, enumerated in the order of their intensities were reported lying at wavelengths  $10.5\mu$ ,  $4.58\mu$ ,  $3.187\mu$  and  $5.2\mu$ . When compared with the spectrum of methane these were given the assignments  $\nu_4$ ,  $\nu_3$ ,  $\nu_1 + \nu_4$  or  $\nu_3 + \nu_4$ and  $2\nu_4$ , respectively, in the notation of Dennison. Three of these regions have since been studied under higher dispersion and have been at least partially resolved into fine structure. In addition a search for weaker bands has been carried out.

We are indebted to Professor Warren Johnson of the Chemistry Department of the University of Chicago for a quantity of silane gas free from impurities. Because of its violently explosive character, extreme caution had always to be exercised to keep the gas away from air or oxygen. Three cells of lengths 6 cm, 30 cm and 150 cm, all



FIG. 1. Exploration curve made with a Wadsworth spectrometer and rocksalt prism.

<sup>&</sup>lt;sup>1</sup> W. W. Coblentz, Publ. of Carnegie Inst., Washington, D. C. (1905); J. P. Cooley, Astrophys J. **62**, 73 (1925); J. Ellis, Proc. Nat. Acad. Sci. **13**, 202 (1927); A. Adel and V. M. Slipher, Phys. Rev. **46**, 902 (1934). <sup>2</sup> Teller and Tisza, Zeits, f. Physik **73**, 791 (1932).

<sup>&</sup>lt;sup>3</sup> D. M. Dennison and M. Johnston, Phys. Rev. 47, 93 (1935).

<sup>&</sup>lt;sup>4</sup> W. Steward and H. H. Nielsen, J. Chem. Phys. 2, 712 (1934).

fitted with rocksalt windows were used in measuring various parts of the spectrum.

A prism exploration curve extending from  $1.0\mu$  to  $13.0\mu$  was first made before measurements with the diffraction gratings were begun. These were made with a Wadsworth spectrometer equipped with a rocksalt prism by using all three of the above-mentioned cells. The prism curve is reproduced in Fig. 1.

The grating spectrometer used was similar to that designed by Meyer and used by him and Barker and their collaborators at the University of Michigan. In this case a two-meter collimating mirror was used and for this experiment the spectrometer was equipped with two echellette gratings ruled by Wood at Johns Hopkins University, one with 3600 lines per inch for the  $3.5\mu$ region; the other with 800 lines per inch for the  $10.0\mu$  region. For recording purposes a vacuum thermocouple built by Dr. Norman Wright at the University of Michigan was used in conjunction with a Moll thermal relay and a Leeds and Northrup high sensitivity galvanometer.

#### EXPERIMENTAL RESULTS

#### The $3.2\mu$ region

This absorption region is made up of two badly overlapping bands. These bands, their centers lying at  $3.17\mu$  (3153 cm<sup>-1</sup>) and  $3.23\mu$  (3095 cm<sup>-1</sup>) appear to correspond to the absorption region in methane near  $2.3\mu$  observed by Cooley. These have been partly resolved into rotational structure, but it is difficult to observe any regularity in the line spacing because of the bad overlapping. For the band at  $3153 \text{ cm}^{-1}$  the spacing between lines is estimated to be  $4.7 \text{ cm}^{-1}$  while for that at  $3095 \text{ cm}^{-1}$  it appears to be about 9.7 cm<sup>-1</sup>. The bands are both characterized by extremely broad *Q* branches converging toward lower frequencies. To make the absorption measurements in this region it was found most satisfactory to use the 30-cm cell. Measurements were made at intervals of 0.5 cm<sup>-1</sup> along the band, the spectrometer slit here being about 0.6 cm<sup>-1</sup>. The data were recorded in terms of galvanometer deflections instead of in percentage absorption for each circle setting. The procedure seemed justifiable since while the region does overlap with the  $3.16\mu$ region of atmospheric water-vapor absorption,

the spectrometer box could be sufficiently well dried out to make the falsification completely negligible. In Fig. 2 is shown the absorption pattern of this region, and wavelengths and frequency positions of the principal lines, to which arbitrary numbers have been assigned, are recorded in Table I.

TABLE I. Wavelengths and wave numbers of the principal lines in the  $3.2\mu$  absorption region of silane.

| No. |        |                           |     |        |                       |
|-----|--------|---------------------------|-----|--------|-----------------------|
| No. | λinμ   | $\nu$ in cm <sup>-1</sup> | No. | λinμ   | v in cm <sup>−1</sup> |
| 1   | 3.4040 | 2937.7                    | 18  | 3.2314 | 3094.6                |
| 2   | 3.3913 | 2948.7                    | 19  | 3.2175 | 3108.0                |
|     | 3.3901 | 2949.8                    | 20  | 3.2123 | 3113.0                |
| 3   | 3.3802 | 2958.4                    | 21  | 3.2050 | 3120.1                |
|     | 3.3747 | 2963.2                    |     | 3.2013 | 3123.7                |
| 4   | 3.3682 | 2968.9                    | 22  | 3.1983 | 3126.7                |
| 5   | 3.3575 | 2978.4                    |     | 3.1950 | 3129.9                |
|     | 3.3546 | 2981.0                    | 23  | 3.1920 | 3132.8                |
| 6   | 3.3470 | 2987.6                    | 1   | 3.1886 | 3136.2                |
|     | 3.3443 | 2990.2                    | 24  | 3.1855 | 3139.2                |
|     | 3.3364 | 2997.2                    |     | 3.1823 | 3142.4                |
| 7   | 3.3344 | 2999.0                    | 25  | 3.1796 | 3145.1                |
| 8   | 3.3250 | 3007.5                    | 26  | 3.1716 | 3153.0                |
| 9   | 3.3150 | 3016.6                    | 27  | 3.1637 | 3160.9                |
| -   | 3.3066 | 3024.3                    | 28  | 3.1584 | 3166.2                |
| 10  | 3.3039 | 3026.7                    | 29  | 3.1527 | 3171.9                |
|     | 3.2981 | 3032.0                    |     | 3.1496 | 3175.0                |
| 11  | 3.2946 | 3035.3                    | 30  | 3.1444 | 3180.3                |
|     | 3.2890 | 3040.4                    |     | 3.1405 | 3184.2                |
| 12  | 3.2846 | 3044.5                    | 31  | 3.1371 | 3187.7                |
| 13  | 3.2741 | 3054.3                    | 32  | 3.1325 | 3192.4                |
|     | 3.2707 | 3057.4                    |     | 3.1305 | 3194.4                |
| 14  | 3.2663 | 3061.6                    | 33  | 3.1257 | 3199.3                |
|     | 3.2621 | 3065.5                    |     | 3.1218 | 3203.3                |
|     | 3.2593 | 3068.1                    | 34  | 3.1185 | 3206.7                |
| 15  | 3.2554 | 3071.8                    |     | 3.1157 | 3209.6                |
|     | 3.2522 | 3074.8                    | 35  | 3.1118 | 3213.6                |
| 16  | 3.2482 | 3078.6                    | 36  | 3.1057 | 3219.9                |
| 17  | 3.2404 | 3086.0                    | 37  | 3.0995 | 3226.3                |
|     |        |                           | 1   |        |                       |

### The 4.5 $\mu$ absorption region

The band at  $4.5\mu$  in silane is very intense and corresponds to the  $3.3\mu$  band in methane. This band has been resolved into a series of prominent lines on either side of a very broad Q branch which like those at  $3.2\mu$  converges toward lower frequencies. In general details this band resembles the corresponding one in the spectrum of methane, except that the lines are not single sharp lines, but groups of lines, too closely spaced for complete resolution, which appear to converge in the same direction as the Q branch. The principal peaks are separated by an average spacing of about 5.65 cm<sup>-1</sup>. A cell 6 cm long filled with silane to a pressure of 6 cm of mercury was used. With the spectrometer slits set at 0.6 cm<sup>-1</sup>, readings were taken at intervals along the band of  $0.6 \text{ cm}^{-1}$ 



FIG. 2. Absorption pattern of silane in the  $3.2\mu$  region.

and as before galvanometer deflections only were recorded for each circle setting. The rapid falling off of deflections at the high frequency side of the band is due to the atmospheric absorption of carbon dioxide. The absorption pattern of this region is shown in Fig. 3 and wavelengths and frequency

TABLE II. Wavelengths and wave numbers of the principal lines in the  $4.5\mu$  absorption region of silane.

| No. | λinμ   | $\nu$ in cm <sup>-1</sup> | No. | $\lambda$ in $\mu$ | v in cm <sup>−</sup> |
|-----|--------|---------------------------|-----|--------------------|----------------------|
| -17 | 4.7982 | 2084.1                    | -5  | 4.6402             | 2155.1               |
|     | 4.7940 | 2085.9                    |     | 4.6342             | 2157.9               |
|     | 4.7894 | 2087.9                    |     | 4.6311             | 2159.3               |
| -16 | 4.7844 | 2090.1                    | -4  | 4.6278             | 2160.8               |
|     | 4.7809 | 2091.7                    |     | 4.6227             | 2163.2               |
|     | 3.7751 | 2094.2                    |     | 4.6188             | 2165.1               |
| -15 | 4.7706 | 2096.2                    | -3  | 4.6162             | 2166.3               |
|     | 4.7681 | 2097.3                    |     | 4.6097             | 2169.3               |
|     | 4.7616 | 2100.1                    |     | 4.6067             | 2170.8               |
| -14 | 4.7578 | 2101.8                    | -4  | 4.6040             | 2172.0               |
|     | 4.7552 | 2103.0                    |     | 4.5950             | 2176.3               |
|     | 4.7476 | 2106.3                    | 2   | 4.5556             | 2195.1               |
| -13 | 4.7436 | 2108.1                    | 3   | 4.5440             | 2200.7               |
|     | 4.7343 | 2112.2                    |     | 4.5388             | 2203.2               |
| -12 | 4.7302 | 2114.1                    | 4   | 4.5323             | 2206.4               |
|     | 4.7243 | 2116.7                    |     | 4.5271             | 2208.9               |
|     | 4.7205 | 2118.4                    | 5   | 4.5214             | 2211.7               |
| -11 | 4.7166 | 2120.2                    | 6   | 4.5098             | 2217.4               |
|     | 4.7115 | 2122.5                    | 1 7 | 4.4987             | 2222.9               |
|     | 4.7065 | 2124.7                    |     | 4.4919             | 2226.2               |
| -10 | 4.7038 | 2125.9                    | 8   | 4.4877             | 2228.3               |
|     | 4.6973 | 2128.9                    |     | 4.4819             | 2231.2               |
|     | 4.6929 | 2130.9                    | 9   | 4.4767             | 2233.8               |
| -9  | 4.6910 | 2131.7                    | 1   | 4.4710             | 2236.6               |
|     | 4.6845 | 2134.7                    | 10  | 4.4658             | 2239.2               |
|     | 4.6801 | 2136.7                    | 11  | 4.4598             | 2242.3               |
| -8  | 4.6780 | 2137.7                    | 12  | 4.4555             | 2244.4               |
|     | 4.6717 | 2140.5                    | 13  | 4.4496             | 2247.4               |
|     | 4.6677 | 2142.4                    | 14  | 4.4451             | 2249.7               |
| -7  | 4.6646 | 2143.8                    |     | 4.4399             | 2252.3               |
|     | 4.6587 | 2146.5                    | 15  | 4.4353             | 2254.6               |
|     | 4.6562 | 2147.7                    | 16  | 4.4300             | 2257.3               |
| -6  | 4.6523 | 2149.5                    |     |                    |                      |
|     | 4.6459 | 2152.4                    |     |                    |                      |
|     | 4.6433 | 2153.6                    |     |                    |                      |

positions of the principal lines of the band, to which arbitrary numbers have been assigned, are given in Table II.

## The $10.5\mu$ absorption region

This region also is an extremely intense one and the amount of gas used here was the same as for the  $4.5\mu$  region. With spectrometer slits of 0.7 cm<sup>-1</sup> and 1.0 cm<sup>-1</sup> for the high frequency and low frequency sides of the band, respectively, readings were taken along the band at intervals of 0.7 cm<sup>-1</sup>. The absorption data as before were recorded in terms of galvanometer deflections and the absorption pattern of this region is shown in Fig. 4. This region corresponds to the  $7.7\mu$  region measured by Coolev in methane and in reality it resembles this region a great deal except that the rotational structure is more complex. In general the band is characterized by Pand R branches and a Q branch of great intensity converging toward lower frequencies. A second absorption maximum is found near  $10.2\mu$  while yet a weaker peak (No. 1) is found near  $12.0\mu$ . These are thought to be due to centers of much weaker bands arising probably from transitions between higher vibration levels. This point should of course be further investigated and could readily be tested by remeasuring this region at much reduced temperatures. This band has only been partially resolved and the rotational structure appears to be quite irregular. This is probably due to overlapping with the other weaker bands at  $10\mu$  and  $12.0\mu$ , respectively, and perhaps also to some complex structure of each line as was observed at  $4.5\mu$ . An estimate of the



FIG. 3. Absorption pattern of silane in the  $4.5\mu$  region.

line spacing has been made from several lines near the center of the band and this leads to a value of about  $3.5 \text{ cm}^{-1}$ . Because of the irregularity of the absorption pattern, only the prin-

TABLE III. The frequency and wavelength positions of the principal absorption peaks in the  $10.5\mu$  region of silane.

| No. | λ in μ  | $\nu$ in cm <sup>-1</sup> | No. | λinμ    | $\nu$ in cm <sup>-1</sup> |
|-----|---------|---------------------------|-----|---------|---------------------------|
|     | 12.3721 | 808.3                     | 23  | 10.5531 | 947.6                     |
|     | 12.3380 | 810.5                     |     | 10.5274 | 949.9                     |
|     | 12.2246 | 814.7                     |     | 10.5016 | 952.2                     |
| 1   | 12.2189 | 818.4                     | 24  | 10.4759 | 954.5                     |
| -   | 12,1680 | 821.8                     |     | 10.4502 | 956.9                     |
|     | 12.1339 | 824.1                     | 25  | 10.4244 | 959.3                     |
|     | 12,1040 | 826.2                     |     | 10.3987 | 961.7                     |
| 2   | 12.0143 | 832.3                     |     | 10.3730 | 964.0                     |
| 3   | 11.9120 | 839.5                     | 26  | 10.3562 | 965.6                     |
| 4   | 11.8563 | 843.4                     | 27  | 10.3215 | 968.8                     |
| _   | 11.8270 | 845.5                     |     | 10.2701 | 973.7                     |
|     | 11.8013 | 847.4                     |     | 10.2449 | 976.1                     |
| 5   | 11.7414 | 851.7                     | 28  | 10.2186 | 978.6                     |
| 6   | 11.6858 | 855.7                     | 29  | 10.1761 | 982.7                     |
|     | 11.6565 | 857.9                     |     | 10.1504 | 985.2                     |
| 7   | 11.6391 | 859.2                     | 30  | 10.1157 | 988.6                     |
| 8   | 11.5793 | 863.6                     |     | 10.0906 | 991.0                     |
| 9   | 11.4979 | 869.7                     | 31  | 10.0624 | 993.8                     |
| 10  | 11.4512 | 873.3                     |     | 10.0217 | 997.8                     |
|     | 11.4255 | 875.2                     | 1   | 10.0002 | 1000.0                    |
| 11  | 11.3740 | 879.2                     | 32  | 9.9787  | 1002.1                    |
|     | 11.3399 | 881.8                     |     | 9.9446  | 1005.6                    |
| 12  | 11.3190 | 883.5                     | 33  | 9.9099  | 1009.1                    |
| 13  | 11.2801 | 886.2                     | 34  | 9.8500  | 1015.2                    |
| 14  | 11.2418 | 889.5                     | 35  | 9.7818  | 1022.3                    |
| 15  | 11,1951 | 893.2                     | 36  | 9.7208  | 1028.7                    |
| 16  | 11.0066 | 908.5                     | 37  | 9.6568  | 1035.5                    |
| 17  | 10.9384 | 914.2                     | 38  | 9.5927  | 1042.5                    |
| 18  | 10.9211 | 915.7                     |     | 9.5664  | 1045.3                    |
|     | 10.8780 | 919.3                     | 39  | 9.5323  | 1049.1                    |
|     | 10.8612 | 920.7                     | 40  | 9.4725  | 1055.7                    |
|     | 10.8379 | 922.7                     | 41  | 9.4120  | 1062.5                    |
| 19  | 10.8188 | 924.3                     |     | 9.3522  | 1069.3                    |
|     | 10.7966 | 926.2                     | 42  | 9.3348  | 1071.3                    |
|     | 10.7673 | 928.7                     |     | 9.3007  | 1075.2                    |
| 20  | 10.7326 | 931.7                     | 1 . | 9.2487  | 1081.2                    |
|     | 10.6985 | 934.7                     | 43  | 9.1882  | 1088.4                    |
| 21  | 10.6596 | 938.1                     |     | 9.1368  | 1094.5                    |
|     | 10.6129 | 942.2                     |     |         |                           |
| 22  | 10.5872 | 944.5                     | -   |         |                           |

cipal peaks, numbered quite arbitrarily, are given in Table III with their frequency and wavelength positions.

# Discussion of experimental results

The writers desire here to make only a few general remarks concerning the interpretation of the observed bands. In general details the spectrum of silane is entirely like that of methane, a direct quantitative correspondence existing between the two. In silane, bands have been located at  $2.3\mu$ (4360 cm<sup>-1</sup>),  $3.17\mu$  (3153 cm<sup>-1</sup>),  $3.23\mu$  (3095 cm<sup>-1</sup>),  $4.6\mu$  (2183 cm<sup>-1</sup>),  $5.25\mu$  (1900 cm<sup>-1</sup>) and  $11.0\mu$  (910 cm<sup>-1</sup>). These correspond, respectively, to the regions at  $1.80\mu$ ,  $2.32\mu$ ,  $2.37\mu$ ,  $3.3\mu$ ,  $3.9\mu$ and  $7.7\mu$  in methane and by analogy have been designated as  $2\nu_3$ ,  $\nu_1 + \nu_4$ ,  $\nu_3 + \nu_4$ ,  $\nu_3$ ,  $2\nu_4$  and  $\nu_4$ . This fixes the value of  $\nu_1$  as about 2243 cm<sup>-1</sup>. In Table IV we summarize this assignment and give the approximate relative intensities.

It has earlier been pointed out that an essential difference exists between the  $4.5\mu$  band in silane and the corresponding  $3.3\mu$  band in methane in that each of the strong lines in silane is accom-

 TABLE IV. Summary of the assignment and relative intensities

 of the absorption bands of silane.

| Observed $\nu$       | Computed $\nu$                               | Intensity I | dentification                                                                                                                                   |
|----------------------|----------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c} &$ | 770 cm <sup>-1</sup><br>1274<br>1820<br>2243 |             | $\nu_{2} \\ \nu_{4} \\ \nu_{3} - \nu_{4} \\ \nu_{2} + \nu_{4} (?) \\ 2\nu_{4} \\ \nu_{3} \\ \nu_{1} \\ \nu_{3} + \nu_{4} \\ \nu_{1} + \nu_{4} $ |
| 4360                 |                                              | .1          | $\frac{\nu_1 + \nu_4}{2\nu_3}$                                                                                                                  |



FIG. 4. Absorption pattern of silane in the  $10.5\mu$  region.

panied by satellites, while in the methane band each line is single. For this effect no adequate explanation is available. Certainly the other isotopes of silicon are too rare to account for these peaks. Each line occurs as a group of unresolved components which appear to converge in the same direction as the Q branch and it is suggested that the explanation of this satellite effect is in some way intimately associated with the convergence of the lines in the band. It is hoped to consider this point in more detail some time later when measurements on the spectrum of GeH<sub>4</sub> and new measurements on the bands in CH<sub>4</sub> under higher dispersion than previously, now under way in this laboratory, are completed.

If we interpret the two minor maxima in the long wavelength region as due to upper stage bands, then by knowing the spacings in the two bands it is possible, after the method of Dennison and Johnston, to compute the moment of inertia of the silane molecule. Taking the spacings in the  $4.5\mu$  band and the  $11.0\mu$  band to be 5.7 cm<sup>-1</sup> and 3.5 cm<sup>-1</sup>, respectively, we obtain, following Dennison and Johnston, the value for the moment of inertia  $I_0 = 8.9 \times 10^{-40}$  g cm<sup>2</sup>. This leads to a value of  $2.31 \times 10^{-8}$  for the distance between two hydrogen atoms, and a value of  $1.54 \times 10^{-8}$  for the distance between the silicon atom and a hydrogen atom.

In conclusion we desire to express our appreciation to Professor Warren C. Jonson of the University of Chicago for supplying us with the silane gas used in this experiment and to the National Research Council for a grant-in-aid. The donation of several pieces of optical sodium chloride by the International Salt Company of Scranton, Pennsylvania is acknowledged with gratitude.