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Hyyerfine Structure Forniulae for the Configuration d's
Application to 5d'6s 'F States of La I*

M. F. CRAwFQRD, Department of Physics, University of S"isconsin

(Received March 22, 1935)

Hfs interval factor formulae for the states of d's are
derived by the method of Breit and Wills. The formulae
for intermediate coupling are expressed in two forms: one
involving the coefficients C's, the other the coefficients X's,
corresponding to the representation of the functions of the
states in intermediate coupling as a linear combination of
the (jj ) and the (LS) functions, respectively. The (LS)--j(j)
transformation matrices as well as the interval factor
formulae for (LS) and (jj) coupling are also given. As the

coefficients are determined from the empirical multiplet
separations, the energy matrices in both (LS) and {jj)
coupling are listed. The theory is applied to the Sd'6s
4J" states of La I and consistently accounts for the relative
hfs separations of these states. The values obtained for the
interaction constants of the 6s and 5d electrons are 0.119
and 0.0039 cm ', respectively. The nuclear g-factor corn-
puted from these is g(I) =0.71. The corresponding value
of the nuclear magnetic moment is 2.5 nuclear magnetons.

I. INTRQDUcTIoN

REIT and Wills' extended the relativistic
theory of hyperfine structure' to inter-

mediate coupling and derived the interval factor
formulae for several important types of con-
figurations. A number of other configurations,
types with an unpaired s electron which usually
give rise to measurable hyperfine separations,
merit consideration. The configuration d's is
frequently encountered in the spectra of the
elements with partially filled d shells. As the
data on the nuclear magnetic moments of these
elements are meager, it is of some importance to
treat d's by the same method; particularly since
by so doing one obtains the interval factors of
the states individually rather than the sum of
the interval factors of all states with the same J,
and is thus able to evaluate the nuclear magnetic
moment when the hyperfine separations of only
a few states are known. Hyperfine structure
formulae for d's are presented in this paper and
applied to the observed structures of the Sd'6s 4F

states of La I.

II. WAvE FUNcTIoNs AND INTERvAL FAcToR
FORMULAE IN INTERMEDIATE COUPLING

The configuration d's gives rise to sixteen
states: two with J=9/2, three with 1=7/2,

* This research was carried out during the tenure of a
Royal Society of Canada Fellowship.' G. Breit and L. A. Wills, Phys. Rev. 44, 470 (1933).

'G. -Breit, Phys. Rev. 35, 1447 (1930); 38, 463 {1931);
G. Racah, Zeits. f. Physik Vl, 431 (1931);E. Fermi and
E. Segre, Zeits. f. Physik 82, 729 (1933).

four with J=5/2, four with 5=3/2, and three
with J=1/2. As the relativistic treatment of
hyperfine structure must be made via (jj)
coupling, the configuration will be considered
first in this coupling. The functions representing
the states in (jj) coupling can be conveniently
thought of as arising from the coupling of the
states of d' with an s electron. The states of d'
are given in Table I. They are designated by

TABLE I. States of d'.

(j1,j2) = (5/2, 5/2), (5/2, 3/2), (3/2, 3/2)
Resultant J= 4 2 0, 4 3 2 1, 2 0
Symbol

Greek letters with their J values indicated by
superscripts.

The calculations can be made expediently by
using eigenfunctions for a given magnetic
quantum number. These functions of d' states
will be represented by the state symbols with
the magnetic quantum number m added as a
subscript. It is necessary in the calculation to
express the two-election functions in terms of
the one-electron functions, which for a given j
and m will be represented by symbols of the type
(j)„.The two-electron functions for the states
with m = J, expressed in terms of the one-electron
functions, are given here. The functions for
other values of m can readily be obtai. ned from
these by the method of Gray and Wills. '

' N. Gray and L. A. Wills, Phys. Rev. 38, 248 (1931}.
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(5 Z, 5/Z) Sub group-.

A'= (1/~2) [(5/2)'. /~, (5/2) w2].

p2' ——((5/14) ~1/K2) [(5/2) g, 2, (5/2) i]—((9/14) '1/v2) [(5/2) 3/2, (5/2) i].
iso = (1/g3 1/&2)[(5/2)p2, (5/2) 5/2] —(1/g3' 1/V2)[(5/2)z/2, (5/2) 3/2]

(5/Z, 3/Z) Sub grou-p
+ (I/v'3. 1/v2) L(5/2) i (5/2)-;].

v 4'= (1/v2) [(5/2)"!2, (3/2)3/2].

~3'= ((3/8) '*1/v2) [(5/2) 3/2 (3/2) w21 —((5/8) '1W&) [(5/2) ~/2, (3/2) i].

q, ' = ((10/21):1/v2) "(5/2), „(3/2),]—((8/21) '*1/v2) [(5/2) „„(3/2),]
+ ((3/21) 'I!v2) [(5/2) i (3/2) ~/~1

yi" = ((10/20) '1/v2) [(5/2) s/2) (3/2) 8/g] —((6/20)'1/v2) [(5/2)g/2, (3/2)

+ ((3/20) *1/v2) [(5/2) i, (3/2) i]—((1/20) '1/V2) [(5/2) i, (3/2) 3/2].

(3/Z, 3/Z) Sub group-

X2' = (1/V2) [(3/2) 3/g, (3/2) i].
xp' ——(1/P2 1/v2) [(3/2) i, (3/2) i]—(1/v2 1/v2) [(3/2)3/2, (3/2) 3/2].

Each square bracket in the preceding equations is an abbreviation for the determinant representation
of a two-electron function as a combination of products of two one-electron functions.

The states of d s will now be considered. The functions of the s electron will be symbolized by s
(as j=-', always it need not be specified). They can be combined with the functions for the d' states
without paying attention to symmetry.

J=9/Z. The functions representing the two states with J'=9/2, r//, =9/2 in (jj) coupling can be
written

I = si$4', ll =siA'.

The function representing a state with J'= 9/2, no= 9/2 in intermediate coupling, symbolically written
(9/2)9/2, then is

(9/2) g/g
= CiI+ C2I I, (2)

where C& and C2 are numerical coefficients whose squares sum to unity. The interval factor formula
obtained from this function by the procedure of Breit and Wills' is

9/2 A(J=9/2) =1/2 a.(Ci2+Cg')+a'(4C '+5/2 C2')+3/2 a"C2'+4CiCga"'. (3)

a„c', t2", c"' represent the hyperfine structure interaction or coupling constants as in the paper
of Breit and Wills. Eq. (3) is the general expression for the interval factors of the states with J=9/2
in intermediate coupling. The expression involves the coef6cients CI and C2, and there is a different
set of these for each of the two states.

J=7/Z. The functions representing the three states with J=7/2, m=7/2 in (jj) coupling are

I=(8/9)~s iiP44 —1/g9 ski//3', II=(8/9)&s iy4' —1/Q9 sip»', III=siq3'.

In intermediate coupling the general function for a state with J= 7/2, m= 7/2 is

(4)

(5)
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FIom this we obtain

7/2 A(J=7/2)=a, ( —7/18 C!'—7/18 C.'+1/2 C32)+a'(35/9 Cp+175/72 C2'+17/8 CI!'

++15/12. C)C3)+a"(35/24 C2'+7/8 Cp —+15/12. C2C3)+a'"(35/9 C)C2+2(5/12)I C)C3). (6)

J= 5/Z. The functions representing the four states with J=5/2, nz=5/2 in (jj) coupling are

I=s!Ii'2' II= (6/7) 's-!q'3' —(1 &7) ~s!ym' III= s-:&p~' IV =s!x2'

In intermediate coupling the general function is

(5/2) 5(g = C!I+C2I I+ CSIII+C!IV.
From this we obtain

Si2 A(J=5/2)=o, pCp —5/14 C.'+-', Ca'+2C!2)+a'(2CP+85/42 Cg'+11/6 C3'

+16/21&2. C2C3)+o"(5/6 C2'+-', C, '+2C, ' —16/21&2 C,C,)

+a"'(—4/7 C,C,+442. C!C)+8/+21 C2C4 —14(2/21)'CgC4). (9)

J=3/Z. The functions for the four states with J=3/'2, m=3/2 in (jj) coupling are:

1=2/+5 s !P.'—1/+5 s!P!', 11=2/+5 s !p22 —1/+5. s,p!2, III=s;q, ',

IV=2/+5 s;yP —1/+5 s;x&'. (10)

In intermediate coupling the general function is

(3/2) g2 = C!I+C2I I+C3I II+C4IV.
From this we obtain

3/2 A(J=3/2) =a.(—3/10 CP —3/10 Cg'+-', Cs' —3/10 C4')+a'(9/5 CP+33/20 Cm'

+7/4 Cs' —3/7/10. C2Cg)+o, "(3/20' Cm' —34 ''+9/5 C42+3+7/10 CgCa)

+a"'(18v2/5 C!C2—2+14/5. CgC3 —3+42/5 CgC4+Q6/5 CgC4). (12)

J=1/Z. The functions for the three states with J'=-', , m =-,' in (jj) coupling are

II= (2/3)~s !p!'—1/+3. s;go', III=s;xo'.

The general fnnction in intermediate coupling is

From this we Qbt3.~~

(13)

(14)

-',A(J=-', )=a, (-', C~' —-', C'"+-', Cs') ~7/o C"a' ——,'C-. a"'+a"'(20/3+5 C!C2~2(10 '3) '-CsC3). (15)

III. INTERVAL FACTOR FORMULAE IN (jj) AND (I5) COUPLING, AND THE (JJ)~(LS) TRANSFORMATION

MATRICES

The interval factors of the states in (jj) coupling can be obtained directly from the preceding
formulae. Consider the states with J=9/2. It is obvious that for one of these states in (jj) coupling
C!——1, C~=O; and for the other C!= 0, C2 ——1. The substitution of these values in Eq. (3) gives the
following expressions for the (jj) interval factors.

J 9/Z. SN b group-
(5/2 5/2 —',}.' A(J=9/2) = 1/9 a.~8/9 a'.

(5/2, 3/2, -,'-): A(J=9/2)=1/9 a,+5/9 a'+-,' u".
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Similarly for the other states we get:

J= 7/Z. Sub group-.
(5/2, 5/2, —',): A(J=7/2)= —1/9 a.,+10/9 a'.

(5/2, 3/2; j=4; —,'): A(J=7/2)= —1/9 a.+25/36 a'+5/12 a".

(5/2, 3/2; j=3; —',): A(J=7/2) =1/7 a,+17/28 a'+-', a".
J= 5/Z. Sub group-.

(5/2, 5/2, —',): A(J=5/2) = —,'a, +4/5 a'.

(5/2, 3/2; j= 3; 1/2): A (J= 5/2) = —1/7 a, +17/21 a'+ 1/3. a".

(5/2, 3/2; j=2; —',): A(J=5/2)=-', a, +11/15 a'+1/15 a".

(3/2, 3/2, —,'): A(J=S/2)=-', a,+4/5 a".

(17)

J=3/Z. Sub-group.
(5/2, 5/2, —',):

(5/2, 3/2' j=2' k):

(5/2, 3/2 j =1'k):

A(J=3/2) = ——,'a, +6/5 a'.

A(J=3/2) = —,'a, +—11/10a'+1/10 a".
A (J= 3/2) = -', a, +7/6. a' ——',a". (19)

J= 1/Z. Sub group-
(3/2, 3/2, a): A (J= 3/2) = ——',a, +6/5 a".

(5/2, 5/2, —',): A(J=-', ) =a, .

(5/2, '3/2, —',): A(J= —,') = ——',a,+7/3 a' —a".

(3/2 3/» a): A(J= x)=a, .

TABLE II. Transformation matrices, (jj )--(LS).

(2o)

J =9/2. S@4 Sqr« J =7/2. Sp« Sy« Syg J =3/2. Slb, 2 Syl SX2

«Fs/2
2G2(2

J=5/2.

«F5/2
2Fs/2

4&5(2

SP2

2/5 +5
1/5
6/5 Q3

4 Q7/5 +10

Syg

—5/3 +5
0
0

2/ +5 1/ QS «F7/2—1/~5 2/~5 2G7/2
2F7]2

Sy2

—8 +2/15 +5—4 +2/15—v'6/5
3 +7/5 +5

Sg2

—4+21/15 +5—2 +21/15
+21/5 Q3—Q6/5 +5

1/v'5 0/v'5 v'3/2
1/ +5 —2/ QS 0
3/ +15 3/2 +15

«F2/2
2Dg/2
4+3/2
2I'2/2

J=1/2.

4&1P
2P112
2S1/2

3/5 +5
2 Q3/5

2 +21/15 +5
2 +7/5 Q3

2/+15
+2/+15
v'3/ V'5

—4 +2/5 +5—v'6/5
+21/5 +10
+21/5 Q2

0
0—5 Q3/3 +10
1/ v'6

1/~3—v'2/v'3
0

—2 +21/5 +5
~7/5—1/5 +5—1/5

SX'

v'2/ V'5
1/ QS—v'2/ v'5

The interval factors of the states in (LS) coupling can be obtained from Eqs. (3, 6, 9, 12, 15) by
using the (jj) (LS) transfo-r-mation matrices. These matrices are given in Table II.

The interval factors of the states in (IS) coupling, obtained by substituting the appropriate coef-
ficients from the transformation matrices in Eqs. (3, 6, 9, 12, 15), are

A('F9~x) = 1/9. a, +37/45. a'+1/15 a"+16/45 a"' =1/9 a, +40/63 ad.

A('G9~x) =1/9. a, +28/45. a'+4/15 a"—16/45 a"' —1/9 a, +8/9 aa.

A('F», ) =5/63 a, +46/63 a'+4/21 a"+16/63 a"' =5/63 a, +344/441 aq.

A('Gv(2)= —1/9 a, +7/9 a'+-,'a"—4/9 a'" =—1/9 a, +10/9 ag.

A ('Fpp) = —1/21 a, +19/21 ~ a'+ 1/7 ~ a"+4/21 ~ a"' ——1/21 ~ a,+122/147 ~ aa.

A('F)(2) =1/105 a, +1609/2625 a'+991/2625 a"—368/2625 a"' —1/105 a, +1272/1225 ad.

~ Eqa. (21l continued on next page.

(21)*
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A(2F„i2) =1/21 a,,+232/525 a'+268/525 a"—464/525 a"' =1/21 a, +296/245 ad.

A(2Dp2) = —,'a, +14/25 a'+6/25. a"—8/25 a"'—=—,'a.+4/5 a„.

A(4P2(2)= —,'a, +91/125. a'+9/125 a"+168/125. a'" =—,'a,,+12/25 a~.

A('F2)2) = ——',a, +46/125 ~ a'+104/125 ~ a"—192/125 ~ a!"=—-', a, +304/175 a4.

A(2D2(2) = ——,'a, +42/50 a'+l8/50 a" 24/50 —a"' =——2'a, +6/S. a4.

A(4P2/) =11/45 a,+1456/1125 a' —606/1125. a"+688/1125 a"' =11/45 a, —8/225 a„.
A(2P2(2) = —1/9 a, +434/450 a'+66/450 a"+632/450 a"' =- —1/9 a,,+34/45 a,i.

A(4P4) =5/9 ~ a, +7/9 a' —12a"+40/9. a"' —5/9 a, —4/9 ~ a~.

A(2PI) = 1/9. a, +14/9. a' ——,'a" —40/9 a"'—:1/9 a,+4/9 ad.

A(2SI) =a, .

The relativistic corrections for a d type electron are usually quite small and frequently can be
neglected. In this nonrelativistic approximation c', a", a'" can be expressed in terms of ad as follows:

a'=24/35 a4, a"=8/5 a4, a"'= —1/10 a~, (22)

where a4 ——2g4(42r 2') The. second simplified expression given above for each interval factor in (LS)
coupling is obtained, by using these nonrelativistic approximations for the c s.

IV. INTERQAL FACTORS IN INTERMEDIATE COUPLING EXPRESSED IN TERMS OF THE COEFFICIENTS)
K s, 0F THE T.RANsFoRMATIGN RELATING THE INTERMEDIATE To THE (IS) STATEs

When the coupling in a configuration tends towards (I.S) it is co-nvenient for the application of the
theory to have the interval factors expressed in terms of the coefficients, X's, that relate the inter-
mediate states to the (LS) states The .interval factors can be readily converted into this form by
malring use of the (jj )=(IS) transformation matrices. In terms of the X's the interval factors are:

9/2 A(J'=9/2) =-',a (K12+K22)+a'(37/10. K12+14/5 K2' —6/5 K,X,)
+a"(3/10 Xi'+6/5 X2'+6/5 K1K2)+4a"'(-,'Xi' —-,'X2'+-,'K1K2). (23)

7/2 A(I=7/2) =a, (5/18. Ki' —7/i8 K2' —-'K2' —8+3/18 K1K2)+a'(23/9 K12+49/18 X2'

+S7/18 K2'+-2K1K2+7/3+3 K1K2+2/&3 K2K2)+a (2K1 +7/6'K2'
+-', K2' —-', K1K2 —1/y'3 K1K2 2/Q3 K2K2)—+a"'(8/9. K1' —14/9. K2'

+ -', K2' —2K1K2+10/3+3-. K1K2 4/Q3 K2K2).—(24)

5/2 A(7=5/2) =a, (1/42 K12+5/42 K22+2K22+ —2K42+40/21+5 K1E2)

+a'(1609/1050 Xi'+116/105 X2'+7/5 K2'+91/50 K42 —46/15+5 K1K2

+1 673/5411/SK1K2 64+7/175v2 K—1K4+64+3/105 K2K2

—4+14/35+5 K2K4+Q42/SQS. K2K4)+a"(991/1050 Xi'+134/105 K2'

+ -', K2'+9/50. K4'+122/105+5 K1K2—176+3/1054' 5 K1K2

+64+ 7/17 5&2. K1K—4 64+3/105 K2K2+4+14/35+5 K2K4 —+42/5+5 X2X4)

+a"'( 184/525 Ki' —232/105. K— 422/5 K2'+84/25 K4'

—556/105+5. K,X,—352+3/105+5 K1K2+64+14/175 K1K4

—128+3/105.K2K2+841/'14/35+5. K2K4 —2+42/5+5 K2K,). (25)
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3/2 ~ A (J=3/2) =a, ( —3/10. K, 3/—10 ~ Kz'+11/30. K3 6K4' —4/3/5 K3K4)
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+a'(69/125. K '+63/50 K2'+728/375 X '+217/150 K42

+48+3/25+5 KgKg —16+21/125 K&Kg —4+21/25+5 K&K4

—3+7/25+5 KgK3+6Q7/25 K,K4+49/75+5 K3K4)+c"(156/125 Kp

+27/50 K2' —101/125 Kg+11/50 K42 —48+3/25+5 KgK2

+16/21/125 KIK8+4Q21/25+5 KIK4+3Q7/25+5 KeK3

—6+7/25 K~K4+17/25+5 K3K4)+a"'( 288/—125.Kp —18/25 X,'

+344/375 Kg'+316/150 KP —96/3/25+5. KIE2+32Q21/125 KIK3

+8/21 /2 5+ 5KgKg+6Q7/25+5 KRK3 12+7/—25 K2K4+502/75+5 K~4). (26)

2A(2=2) =a,,(5/18 KB+1/18 Kg'+2K''+402/9 XgK2)+a'(7/18 Kg+7/9 K2'

—7%2/9 KgKg)+a" ( 6K'' —3K22+—v2/3 XgK2)

+a"'(20/9 Kp —20/9 X2' —10v2/9 K)K2). (27)

V. ENERGY MATRICES IN (LS) AND (jj) COUPLING

The coefficients, C's, X's, that appear in the
interval factor formulae are obtainable from the
empirical energies of the states of the con-
figuration. To evaluate the coefficients from the
energies the energy matrices are required, prefer-
ably for both (LS) and (jj) coupling to corre-
spond to the two forms of the interval factor
formulae. Condon and Shortley4 have worked
out the electrostatic energies of the d's states in

(LS) coupling. The magnetic energies can readily
be worked out in (jj) coupli'ng. The complete
energy matrices in both (LS) and (jj) coupling
can be formed from these by using the (jj)—-(I.S)
transformation matrices. The energy matrices in
(I.S) coupling are given in Table III. The 'Fg~m

state was chosen as the energy datum level. The
(jj) energy matrices are given in Table IV. The
energies here are referred to sP'(J=9/2) as the
datum level.

The energy matrices of d's are somewhat too
complicated to give explicit formulae for the
determination of the coefficients. They are ob-
tained more easily from the matrices by suc-
cessive approximations to the secular equations.

The coefficients determined from the empirical
energies can be checked by computing the Lande
g factors from the coefficients and comparing
them with the empirical g's. The g's can be

4 E. U. Condon and G. H. Shortley, Phys. Rev. 37', 1025
(~93~}.

computed most easily via (LS) coupling since
the matrices for the g's of the (I.S) states are
diagonal. Thus the g of a state with a given J in
intermediate coupling is given by g,g,K„.
summed over all the (LS) states with the given
J. The g, 's are the g factors of the (I.S) states
and the X s are the coefficients in the linear com-
bination that expresses the function of the
intermediate state in terms of the functions of
the (LS) states.

VI. APPLIcATIoN To 5d'6s 'F OF LA I

Anderson' has measured the hyperfine struc-
tures of the 5d'6s 4F states of La I, and from
their separations has evaluated the magnetic
moment of the lanthanum nucleus. There are
two limitations in his computation: First, he
considers that the coupling is strictly (LS), and
second, he neglects the interactions of the spins
of the d electrons with the magnetic nucleus.
He points out that his treatment is only approx-
imate and that it does not give a very consistent.
explanation of the relative magnitudes of the
hyperfine separations of the 4F states, It is
evident that his experimental data should be
treated more rigorously before one can rely on
the nuclear magnetic moment derived from them.
The preceding theory is applied in this section to
Anderson's data.

W'e determine the coefficients from the em-

'Q. E. Anderson, Phys. Rev. 40, 4"l3 (1934).
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pirical energies. Russell and Meggers have
identified all the states of 5d'6s of La I except
'S. Their term values relative to 'F9/2 are given
in Table V. As the coupling in this configuration
approaches (LS) we use the (LS) energy matrices
and determine the coefficients by successive
approximations to the secular equations. The
first step is the evaluation of the parameters, F2,
F4, G2, a, from the empirical term values. The
sum of the diagonal terms of the energy matrix
for the states with a given J is equal in any
coupling to the sum of the roots (energy values)
of the secular equation for these states. This
fact is made use of. For each J matrix the mean
of the diagonal terms is taken and equated to
the mean of the empirical term values of the
states involved. The resulting relation for each
J matrix is then subtracted from the correspond-
ing relation for each of the other matrices. In
general this procedure gives a sufficient number
of equations to evaluate the parameters.

In the present case, however, some judgment
must be used in applying this procedure. As
'S; has not been identified, the mean for the
states with J=—', cannot be used. Further there
is a possibility that the two groups of states with
J=5/2 and 3/2 are appreciably perturbed by
the 'D3/2, &/2 of the adjacent 5d6s' configuration.
Thus one hesitates to use the differences obtained
by subtracting the mean of either of these two
groups from the means of the unperturbed
groups. However, according to theory' one
expects that the perturbation by Sd6s' will

displace the means of the J=S/2 states and
J=3/2 states about equally in the same direc-
tion. Thus the relation obtained by taking the
difference between the means of these two
groups should be fairly reliable. Actually in
forming this difference the Sd6s' 'D states were
included and five diagonal terms used in the
J=S/2 and J=3/2 matrices. The electrostatic
components in the diagonal terms of the 5d6s' 'D
states cancel out when the difference is taken;
the magnetic parts do not, but as a is assumed
the same for both configurations no additional
parameters are introduced. The inclusion of the
Sd6s' 'D states gives values of the parameters

Co
Iu cc CI

a„
CC

'H. N. Russe11 and W. F. Meggers, Bur. Standards J.
Research 9, 625 (1932),' C. W. Ufford, Phys. Rev. 44, 732 (1933).
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TABLE IV. Energy matrices, (jj) coupling.

J =9/2.

J =7/2. I =spq

I =sfq

0—24Fg/5 —4Fq —2Gg/5,

II =sq q

II =syq

—24F&/5 —4Fq —ZG&/5
36Fg/5 +6Fq +3Gg/5 —5a/2

III =st'

J=5/2.

9Gg/5,—24F2/5 —4Fq +Gg/2,—3G„+3/2 +5,
I =sag II =sy3

—24F2/5 —4Fq +Gg/2,
36F2/5 +6Fq +21Gg/20 —5a/2,—3G» Q3/4 +5,

III =sq'-

—3G2~3/2 ~s—3G2 Q3/4 +5—12Fg/5 —2Fq+ 11Gg/20 —5a/2

IV =spy

I
II
III
IV

J =3/2.

I
II
Irr
IV

J =1/2.

168Fg/25 —14F4+2Gg/5,
2G2/5,

+2(96Fg/25 —36Fq —2G2/5) ~

+2 1(—2F2/25 +6Fq),

I =s$2

168Fg/25 —14Fq +7Gg/5,
Q2 (96Fg/25 —36Fq +3G2/5),

G2+14/5,
+2 1(—2F2/25 +6Fq),

I —$/0

2Gg/5,—12Fg/5 —2Fq+ 17Gg/15 —Sa/2,—8Gg +2/15,—4G2 +2 1/15,

II =sag

Q2 (96F2/25 —36Fq +3G2/5),
159Fg/25 —29Fq +13Gg/10 —Sa/2,

3G&~7/10,
+42 ( —14Fg/25 —G2/10),

Q2 (96'/25 —36Fq —2Gg/5),—8Gg Q2/15,
159F2/25 —29Fq+7 Gg/15 —Sa/2,

+42 ( —14'/25 +Gg/15),

III =sy'

G2 +14/5,
3G2+7/10,

63Fg/5 —77Fq +3Gg/10 —Sit2,—Gg+3/5 Q2,

II =syt

Q2 1(—2F2/25 +6Fq)—4G2 Q2 1/15
+42 ( —14Fg/25 +Gg/15)—7Fg/25 +7Fq+6Gg/5 —Sa

IV =sxg

+21(—2F2/25+6Fq)
+42 ( —14Fg/25 —G2/10)—G2+3/5 Q2—7F2/25 +7Fq+Gg/5 —Sa

III =syo

84Fg/5 +49Fq+4Gg/5,—2G:/ +5,—7Fg Q6/5 —42Fq Q6,

—2Gg/+5,
63F2/5 —77Fq +9Gg/5 —Sa/2,—Gg(6/5) g,

—7F2~6/5 —42Fq ~6—Gg(6/5) k
91F2/S +91Fq+6Gz/5 —5a

only slightly different from those obtained when

these states are not included. A second relation
can be obtained from the difference of the means
of the J=9/2 and J'=7/2 groups; and a third
from the secular equation for the 7=9/2 states.
A fourth relation is needed for the. complete
determination of the four parameters. This could
be obtained from the secular equation for the
states with J=7/2. But it is equally good to
express F2, F4, 6& in terms of a by means of the
three relations discussed above, then by trial
And the value of a that gives the best agreement
between the theoretically predicted and the
observed term values.

%e obtain by the above procedure the fol-

lowing expressions for the three parameters in

terms of a:

6G.= &d, —' /5798 -z'~6692.

/OF4=4375 —7/6 a —5/34788 a"'. (28)

42F2= 14202+7/2 a —5/11596 a'

affected by the interaction between the two
configurations. A perturbation of the 'D states
would indirectly affect 'I'3/2, 5/2 but the effect
should be a second order one. The fact that 4Pq

also is much higher than predicted further indi-
cates that perturbation by Sd6s' is not primarily
responsible for this discrepancy. Similar anom-
alies for 4I' states of d's configurations of other
spectra have been found. ' The Sd'6s term values,
except for the 'P states, then are consistent with
the theory of multiplet structure. Thus, as there
are no nondiagonal elements between the 4F and
the 'P states in the (IS) energy matrices, one
expects the preceding theory to give a consistent
interpretation of the hyperhne structures of the
4F states when the values of the parameters given
above are used in the energy matrices.

The coeKcients, E s: for the -E. states can QQ

determined from the energy matrices with the
values of the parameters inserted by successive

TABLE V. ComParison of Predicted and emPirical term vaLues
of 5d'6s states.

The term values predicted by putting a=400
cm ', which gives G2=1377, F2=370, F4=56,
are in good agreement with the empirical term
values except for the 4I' states which are much
higher than predicted (see Table V). The poor
agreement for the 4P states cannot, be attributed
to pc.rturbation by Jdbs', ~incc according to
afford &3p, 5/, J,iv ~ 4v UQly ~id, ted vf ad 6Z

qF'3/2
qF5/2
qF-/g
qFg/g

2'/2
"-Fv/g

qP1/2
qP3/2

—1453 cm &

—1112—627
0

2890
3930
3110
3369

POSITION

STATE re. qFg/2.

POSITION
calc.

a =400 cm 1

—1459 cm I—1117—630
0

2922
3893
410
650

STATE

4P5/g
gD3/2
"-Ds/2

'P3/~
gGg/g

2G7/2
gS1/~

POSITION

re. qFg/g

3558 cm I
4325
5062
4923
5598
5798
5839

PosITIQN
calc.

a =400 cm 1

904 cm &

4600
5322
4627
5650
5798
5842

16414
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approximations to the secular equations. They
are

4F9(2 '.

'Fv]2 '-

Xg = 0.9976,

Eg = 0.0693,

Eg =0.9966,

Xg' = 0.9952;

Eg'= 0.0048.

Ei'= 0.9932;

E2= —0.0313, E2' ——0.00098;

E3= —0.0762, E3'= 0.0058.

F5l2 ~

'Fs(2.

Ez=0.9951,

E2= 0.0730,

E3= —0.0664,

E~——0.9955,

Eg'= 0.9903;

E '= 0 00533 '

E3'= 0.00441; E4= 0.

Eg'= 0.9911;

E2= —0.0946) E2' = 0.00894;

E3=E4= 0.

A ('F7/Q) = 0.09514a,+0.7864//q

=0.01464 cm ',

A('F/, 2) = 0 03531a,.+1 0705ag.

=0.00900 cm '

A('F3/2) = —0.2000a, +1.7988am

= —0.01667 cm '.

(29)

There are four equations in a, and a&, so we

can solve for each and test the solution for con-
sistency. Solving for a, and aq from the first and
last equations of (29), which are the least
sensitive to coupling changes, we obtain a,
=0.1185 cm ', a~=0.00391 cm '. Substituting
these values in the second and third equations
of (29) we calculate A('Fy/u) =0.0143, observed

The relativistic corrections for a 5d electron
of La I, for which the effective nuclear charge is
certainly less than 50, are very small and can be
neglected. Thus for this application a', a", a'"
can be expressed in terms of az by Eq. (22).
%hen these substitutions are made and the
values of the E's listed above are inserted in

Eqs. (23, 24, 25, 26) the following formulae for
the interval factors of the 4F states are obtained.
They are equated on the right to Anderson's
experimentally determined interval factors.

A ('Fg/g) = 0.1111a,+0.6508ag

=0.01571 cm '

0.0146; A('Fq/2)=0. 0084, observed 0.0090. An-
derson gives the probable error of his most reli-
able interval factor as 5 percent. Thus we see
that the preceding theory gives a consistent
interpretation of the hyperfine separations of the
4F states.

It is instructive to contrast the formulae for
the interval factors of the 'F states in strict (I.S)
coupling with the formulae (29) which take into
account the actual coupling conditions. The
interval factors in strict (LS) coupling are by
Eqs. (21),

A ('Fs/2) = 0 1111a,+0.6349ad

A ('F/p) = 0.07937/2. ,+0.7800a „
A ('F,/, )= 0.00952o„+1.0384a„,

A ('F///2) = —0.2000/2, +1.7371ag.

(30)

For our case a,=0.119 cm ', n, ff, ' 1.60, Z, =57,
Z, =1, R~'=5.82, E(-', , Z;) =1.43. The substi-
tution of these values in the above equation
gives g(I)=0.71. A reliable value of g(I) cannot
be readily obtained from a& since first, a& is very
small, and second, it is difficult to estimate the
value of Z; that should be used for a Sd electron
in the Sd'6s configuration. However, the sub-
stitution of g(I) =0.71, a~ ——0.0039 cm ', Av

= 1000 cm ' in the formula for a non-s electron'

gives, on solving for Z;, Z;=40. This appears to
be a reasonable va, lue, indicating tha, t g(I) =0.71
is consistent with a~=0.0039. The nuclear spin

'S. Goudsmit, Phys. Rev. 43, 636 (1933);E. Fermi and
E. Segre, Zeits. f. Physik 82, 729 (1933).

Comparing (29) and (30), it is evident that
A('Fg/q) and A('F3/2) are not overly sensitive to
departure from strict (I.S) coupling; A('F7/2) is
more sensitive, and A( F5/2) is very sensitive.
This comparison shows that one should be very
careful in using (LS) interval factor formulae for
states dependent on coupling even though the
multiplet structure indicates that the coupling
is close to (LS).

The nuclear magnetic moment of lanthanum
can be calculated from the values of a, and a~.
The nuclear g factor is computed from the inter-
action constant of an s electron by the formula'

3 a, n', ff. 1838
g(I) =-

8 Rn' Z,ZO' E(-', , Z,)
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of lanthanum is 7/2, hence the nuclear magnetic
moment as determined by this analysis is 2.5
nuclear magnetons. This is in fair agreement
with the value 2.8 nuclear magnetons deter-
mined, from La III hyperfine structures by the
writer and N. S. Grace. 9

' M. F. Crawford and N. S. Grace, Phys. Rev. 4'7, 536
(1935).
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Can Quantum-Mechanical Description of Physical Reality Be Considered Complete' ?

A. EINsTEIN, B. PQDoLsKY AND N. RosEN, Institute for Advanced Study, Princeton, New Jersey

(Received March 25, 1935)

In a complete theory there is an element corresponding
to each element of reality. A sufFicient condition for the
reality of a physical quantity is the possibility of predicting
it with certainty, without disturbing the system. In
quantum mechanics in the case of two physical quantities
described by non-commuting operators, the knowledge of
one precludes the knowledge of the other. Then either (1)
the description of reality given by the wave function in

quantum mechanics is not complete or (2) these two
quantities cannot have simultaneous reality. Consideration
of the problem of making predictions concerning a system
on the basis of measurements made on another system that
had previously interacted with it leads to the result that if
(1) is false then (2) is also false. One is thus led to conclude
that the description of reality as given by a wave function
is not complete.

A NY serious consideration of a physical
theory must take into account the dis-

tinction between the objective reality, which is
independent of any theory, and the physical
concepts with which the theory operates. These
concepts are intended to correspond with the
objective reality, and by means of these concepts
we picture this reality to ourselves.

In attempting to judge the success of a
physical theory, we may ask ourselves two ques-
tions: (1) "Is the theory correct?" and (2) "Is
the description given by the theory complete?"
It is only in the case in which positive answers

may be given to both of these questions, that the
concepts of the theory may be said to be satis-
factory. The correctness of the theory is judged
by the degree of agreement between the con-
clusions of the theory and human experience.
This experience, which alone enables us to make
inferences about reality, in physics takes the
form of experiment and measurement. It is the
second question that we wish to consider here, as
applied to quantum mechanics.

Whatever the meaning assigned to the term
conzp/eEe, the following requirement for a com-
plete theory seems to be a necessary one: every

element of the physical reality must have a counter

part in the physical theory We shall ca. 11 this the
condition of completeness. The second question
is thus easily answered, as soon as we are able to
decide what are the elements of the physical
reality.

The elements of the physical reality cannot
be determined by a priori philosophical con-
siderations, but must be found by an appeal to
results of experiments and measurements. A
comprehensive definition of reality is, however,
unnecessary for our purpose. We shall be satisfied
with the following criterion, which we regard as
reasonable. If, without in any way disturbing a
system, we can predict with certainty (i.e. , with

probability equal to unity) the value of a physical
quantity, then there exists an element of physical
reality corresponding lo this physical quantity. It
seems to us that this criterion, while far from
exhausting all possible ways of recognizing a
physical reality, at least provides us with one


