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The large probability of nuclear disintegration by slow
neutrons as well as the large cross section for the elastic
scattering of slow neutrons can be explained without any
new assumption. Interaction between neutron and nucleus
is assumed to be only present when the neutron is inside the
nucleus or very near its boundary. The rate of change of
the potential energy of the neutron at the boundary of the
nucleus is important for the quantitative, but not for the
qualitative results; in agreement with other data, it has
been assumed that the potential drops to 1/e in a distance
1.5.1071% cm (range of the forces between neutron and
nucleus).

The large disintegration cross sections are due to two
factors. The first is elementary: the cross section is in-
versely proportional to the neutron velocity, because a slow
neutron stays longer in the nucleus. The second factor is
1/sin? ¢y, where ¢, is the phase of the neutron wave
function at the nuclear boundary. This resonance factor
explains the large differences between the cross sections of
different elements. ¢ocannot be predicted theoretically, but
reasonable assumptions lead to agreement with experi-
ment. The resonance factor occurs in all phenomena with
slow neutrons; therefore large capture cross sections should
always be accompanied by large elastic scattering. The
explanation of the large neutron cross sections on the basis
of ordinary wave mechanics makes one confident in the
applicability of orthodox quantum theory in nuclear phe-
nomena.

1. Elastic scattering. May be large for slow neutrons be-
cause of resonance. Magnitude is 5.102 cm? without, 10722

and more with resonance. If present, large cross section
persists up to neutron energies of 10,000 or 100,000 volts.

2. Capture with emission of y-rays. Cross section large
for slow netrons. About half the elastic scattering cross
section for gas-kinetic energy. Cross section inversely pro-
portional to neutron velocity. All capture effects observed
should be due to admixtures of slow neutrons in the in-
cident beam. Capture only possible, if unoccupied neutron
level with angular momentum /=1 exists in the nucleus.

3. Disintegration with emission of «-particles. Very
probable for slow neutrons if exothermic process, which is
usually the case. Cross section for gas-kinetic neutrons
and light nuclei 102! cm? without resonance, for Z=11
same cross sections as for fast neutrons (10725 cm?). May
be increased by resonance which may occur as well for
neutrons as for a-particle. Cross section inversely propor-
tional to neutron velocity up to neutron energies of some
100,000 volts, then cross section increases again because
faster a-particles penetrate more easily through nuclear
potential barrier. Disintegration by slow neutrons should
stop at Z= 16, by fast ones at Z= 27, the latter in agree-
ment with experiments.

4. Disintegration with emission of protons. Always endo-
thermic, therefore impossible with slow neutrons. With fast
neutrons, cross section =102 cm? up to Z=20. Weak
effects should be observable up to Z =40, in case of reson-
ance even to 60.

5. Excitation of nucleus without capture of neutron or
emission of particles. Should have cross section of the order
10725 cm? independent of atomic number. Possible only for
nuclei with suitable excited states and for fast neutrons.

1. INTRODUCTION

ERMI and his collaborators? have shown that
neutrons, especially slow ones, are very
effective in disintegrating nuclei. It is generally
accepted that for the heavier nuclei the disin-

! This paper in its essential parts has been presented at
the February Meeting of the American Physical Society,
in place of a previous paper printed in the Abstracts of
that meeting (Phys. Rev. 47, 640 (1935)), which I had
realized at the time of the meetin% to be an unsuccessful
attempt. Subsequently I received from Professor Fermi a
manuscript of a paper submitted to the Royal Society,
containing the same explanation of the large cross sections
as the present paper.

Added in proof: Perrin and Elsasser (Comptes rendus
200, 450 (1935)) came to the same conclusions concerning
the large cross sections of slow neutrons; and an attempt
in the same direction has been made by Beck and Horsley
(Phys. Rev. 47, 510 (1935)).

2 E. Fermi, E. Amaldi, O. D’Agostino, F. Rasetti and E,
Segré, Proc. Roy. Soc. A146, 483 (1934).

tegration process consists in a simple capture of
the neutron by the nucleus with the emission of
a y-ray. Indeed, it seems inconceivable that a
heavy nucleus could emit a charged particle
(proton or a-particle) if bombarded with neu-
trons, since the particle could never escape from
the nucleus because of the potential barrier
surrounding it (cf. paragraph 5 of this paper).

The cross sections for the capture of the
neutron are surprisingly high, some of them
amounting to 1072 cm? and more for slow
neutrons. On the basis of naive considerations,
one would expect cross sections of only about
10~%% cm? For, if the neutron hits the nucleus,
the probability of its radiating is about 1 in
10,000 according to ordinary radiation theory ;
on the other hand, the (geometric) cross section
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of the nucleus is of the order 102 cm? The
naive theory thus gives a cross section about a
million times too small.

We want to show in this paper that a straight-
forward application of wave mechanics leads to
cross sections of just the right magnitude.
Furthermore, long distance forces between
neutron and nucleus are not required, it being
assumed that the interaction is appreciable only
when the neutron is inside the nucleus.

2. WAVE FuncrioN or SLow NEUTRONS

Since the most interesting phenomena seem
to occur with slow neutrons, we shall consider
primarily neutrons with kinetic energies well
below a million volts. For these neutrons, the
de Broglie wavelength 27\, viz.

h 4.54-10710

A= = cm. (1)
(2ME)} E?

(E measured in volts) is large compared with
the radius of the nucleus. The radius of a nucleus
with medium atomic weight (about 100) being
about 7.1078 cm, our condition A >7, is fulfilled
for neutron energies below half a million volts.

Neutrons of a given angular momentum / pass
the nucleus in general at a distance of the order
IN. For slow neutrons of, say, 1000 volts energy or
less, there is therefore no chance of getting into
the nucleus, if they have an angular momentum
different from zero, since their distance of
closest approach would be at least 30 times
larger than the nuclear radius. Even if there is a
resonance level for the neutron with'/=1, it has
no appreciable effect on the scattering or capture
of slow neutrons (see Appendix 1). Therefore we
need only consider the spherically symmetrical
part of the wave function of the incident neutron,
i.e., the part corresponding to /=0. The slow
neutrons reaching the nucleus are consequently
in an ‘“s-state.”

The wave function of the neutron at large
distances from the nucleus can be written in the
familiar form

¥=(1/v})e"**+scattered wave,

¥ represents a stream of neutrons traveling in
the z direction and is normalized per unit current,
and
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k=1/N=Mv/h=(2ME)%/h. (2)
¢ can be expanded in spherical harmonics :
1 & Yau(r)
y=—23 —P(9), (3)
pi =0 4

7 being the distance between nucleus and neutron.
For 170, ¢, has practically the same form far
from the nucleus as if the neutron was entirely
free, i.e., not influenced by thé nucleus, for the
reason given above. For =0, theiradia] wave
function satisfies the Schrédinger equation

d*o/dr*+2M /R (E— V)y=0. (4)

V is the potential energy of the neutron in the
field of the nucleus.

Outside the nucleus, (V=0), the solution of
(4) is

Yo=sin (kr—248)/k. (5)

It is properly normalized so as to fulfill (3). The
phase shift 6 determines the cross section for
elastic scattering

&, =47 sin? §/k2, (6)

if, as we have supposed, only the partial wave
[=0 contributes to the scattering.

Inside the nucleus, the neutron has a large
negative potential energy V, of the order of some
million volts. Its magnitude may be estimated
from the binding energy of neutrons in the
nucleus (cf. Appendix 2). From the number of
neutrons present in the nucleus, one should
expect the existence of 3 or 4 bound s-states for
a neutron inside a medium-weight nucleus like,
e.g., Ag. Correspondingly, the wave function of
a neutron with small positive energy will oscillate
several times inside the nucleus (3 to S complete
oscillations for Ag). Therefore the wave function
can be represented by the WKB (Wentzel-
Kramers-Brillouin) solution :

Yo(r) = C(y(r))~* cos ¢(r) (7
for <7y (ro=radius of the nucleus). Here
y(r)=[2ME-V(r)]/h

r 8
o(r) = f Y(o)dp. ®)
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At the boundary 7, of the nucleus the potential
V is known to drop rather suddenly to zero. We
shall assume an infinitely sudden potential
change from the value — V), inside the nucleus
to zero. The influence of a gradual change of V
is treated in Appendix 3. It does not change the
results of the theory, but only the meaning of
the constant Ny occurring in (11) and (14).

We have then merely to join the functions
(5) and (7) together at the point 7,. The wave
function and its derivative being continuous at
7o, we have

Cy(ro)~* cos (7o) =k~ sin (kry—3), ©
—Cy(ro)ttsin o(ro) =  cos (kro—3).
Dividing the upper equation by the lower, we
obtain

tg (kro—6) = — (k/y(r0)) ctg o(r0).

From (2) and (8) we see that for k<Ky(ry), i.e.,
slow neutrons, the right-hand side of (10) is
small except for exceedingly large values of the
ctg, consequently

(10)

d="k(ctg o(r0)/y(ro) +70) =k(No ctg oo+70) (11)
with the abbreviations
No=1/y(ro)=h/QMV)}; Vo=|V(r)|; 12)

@0= ¢(70).

In the special case when ctg ¢, is very large, we
have

sin 5=k()\0 Ctg ¢o+ro)/(1+(k)\0 Ctg (p0)2)% (113)

when higher powers of k7, than the first are
neglected.

The amplitude C of the wave function inside
the nucleus can easily be obtained from (9), we
have

1/C*=y(ro) sin® o+ (k*/y(r0)) cos® go. (13)

Since k<y(ry), the second term is negligible
unless sin ¢g is very small, in that case cos gy=1
and

1/C*=(1/No)(sin? o+ E/V5). (14)

The wave function (5) is not normalized. The
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wave function normalized per unit energy?® is
Vo= AkNa/r, (15)
where A=GM)i/rh (15a)

does not depend on the energy. Inside the
nucleus,

ve=ACk} ¥ cos ¢/r. (16)

It is convenient to separate the factors depending
considerably on the energy, viz., Ck}, from the
rest of the function by putting Y= Ckiyy.
Then

17)

(18)

Yw=Ay? cos o/r
Yo=rCw/A.

yw changes only very slowly with the energy
which makes it suitable for investigating the
dependence of cross sections on E. Moreover, for
large energies yw becomes identical with the
normalized wave function g, since for E> TV,
we have ko= (2M)¥(E— Vy)}/h=~Fk and therefore,
according to (13), C=1/k%

and

3. Tue ELaAstic CROss SECTION

Inserting (11) into (6), we obtain for the
elastic cross section

Do =4m(No Ctg o+70)?2 (19)

with the abbreviations explained in (12).

If we had an accurate theory of the nucleus,
we could determine Ao and ¢, accurately. At
present, we can only estimate them, which is
fairly easy in the case of \o. As is shown in
Appendix 3, \¢ is connected with the range of the
forces between nucleus and neutron, rather than
with the potential energy inside the nucleus.
Wigner has shown® that the forces between
proton and neutron extend over a region of
about 10 cm; this value follows from the
observed mass defects of Het and H2. The forces
between a heavier nucleus and a neutron prob-
ably extend over a slightly larger distance,
because the nucleus will become polarized under
the influence of the neutron. We believe, there-
fore, that I=1.5- 107 cm is a fair estimate ; this
figure agrees well with the “‘apparent radius of
the neutron’ as derived by Rabi from the scat-

§ Definition: [dry gfAEY gi=1,
¢ E. Wigner, Phys. Rev. 43, 252 (1932).
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tering of fast neutrons.” Then, according to (80),
N=%7l=2.4-10"1% cm. (20)

The corresponding V,, calculated from (12),
would be V,=3.4 MV. We believe that A, is not
in error more than by a factor v2, and therefore
the error introduced into the cross section is not
more than a factor 2 one way or the other. \g is
only about one-third of the nuclear radius 7,.

The phase ¢o cannot be estimated from pure
theory. As we have already pointed out (above
Eq. (7)), the wave function makes several oscilla-
tions inside the nucleus, so that ¢, is of the
order 2. It is therefore impossible at present
to predict ¢, with an accuracy of the order =/20,
which would be necessary to give a significant
estimate for ctg ¢o. All we can say is that ¢ is
a constant characteristic for a given element,
which is practically independent of the neutron
energy. A change of about 150,000 volts in E
is necessary to produce a change of one degree in
@0 (cf. Appendix 2). The change of ¢o with the
number of protons and neutrons in the nucleus,
may possibly be just regular enough so that
large values of ctg ¢o would be found preferably
with neighboring elements. There seems indeed
to be a slight indication of such an effect in the
experiments (Rh, Ag and Cd all have large cross
sections!). But ¢, is probably not regular enough
to allow predictions of large cross sections from
the behavior of neighboring elements. Nor is it
probable that the isotopes of the same element
all have large cross sections, if one of them has:
A change of only 2 percent would change ¢, from
nr (n an integer) to (n+1/25)m, ctg ¢o from
o to 25/m~8, and the cross section from infinity
to the moderate value 50- 1072 cm?. The addition
of a neutron to the nucleus will probably change
@0 by more than 2 percent.

Therefore the only practicable procedure is to
make a statistical study of all the experimental
cross sections observed for various nuclei, and to
compare the result with reasonable theoretical
expectations. From the definition of ¢o it is
clear that any value of ¢, between —m/2 and
+x/2 (an additional integer multiple of = has
no effect on the cross section) is a priori equally
probable. Starting from this fact, we can easily

7 Rabi, Phys. Rev. 43, 838 (1933).
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calculate the ‘“‘probable’” distribution of cross
sections.

Since the nuclear radius 7,=7-10"® cm is
about three times larger than our accepted value
for Ao (Eq. (20)), the preponderant term in the
cross section (19) is 7, for the larger part of the
possible values ¢y, 2., for ¢, between —90°
and —18° and between 18° and 90° (ctg 18°
=79/No). In both of these regions the cross section
is of the order of magnitude 47r7®=6-10"2* cm?,
slightly smaller in the first, larger in the second
region mentioned. If ¢, is in the immediate
neighborhood of —18°, the cross section is con-
siderably smaller than the “hard sphere value”
47ry?, whereas for ¢, near zero exceedingly large
cross sections are obtained.

Table I gives the probabilities for various
magnitudes of the cross section. With the
assumed values of \y and 7, we have

Be1=0.7-10724 (ctg po+3)2 (21)

If we want to know, e.g., the probability for a
cross section between 10 and 20X 1072 cm?, we
calculate first the values ¢, corresponding to
®=10-10"%, viz.,, +52.0° and —8.4° and to
$=20-10"%, viz., +23.0° and —6.9°. Hence we
find that two intervals of ¢, of 29.0° and 1.5°
length, respectively, lead to the desired mag-
nitude of ®.. The sum of the two intervals,
30.5°, corresponds to 17 percent of the total
range available for ¢, viz., 180°. If we could
study the: cross section of each isotope of each
element separately, we should find that 17
percent of all nuclei have cross sections for slow
neutrons between 10 and 20 X 10~% cm?. Actually,
almost all elements consist of several isotopes.
If one of these has a large cross section, the other
a small one, the large cross section will be
measured. Therefore with natural elements the
large cross sections should be more frequent, the
small ones less frequent than for pure isotopes.
The probable distribution of cross sections has
been calculated (a) for elements containing two
isotopes, in equal abundance, (b) for 4 isotopes.
Case (a) is realized in most elements with odd
atomic number, case (b) corresponds to the
average even-numbered element. It has been
assumed that the ¢¢'s of several isotopes have no
relation to each other. It can be seen that the
difference between 2-isotope and 4-isotope ele-
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TABLE 1. Data on cross section.

Range of
cross section

No. of elements
among 27
investigated

Probability for elements containing

(units 1024 1 2 4 Ave.of ——v—
cm?) Corresponding ranges of ¢ isotopes 2and 4 expected observed
0-2.5 —11.5 to —42.1° 17.0 6.3 1.1 3.7 1.0 21t

2.5-5 —10.0 to —11.5 —42.1 to —71.8° 17.4 18.1 114 14.7 4.0 33
5-10 —8.4 to —10.0 52.0 to 108.2* 32.1 34.7 35.2 35.0 9.5 9
10-20 —6.9to —8.4 23.0to 52.0 16.9 19.3 22.7 21.0 5.7 4
20-40 —54to —6.9 124 to 23.0 6.7 8.0 11.3 9.7 2.6 3
40-100 —38to —54 6.3to 124 4.3 5.7 7.4 6.6 1.8 1
100-300 —24to —3.8 3.2 to 6.3 2.5 3.4 4.7 4.0 1.1 2
over 300 —2.4 to +3.2° 3.1 44 6.2 5.3 1.5 2

* —71.8°is equivalent to +108.2°,

1 If an experimental cross section is just at the limit of two intervals, half an element has been attributed to each interval.

ments is not very great, only very small cross
sections are more likely to be found with odd-
number elements. Taking the average proba-
bility for even and odd elements, we have cal-
culated how many of the 27 cross sections
measured thus far should lie in each group. Most
of the “observed’ cross sections have been taken
from recent experiments of Dunning and Pegram,
whom we wish to thank for the communication
of their data before publication.® Only elements
with Z>10 have been included, because the
lighter ones are apt to emit a-particles when
bombarded with slow neutrons and have then
much larger (inelastic) cross sections® (cf. para-
graph 5). The agreement between experiment
and theory is satisfactory, although there seem
to be slightly more large cross sections. Part of
this difference may be due to the fact that the
experimental values include the capture cross
section which might be of the same order of
magnitude as the elastic one (paragraph 4).

We shall now discuss the physical meaning of
the large cross sections: According to (19) the
cross section is determined by the phase ¢, with
which the neutron wave y, leaves the nucleus;
small phases ¢, lead to large cross sections. For
an “ordinary” value of ¢, (not near zero), the
wave function increases linearly outside the
nucleus up to r=~\ when ¢, begins to oscillate.
Yo is therefore much larger at great distances 7
than inside the nucleus, and since its value
outside is fixed by normalization, it is small

8 Dunning, Pegram, Fink and Mitchell, Phys. Rev. 47,
416 (1935).

® The elastic cross sections are smaller for light elements
because of the smaller nuclear radii.

inside. However, if ¢, is zero or nearly so, the
wave function leaves the nucleus with horizontal
tangent, it does not increase outside, and is
therefore comparatively very large in the interior
of the nucleus. The neutron remains much longer
inside the nucleus if ¢y=0, and therefore all phe-
nomena due to the nucleus—such as scattering,
capture, disintegration—are much more intense.
¢o=0 means that the neutron has a virtual
quantum level (more accurately: an s-level) in
the nucleus with an energy near zero. The large
cross sections may thus be called a resonance
effect, but the “‘resonance’” is very unsharp, since
@0 changes only by 1° if the energy changes by
about 150,000 volts. This makes the ‘“‘resonance”
such a frequent phenomenon.

If the cross section is large for small neutron
energy, it remains fairly constant when the
energy increases, until 47\2 (27A=wavelength)
becomes smaller than (19). The maximum energy
up to which the cross section remains unchanged,
is therefore

h? h? 4r 2.6
Epyx=———=———=—MV
2MNeris 2M Per Do)

if ®. is measured in units 102 cm? For higher
energy, the cross section decreases as 4w\ i.e.,
proportional to 1/E, until X becomes of the order
ro(E=~% to 1 MV) when higher angular momenta
begin to play a role.

4. CAPTURE WITH EMISSION or y-RAys

Since the incident slow neutrons which reach
the nucleus are in an s-state (have angular
momentum /=0), they can only make an optical
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transition to a p-state. The capture of the neutron
with emission of a y-ray is therefore only possible
if there is an unoccupied p-level for the neutron
inside the nucleus. A nucleus which contains
no such level cannot capture the neutron but
only scatter it. This offers an explanation for the
fact that some substances scatter slow neutrons
considerably without absorbing them: e.g., slow
neutrons penetrate through a paraffin sphere of
12 cm radius without being diminished measur-
ably in intensity ;°® they have to travel about 3
meters in order to reach the sphere’s surface, the
mean free path for elastic scattering being about
L cm;9 therefore the ‘‘mean free path” for
absorption must be at least 1000 times larger
than that for scattering, whereas for other sub-
stances the two cross sections are (for slow
neutrons) of the same order of magnitude.!* The
obvious conclusion is that the nonabsorbing
substances (in our case, /I and () have no
neutron p-level.

[ 1t should be noted, however, that it is prob-
ably a bad approximation to speak of the quan-
tum states of the single particles in the nucleus,
and that one should rather speak of the angular
momentum of the nucleus as a whole. Then our
selection rule reads: A neutron capture by a
nucleus of angular momentum L is possible, if
and only if the nucleus produced by the capture
has a state with angular momentum L or L=+1,
whose energy is lower than that of the original
nucleus plus a free neutron at rest. This selection
rule is much less strict than the original rule for
the neutron. A further restriction is, however,
that the transition L=0—L'=0 is, of course,
forbidden : This is very important because many
nuclei have no angular momentum. We shall
therefore expect

(1) Capture is possible for many, but not for all nuclei.
(2) Impossibility of capture is most likely for nuclei having
no angular momentum.]

The cross section for the capture of any par-
ticle with emission of radiation is!?

&, =(4/3)(w*/hc®) | [¥* Ry [*.

10 All this according to experiments of Dunning and
Pegram.

i1 Theoretically, see below.
(éz Se)e, e.g. Handb. d. Physik 24 (1), p. 430, form.
38.11).

(23)
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¢ =wave function of incident particle (cf. (3)).
¥»=wave function of final (bound) state of particle.
w=2r times frequency of emitted radiation =(E—E,)/k
R =electric moment associated with particle in the system
of reference, where the center of gravity of the cap-
tured particle and the capturing system is at rest.

If we treat the nucleus as rigid, as we have
always done so far, the coordinate of the nucleus
with respect to the center of gravity of nucleus
and neutron is —r/(M+41), where M is the
atomic weight of the nucleus and r the neutron
coordinate with respect to the nucleus. Therefore
the electric moment of the whole system is

R=—Zer/(M+1)=c¢'r,
—eZ/(M+1)(=0.43¢ for Ag)

(24)

where ¢ = (25)

can conveniently be called the effective charge

of the neutron.
We express ¢ in (23) in terms of yw (17) with
the help of (3) and (18):
4 w3 C21

b=
3 he® A%v

2

f¢n*r¢wd'r (26)

and introduce the oscillator strength'® corre-
sponding to the transition from the state ¥w
to one of the p-states in the level #, namely, that
one which is symmetrical round the z axis :

fw=QM/h)w| [ 2Ywdr |2,

Then, inserting C and 4 from (14) and (15a)
and considering that transitions to each of the
three p-states are possible :

(27)

e’ h3win? No
(I)C = 4'-_ va
fic M2 sin? po+E/V
6,2 fw )\)\0
<I>c =47t — — hwfw. (28)

he Mc? sin? go+No?/N?

Here 27\ is the de Broglie wavelength of the
neutron, \¢ and ¢, the characteristic quantities
of the nuclear field defined in (12) and discussed
in paragraph 3. Furthermore, according to (25),

fic/e =137/0.432=740. (29)

hw= —E, is the binding energy of the neutron,

13 Cf, e.g. Handb. d. Physik 24 (1), p. 431, form.
(38.14).



DISINTEGRATIONS OF NEUTRONS

which is, according to the observed mass defects
for elements of medium atom weight, about 8
MV, % so that

Mc2/ho=~120. (30)

Finally, fw is a quantity of the dimension of a
reciprocal energy. Moreover it is known that the
total oscillator strength of all transitions starting
from one level, say the level nz, is unity, and
that the strong spectral lines ending at this
level, extend over a frequency range of the order
w. Therefore we estimate!®

fofw=1, (31)

so that

@c%()\)\0/2300)[1/(811’12 goo+)\02/)\2)] (32)

For slow neutrons, unless ¢, is unreasonably
small, N\¢/N may be neglected in comparison with
sin ¢o. Then the capture cross section is seen to
increase with decreasing velocity as M\, i.e., as
1/v. The slowest neutrons have the largest
capture cross sections. Now the smallest velocity
obtainable is gas-kinetic velocity, i.e.,

E=FkT=1/40 volt at room temperature,

A=2.9-10"% cm. (33)
With the value (20) for Ay, we have then
®,=0.3-10"%4/sin? ¢. (34)

The capture cross section becomes large if ¢
is small, just as the elastic cross section. The
reason for this “‘phase effect’’ has been explained
at the end of paragraph 3. If ¢, is small, we find
from (34) and (21) :

<I>el/<1>cz2 (35)

independent of ¢o. The ratio of the two cross
sections should thus be independent!® of their
absolute magnitude, provided the cross sections
are large, i.e., ¢y small.

14 Here it has been assumed that the neutron is captured
in the ground state, otherwise the capture cross section
should be smaller.

15 The actual value of fy in a given case may easily be
wrong by a factor 5 one way or the other. This uncertainty
applies to all the formulae below.

16 Tt should however be noted that there are irregular
variations of the ratio ®./®e1 owing to different values of
the oscillator strength fw.
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If the phase ¢, is not small,

®1 /B, =2(cos ¢o+3 sin ¢g)?, (36)

which is larger than (35). Therefore, if the elastic
cross section is of the order of magnitude of the
hard sphere value, the capture is less probable,
even relative to the elastic scattering. The
maximum of (36) is 10 times 2.

The capture cross section (32) decreases rapidly
with increasing neutron velocity. Since the
theory seems to be in agreement with experi-
ment, if gas-kinetic energies are assumed for the
neutrons, it seems reasonable actually to make
this assumption. The effects observed with ap-
parently fast neutrons should then be ascribed
to a small admixture of slow neutrons which
may be present in the neutron beam. We expect
that the heavy elements cannot be made radio-
active if the slow neutrons are carefully kept
away. For 1 MV neutrons formula (32) would
give a cross section of the order 5.1072 cm?.

5. NEUTRON-PRODUCED DISINTEGRATIONS WITH
EmissioN oF CHARGED PARTICLES

Two kinds of disintegrations under
heading have been observed : '

Z¥4n'—(Z—-1)M+H!, ¢y

ZM 4n'—(Z —2)M-34+He?, qe))

where ZM denotes a nucleus with mass M and

charge Z. Reaction (I) is found to occur, with

fast neutrons (E~7 MV), up to Z =30, whereas
process (II) stops at Z=27.

this

a. Energy balance

Process (I) is always endothermic. For of the
two isobars ZM and (Z—1)™, the former is
known to be stable, so that the latter must disin-
tegrate with B-emission

(Z—1)MZM 4B, (I1I)

Since the masses of .neutron and hydrogen atom
are nearly equal, the energy absorbed in process
(I) is just equal to that emitted in (III), i.e., to
the energy liberated in the 8-disintegration which
is usually between 1 and 4 MV. Since very slow
protons cannot escape from the nucleus, the
minimum neutron energy required for the
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“proton-type disintegration’ (I) is between 1
and 5 MV.

Process (II) is in general exothermic, because
the neutron has a very high “internal” energy,
which is set free in the process. For atoms of
medium atomic weight, the packing fraction is
known to change very little from element to
element” and to be of the order —1/1000.
Therefore the deviations of the masses of the
particles occurring in process (II) from integral
numbers in the O'-scale are (in thousandths of
mass units)7»

for the neutron +8.5
nucleus Zyr -M

a-particle +3.3
nucleus Zy_3 —(M—3)

initial particles 8.5—M final part. 6.3—M

This leaves an energy balance of 2.2 thousandths
of a mass unit, corresponding to about 2 MV.
The “a-type” disintegration (II) can therefore
be produced by slow neutrons, having practically
no kinetic energy, at least with light nuclei. In
fact, Chadwick, Taylor and Goldhaber®® as well
as Fermi and his collaborators have observed
this type of disintegration with Li® and B* and
have in both cases found very large cross sections
(102 cm?).

b. Cross section; general

The cross section for the disintegration of a
nucleus by a neutron with emission of an a-
particle’® is given by the well-known formula
(Born theory)

D= (27"/71) | f‘l’neuﬂpaE*

Xu(Z)u*(Z —2)u*(a) Vdr|2, (37)

where Yneus is the wave function (3) of the
incident neutron, normalized per unit current,
Ver that of the a-particle, normalized per unit
energy, #(Z) is the wave function describing the
internal motion of the particles in the original
nucleus, #(Z—2) and #(«) the same for final
nucleus and a-particle, V is the total potential
energy between all particles. We express Yneus by
yw (cf. (17), (3), (18)), and we introduce a

17 Aston, Mass Spectra and Isotopes, 1933, pp. 106, 167.

7= H, A, Bethe, Phys. Rev. 47, 633 (1935).

18 J. Chadwick and Goldhaber, Nature 135, 65 (1935);
Taylor and Goldhaber, Nature 135, 341 (1935).

19 We speak for definiteness of a-particles, the theory is
exactly similar for protons.
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function Y,.w for the a-particle, which is exactly
analogous to y¢w for the neutron: Its value
inside the nucleus varies slowly with the energy
and it goes over into Y.g for high energy. It can
easily be shown that

Var="yYaw/(4€*¢ sin® o+ 5672 cos® pa)},  (38)

where e72¢ is the well-known penetrability of the
potential barrier round the nucleus, vz.

G=(Q2M)}/ 1) J(V—E)idr, (39)

the integral extending over the region where the
radicand is positive. ¢, is the phase of the a-
particle wave function at the boundary of the
nucleus.

Inserting (38) and (3), (18), (14) into (37),
we obtain

27 2722 o
Byis=—
i My sin? o+ E/E,
1

4e2¢ gin? ¢+ 1e72% cos? ¢,

X | S wdbaw* u(Z)u*(Z —Du*(e) Vdr|*  (40)

or, if ¢o and ¢, are not too small (not exact
resonance),

Vais= (mA\Noe™2¢/sin? g sin? ¢,)1

(neutron and « slow) (41)

where I stands for the integral in (40).
I is dimensionless, ¢ and Y.w being normal-
ized per unit energy. I should be rather smaller
~than unity, because the formation of the a-
particle in the nucleus requires a rather serious
rearrangement. The order of magnitude of 7 is
determined by experiments with fast neutrons:
if the neutron energy is a few million volts,
M\o/sin? ¢ has to be replaced by 7220 If the
a-particle is fast enough to go over the top of the
potential barrier, the factor e2¢/4sin? ¢, has
to be left out, so that for high energy of neutron
and a-particle®

20 The factor C2 (cf. 18) has no longer the value No/sin? ¢,
but is approximately A (cf. 13). Besides, one has to consider
that now neutron angular momenta up to l=r7,/\ are
effective, which introduces a factor (7,/\)2.

2 It should be noted, however, that the wave functions
inside I change also, though slowly, with the energy of the
particles. I in (42) (high energy) is therefore different from
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i =47’ 1. (Eneutron large, E, large.) (42)

The measured cross sections for fast neutrons are
of the order 0.3-1072¢ (fluorine, Fermi). The
nuclear radius of F being about 410, we have?

mI~1/2, I=~1/60. (43)

c. Light nuclei, slow neutrons

If the nucleus is light and the gain in kinetic
energy sufficiently large so that the a-particle
can go over the top of the barrier even with
neutron energy zero, we have to leave out
e2%/4 sin? ¢, in (41) and find (cf. 43)

q’dis = 4#31)\7\0/Si1’12 Y= 2)\)\0/sin2 ©o.
(slow neutrons, fast o’s.) (44)

The cross section increases in this case enor-
mously with decreasing energy of the neutron,
just as in the capture case. For gas-kinetic
energy, we find (cf. (20), (23))2?

®4is =~ 1300-10~24/sin? ¢,. (45)

The experimental cross sections of Li® and B¢
for slow neutrons are of the order 102! cm?. They
can, therefore, be explained without assuming a
“resonance effect”’ due to small ¢,. The greater
a priori probability of disintegrations with
emission of particles as against such with emis-
sion of y-rays makes the cross section for the
former process larger both for fast and slow
neutrons.

d. Fast neutrons, heavy nuclei: potential barrier

We now want to discuss briefly the effect of
the penetrability of the potential barrier sur-
rounding the nucleus for charged particles. If
the neutron is fast and the a-particle energy
smaller than the top of the barrier, the cross
section (42) has to be multiplied by the penetra-
bility

P =¢72¢/4 sin? ¢,. (fast neutrons, slow a’s.)  (46)

Leaving out for the present the resonance de-
nominator 4 sin? ¢,, we have tc discuss G.

I'in (41) (small energy), only the order of magnitude is the
same. On the other hand, when the neutron energy changes,
say, from 0 to 100,000 volts, I is very nearly constant.

2 This estimate may, for a given case, be wrong by a
factor 10 one way or the other. This uncertainty applies
to the formulae (44) to (46).

755

Assuming, as Gamow did, a large negative poten-
tial energy inside the nucleus (r <7,) and the
pure Coulomb potential V=¢2Zz/7 outside (¥ > 7,
z=2 for a-particle, 1 for proton), the integral
G(39) has the well-known value

2e*Zz 7o\ } ro(r1i—70)\ }
G= [arc cos (—0) —(M) ], 4n
#iv 71 712

ri=e*Zz/E (48)

where

is the distance of closest approach in the Coulomb
field and v the velocity of the particle. We
assume the nuclear radius to be proportional to
Z* which seems to be verified by experiment, then
from Gamow’s data on radioactive nuclei it
follows that

70=1.9-10"18Z cm = %(e?/mc?) Z}.  (49)
The height of the potential barrier is then
Vo=e2Zz/ro=(3/2)mc?22%=0.752Zt MV. (50)

To a given energy of the particle, there corre-
sponds a critical nuclear charge Z, for which
Vo=E, viz.,

Zo=(2E/3zmc?)}, (51)

the corresponding nuclear radius is

2\% e? y E \? E \}
R=(—) —( ) =1.55( ) 10-8  (52)
3/ mc? \zmc? zmc?

If the particle of energy E falls on any nucleus
having higher atomic number than the ‘critical”’
Zy we have r¢=R(Z/Z,)} and n=RZ/Z, and
after slight reduction

4e2M)5E

_3* fic \mz

—290(2/20)
mc

E sAN\}
=0.241——(—) o(Z/Zy), (53)
mci\ z

where A is the atomic weight of the emitted
particle and

o(§) = ¢ arc cos (t—¥) — ¢3(1— D)k,

For numerical calculations, it is still more con-
venient to use

E sAN\?
G'=2-1og e-G=0‘209<p(Z/Zo)——-(—) ,  (89)
mc?\ z

(54)
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so that e 2¢=10~%. Evaluation of (54) gives

for Z/Zu=

1.5 20 25 3 3.5 4 5 6 8 10
0.209¢=
.026 .071 .125 .190 .259 .333 .490 .662 1.02 1.42

We are interested in the penetrability

(1) for a-particles produced by fast neutrons. The fastest
neutrons emitted in appreciable number from the usually
employed Be+radon source have experimentally?® an
energy of about 8 MV. Adding the 2 MV energy gained
(in the average) in the a-type transformation (see above),
and subtracting 1 MV for the energy of the recoil nucleus,*
we find
Ey=9 MV, Z;=14.6;

(2) for a-particles produced by slow neutrons; in the
average,
E,=2 MV, Z,=1.53;

(3) for protons produced by fast neutrons. Assuming that
the nucleus produced by this disintegration emits B-rays
of 4 MV maximum energy, and taking $MV for the mass
difference of the neutron and the hydrogen atom

E,=45 MV, Z,=14.6.

The penetrabilities for these 3 cases are given
for various nuclear charges in Table II. The
nuclear charges refer to the nucleus produced
by the disintegration. It is seen that the a-type
disintegration by fast neutrons (9 MV «-
particles) should begin to become less probable
for Z larger than 20 and should be unobservable
for Z>27, assuming that a penetrability of less
than 1/10 makes the process unobservable and
remembering that the initial nucleus has a
charge by 2 higher than the nucleus produced.
In Fermi’s experiments, Z=27 (Co) is actually
the heaviest nucleus found to emit «-particles
under neutron bombardment, and the disin-
tegrations of the a-type have only medium or
weak intensity for Z>20, whereas most of the
processes of the a-type found with lighter nuclei
are “intense”’” in Fermi’s nomenclature.

The heaviest nucleus for which proton emission
under neutron bombardment has been estab-
lished is Zn (Z=30) whereas we should expect
weak effects of this type to persist up to nearly

23 Dunning, Phys. Rev. 45, 586 (1934). Faster neutrons
are reported as well but seem to be very rare indeed, and
therefore are not likely to play an important part in
causing disintegrations.

2 True for Z of the order 20.
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Z =40, and even higher atomic number if we take
into account the possibility of resonance for the
proton (factor 4 sin? ¢, in the denominator of P,
(46) ; any value for ¢, between —90° and +90°
being equally probable). The proton penetrates
the potential barrier easier because of its small
mass, the energies (9 and 4.5 MV) being in the
ratio of the respective charges.

e. Slow neutrons, comparatively heavy nuclei

When the penetrability of the potential barrier
for the a-particle is disregarded, gas-kinetic
neutrons are about 5000 times more effective in
producing a-type disintegration than fast ones.
According to Table II, the penetrability for 2
MV a-particles becomes 1/5000 when the
nucleus produced has charge Z=9; therefore,
with our assumption about the energy balance
slow neutrons should be more effective than fast
ones in producing a-type disintegration in all
nuclei up to Z=11 (Na). A possible resonance for
either neutron or o-particle would shift this
limit to about Z=16 (S); the same would be true
if the energy gained in the disintegration process
was 3 instead of 2 MV.

Assuming the mass defects for all elements
concerned to be correctly measured,’* the fol-
lowing a-type disintegrations should be more
easily produced by slow than by fast neutrons:
N4—-B!1(100), F1¥—N#625(10), however, not:
C2—Be?, Ne¥*—0Y and probably OY%—CB
which should be endothermic. The numbers in
brackets give the probable increase of the cross
section in going from fast to slow neutrons. For
the heavier elements, the masses are not known
accurately enough to predict the energy gain in
the a-type disintegration ; possibly the following
transformations might be caused with high
probability by slow neutrons: Mg*—Ne?,
Mg?—Ne??, Mg2—Ne?, Al2"—Na2, Siz8s—Mg?5,
P31—Al28, etc.The a-type disintegration caused
by slow neutrons seems to provide a very good
method for correlating masses of different nuclei.
The kinetic energy of the projectile, the neutron,
is known to be exactly zero (for purposes of atomic
weight determination); consequently the «-

25 The maximum energy of the B-rays emitted by N6
was assumed to be 6 MV, corresponding to an average
energy of 2 MV as measured by Fermi.
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TABLE I1. Reciprocal value of penetrability of potential barrier.

Z= 5 7 10. 15 20 25 30 40 50
a-particles
9 MV 1 1 1 1 2.6 12 80 104 4-105
2 MV 18 250 2-10¢ 6-10" 6-10° 1.5-108 4-101 102 103
protons
1.4 2.4 4.7 25 100

4.5 MV 1 1 1 1

particles are homogeneous. The unambiguity of
the energy determination is greatly increased by
the fact that only very slow and very fast
neutrons are effective in producing the a-type
disintegration, but not neutrons of medium
energy, say, a few hundred thousands of volts.
When the neutron energy decreases from 5 MV,
the first factor to change is the penetrability of
the potential barrier. for the a-particle. If this
factor is small for neutron energy zero, it cannot
be large for neutron energies of 1 MV. However
when the neutron energy is reduced to 1000 volts
or less, the cross section increases again because
the neutron stays longer inside the nucleus.

The disintegration F°+4#’—N!4He* in par-
ticular, if it proves to be sufficiently exothermic
to be possible with slow neutrons, seems to
afford the most hope of determining the mass
of the neutrino. For this purpose, the maximum
energy of the B-rays emitted by N in the
process N16—QO+e~+#n° (#°=neutrino) should
be measured accurately, as well as the kinetic
energies of the a-particles emitted in the pro-
duction of N6 and of those emitted in the
process F1?+4+H!—0"%+4He*. Moreover, N1® seems
to be the best nucleus known upon which to
observe the recoil caused by B-disintegration ;26
if the maximum energy of the B-rays is 5 MV,
which seems to be rather a lower limit, N6
should receive 800 volts recoil energy.

The disintegration group Al¥ 4 #n'— Na
+He*, Na®—Mg*+e~+n° Al*’++H'—>Mg*+He!
would give an alternative way for the deter-
mination of the neutrino mass, but the first
reaction of this group is less likely to occur with
slow neutrons than’the fluorine disintegration
because of the high potential barrier of Na.

2% Cf. H. Bethe and R. Peierls, Nature 133, 532, 689
(1934).

APPENDIX 1. THE EFFECT OF SLow NEUTRONS
WITH NONVANISHING ANGULAR
MOMENTUM /%0

For I=1,
nucleus is

Y1=sin (kr+38;)/k* —cos (kr+61)/k.

the wave function outside the

(56)

Inside the nucleus ¢; has the same form as ,,
cf. (7), only with y having a different meaning.
For convenience, we expand ¢ in a power series

in kr and 6:
Ya=01/k*+ 3kr*+0(k3r*)+0(r5).  (57)

Neglecting all powers of 8 and k7 higher than
the first, we find by joining the outside and
inside wave functions together

Ciy(ro)~* cos o(ro) = 61/ k*r+ §kr?,

(58)
— Cly(f’o)"i'% sin ¢(ro) = — 61/k272+ %k?‘,
wherefrom
kro(Ap)?
1= ,
(A\1/70) cos o1 —sin ¢, .

2(\1/70) cos p1+sin ¢y
61-’-‘-—' %k3703

(N\1/70) cos @1 —sin ¢,

Apart from the resonance denominator, §; is
smaller than the phase § for /=0, given in (11),
by a factor (kr¢)? the elastic scattering cross
section therefore by a factor (kr¢)*=10"15 for
gas-kinetic neutrons. C:? is likewise smaller by
a factor (krg)2=35-10"7 than the corresponding
quantity for /=0 (cf. (14)). To obtain, e.g., a
capture cross section of only 10~2% cm? for
neutrons of E=kT and /=1, the phase ¢; would
have to lie in a region of 1/10° breadth near the
value tg™! (\1/7o) which is very unlikely. It is
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slightly better for higher energy, because all
effects due to ‘‘p-neutrons’” decrease with
decreasing energy ; the elastic scattering as FE?
the capture and a-type disintegration as E&.
There is just a chance that there might be an
element which has no bound p-level for the
neutron and therefore cannot capture s-neutrons,
but for which incoming p-neutrons have a phase
@1 within 1° of the ‘“‘right” value tg=! (\1/70):
Such an element would capture p-neutrons of
energies round 100,000 volt with a cross section
of the order 3-107% cm?.

APPENDIX 2. ATTEMPT TO DETERMINE THE
PoTENTIAL ENERGY FOR NEUTRONS
IN THE NUCLEUS?6®

It is not likely that the approximation made
in this paper, i.e., taking the nucleus as a rigid
body and representing it by a potential field
acting on the neutron, is really adequate. Any-
how, if it is made—and it is the only practicable
approximation in many cases—it should be
made consistently, and therefore the potential
to be assumed is of interest.

We assume the potential to be constant, equal
to —V, inside the nucleus, and treat the
neutrons simply as a Fermi gas enclosed in a
volume

Q= (4r/3)red.

Since N=A—Z (A =atomic weight) neutrons
are in the nucleus, their average kinetic energy
is according to the Fermi statistics formula

3 (2rh)? (3N)2/3 33485208 p2
T5 20 \8x0) 5 28 My

N3, (60)

0

Inserting for 7o the value (49) and taking for
N/Z the average value 1.25 (true for medium
atomic weight), we find

3\2/hc\*m
Eo=2.39(—) (——) —mc?(1.25)%=24 MV. (61)
2 e?) M

The binding energy is Vo—E,, it has experi-
mentally the value ~8 MV, which makes

Vo=32 MV. (62)

262 Similar calculations with similar results have been
made by Van Vleck (Phys. Rev. in press) and Goudsmit
(unpublished).
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With this value for V,, the phase ¢, of the wave
function of a neutron with energy E at the
boundary 7, of the nucleus becomes?®

(20)} T

Qo= (V0+E>%7’o“5
et fMN\ s Voy+EN? g
) (2
fic\m mc? 2

=2.36Z3(140.015E) — 37 (63)
if E is measured in million volts. For Ag(Z=47)

00=2.27+0.047E, (64)

which means that the s-wave function makes 21
complete oscillations in the nucleus, and ¢,
changes by 1°=7/180, if E changes by

1/(180-0.04) =0.14 MV.

APPENDIX 3. EFFECT OF GRADUAL DECREASE OF
POTENTIAL AT THE BOUNDARY OF THE
NuUCLEUS

We represent the potential energy of the
neutron at the boundary of the nucleus by the
Eckart potential?’

V= — Vot Vee#!}/(14¢2%1%)
— Vo/ (14,

(65)

where x=7—7, and [ is essentially the range of
the forces between neutron and nucleus (V
decreases, e.g., from 3V, to 1V, in a distance
1.1]). Eckart has given the analytical form of
the wave functions in the potential (65) : If the
wave function ¥ behaves like an outgoing wave
e‘** for large positive x (great distances from the
nucleus), its value for large negative x (inside the
nucleus) is
W = @607+ qqe—h0z (ko=(2MVy)¥/k) (66)
T'(142:8)T(27c)
T(1+i(a+8)T(E(a+8))
I'(1—-2iB)I'(2ic)
Q9= ; . )
r(1+i(a—p)T(i(a—p))
2 From the definition (7), (8) it follows that ¢(r=0)
= — ir if the potential is constant inside the nucleus.
27 C. Eckart, Phys. Rev. 35, 1303 (1930). We put

Eckart’s B=0, our/ is Eckart’s ! divided by =, our k=2x/X\/,
our ky=2w/\, our Vo=Eckart's 4, our E=W—A4.

Wlth ay

(67)
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a=1kd; B=1EL (68)

where

and the asterisk denotes the conjugate complex
value.

From (66) it is easy to derive the asymptotic
form for large positive x of a wave function whose
behavior inside the nucleus is known to be (cf.

Q)

Y=C cos (kox+x)/ (ko). (69)
The asymptotic form for large positive x is:
(ar*ex—as*e~x)C
Y=Re -¢ ke
(la1]*—[asz]*)(ko)?
(Re=real part.) (70)

So far, the formulae are rigorous. We now make
use of the fact that the energy of the neutron,
and therefore B, is small. Neglecting higher
powers of 8 than the first, we may write

ar*=ao(1+(k+iN)B) 5  ar=as(1— (k+iN)B) (71)

with ao=T(1)T'(2ia) /T(1+1a)T (ta) =ae’?, (72)

where «, A, @ and v are supposed to be real. Then
[a1]2— [az|?=4xBa?,

al*ez‘x _az*e_ix = za[i Sin ('Y+ X+)‘ﬂ)

+xB cos (v+x)1, (73)
and (70) goes over into
2aCsin (y+x—NB)
T 4Ba(ky)
Xsin (kx— kB ctg (v+x)). (74)

Evidently, we have to identify (cf. (5), (11),
x=r—rg!)

Y+ x= 00 (75)

0="Fkro+«B ctg ¢o, therefore (cf. (11)) xB=k\,
and (cf. (68))

No=3lk,

(76)

and furthermore we have to put (cf. (5))
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Csin ¢o/2kBa(ko)t=1/k,
C=Ika(ko)}/sin @o. (77)

From the definition of «, (71), we find, using the
well-known formula?® for |T'(1—1x) |

d
2k=lim — log |a,|?
8=0 48

d /B sinh? 7(a+pB)
=lim — log( - )
=0 4B a sinh 278 sinh 27 (78)
1 2 27 27
=lim { —— + ) = .
=0 \8 tgh2wB8 tgh w(a+p) tgh ra
Inserting this into (76), we have
No=(7/2)(l/tgh ra). (79)

For rapid changes of potential, or more accu-
rately, if 7 is small compared with the wavelength
h/(2M V)t of the particles inside the potential
field, « is small (cf. 68) and (79) goes over into
(12), viz.

No=1/ke=h/2M Vo)t

In our case, however, [ is assumed to be
1.5%X10"® cm (cf. paragraph 3), whereas
n/(2MVy)}=1.0-10"1% with V=32 MV. There-
fore, Ta=2.36 and tgh ma=0.982, so that prac-
tically

To evaluate (77), we calculate
sinh? ra tgh ra
a’=lim |a,|%= .
=0 2ra sinh 2ra 47
81)

T i (ko) wl/2 tgh ma)?
C=l( )()=(/tg )

4o tgh ma/ sin @ sin ¢g

which is exactly formula (14) with N\, given by
(79).

28 Jahnke-Emde, Table of Functions, p. 89.



