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In Eq. (7) we have
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and BC'&4, »=48&2P, all others being equal to zero.
To illustrate the evaluation of the integral 6 let us consider 611 11..
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or, making use of the orthogonality and normalization of the F's, 6&1, »=4.
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Starting with the K+ field given by Hartree, a 4s wave
function has been found by numerical integration. The
orthogonality correction diminishes the value of the wave
function at the origin by about one-third. The experimental
value of the hyperfine structure separation of the 'S normal
state is 0.015 cm '. From this is calculated a molecular

magnetic moment of 1 ~ 2 nuclear magnetons, as compared
with the value of 0.38 nuclear magnetons calculated by
Millman, Fox and Ra.bi on the basis of the modified
Goudsmit's formula. The disagreement seems to be due
chieAy to the possibility that the single electron wave
functions of Fermi and Segre are not mutually orthogonal.

HERE have recently been published two
independent determinations of the h.f.s.

separation of the normal state of the K" atom.
Jackson and Kuhn' have used a spectroscopic
method; Millman, Fox and Rabi' have relied on
the method of molecular beams. The numerical
agreement is good, and 0.015 cm ' may be taken
as the value of the separation.

From this, Millman, Fox and Rabi estimate
the value of the nuclear magnetic moment to be

' D. A. Jackson and H. Kuhn, Nature 134, 25 (1934);
Proc. Roy, Soc. A148, 335 (1935,'.

2 Millman, Fox and Rabi, Phys. Rev. 46, 320 (1934).
These authors were able to determine the spin as well as
the h. f.s. splitting,

0.38 nuclear magneton, using the semi-empirical
formula due to Goudsmit' and Fermi and
Segre. 4 ' Since previous cases of low magnetic
moments have been associated with isotopes of
even mass number, the above value seemed
somewhat anomalous, and we therefore thought
it of interest to ascertain whether or not the
"anomaly" could be removed by the use of a
Hartree wave function. This we now proceed to
investigate.

' S. Goudsmit, Phys. Rev. 43, 636 (1933).' E. Fermi and E. Segre, Zeits. f. Physik 82, 729 (1933).' E. Fermi and E.Segre, Memorie, R. Accademia d'Italia
4. 131 (1933),



MAGNETIC MOMENT OF THE K'' NUCLEUS

KA VE FUNCTIONS TABLE I. ¹rmaLized P(4s) for potassium.

Starting with the field of K+, which has been
published by Hartree, ' we have performed a
numerical integration to obtain the 4s wave
function. 7 The results are given in Table I.

For simplification of the calculations, it is
desirable to make the wave functions mutu- ~

ally orthogonal. The orthogonalization integrals
are: (1s, 2s) = 0.0113; (1s, 3s) = 0.00365; (1s, 4s)
=0.000562; (2s, 3s) =0.0212; (2s, 4s) =0.00422;
and (3s, 4s) = 0.0506. Let us denote by P'
the functions after orthogonalization and nor-
malization (f(P')'dr=1). Then P'(2s) =P(2s)
—0.0113 P(1s); P'(3s) =P(3s) —0.0212 P(2s)
—0.00341 P(1s); and Po(4s) = 1.0013[P(4s)
—0.0505 P(3s) —0.00315P (2s) —0.000342 P(1s)].
The values of the nonorthogonal wave functions
x= (P/r) at the origin are: yi, (0)= 161.9; go, (0)
=45.17; xo, (0) =15.76; and x4.(0) =3.124. Be-
fore orthogonalization, [y4,(0)]'=9.76; after-
wards, [y4, '(0)]'=4.548. (That is, the value of
the nuclear magnetic moment would be smaller

by a factor of about two if the calculations were
made with the nonorthogonal wave functions. )

NUCLEAR MOMENT

The h. f.s. splitting of an s-state is given' by
D(s) = (8m/3)[(2I+1)/I]ppoP(0), where I is the
nuclear spin, po is the Bohr magneton, p is the
nuclear magnetic moment, and P(0) is the value
of the wave function (normalized so that
fPd r = 1) at the nucleus. We have' f(0)
= (1/4or)'*y(0), so that h(s) = (2/3) [(2I+1)/I]p
Xpop'(0). For K", I=3/2. Substituting numer-
ical values, we have, if g= (p/po) X1838,

(2/3) (8/3) (g/1838) (9.17 X 10 ")'4.548
0.015 =—

(0.528X10 ')'X19.662X10 "
Solving, g = 9496(s)[I/(2I+ 1)][1/go(0)]= 1.17.
That is, we obtain a nuclear magnetic moment
about three times as large as that found by
Fermi. This disagreement has its origin, of course,
in the fact that different eigenfunctions have

' D. R. Hartree, Proc. Roy. Soc. A143, 506 (1934).
7As usual, it has been assumed that it is unnecessary

to make the field self-consistent.' E. Fermi, Zeits. f. Physik 60, 322 (1930).' The value of the nuclear moment reported by us at the
Pittsburgh meeting of the Arn. Phys. Soc. was too small
by this factor 47l-, which had b8en omitted.

e =0.265
r P r P

0.000
.005
.010
.015
.020

.03

.04

.05

.06.07

.08

.09

.10

.12

.14

.16

.18

.20

.22

.24

.26

.28

.30

0.0000
.0142
.0257.0349
.0421

.0509

.0540

.0527

.0480
~ 0409
.0321
.0220
.0113

—.0108—.032 1—.0511—.0673—.0801—.0896—.0958—.0989—.0993—.0972

.35 —.0830

19.000
19.374
19.788
20.254
20.779

22.048
23.724
26.001

0.40 —0.0598
.45 —.0312
.50 —.0003
.55 + .0307
.60 + .0601

.7

.8
9

1.0
1.1
1.2

1.4
1.6
1.8
2.0
2, 2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0

.1105

.1465

.1679

.1761

.1734

.1623

.1226

.0699

.0119—.0470—.1040 '

—.1578
.2074—.2524—.2926—.3279
.3583
.3840—.4052—.4221

4.5 —.4476
5.0 —.4530
5.5 —.4430

6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5

10.0

11
12
13
14
15
16
17
18
19 .
20
21
22
23
24
25
26
27
28
29
30
31

-0.4220—,3937—.3609—.3264—.2916
.2578—.2261—.1967—.1700

.1246

.0896

.0634

.0443

.0305
,0209
.0138
.0095
.0063
.0042
.0028
.0018
.0012
.0008
.0005
.0003
.0002
.0001
.0001
.0000
.0000

0.1199
.1573
.1881
.2 139
.2358
.2547
.2712
.2857
.2988

.3206.3383

.3531

.3656

.3763

.3856

.3937.4008

.4071

.4128

.4179.4225
~4267
.4305
.4340
.4372
.4402
.4429
.4455
.4480
.4502

Certain details have been omitted by Fermi and Segre.
These we have tried to reconstruct as accurately as
possible."In the article by F. R S., the term "~s eigenfunctions"
is used. We interpret this to mean s eigenfunctions with
E=O. Such eigenfunctions, which were used earlier by
Fermi in his calculations of the Rydberg corrections, do
not differ much from the optical ones in the interior of
the atom.

been employed. Ke use a Hartree function;
Fermi and Segre use a one-electron function
based on the statistical method, which function
contains parameters to be determined from the
experimental term values.

Since the article of Fermi and Segre' is some-
what inaccessible, we shall indicate their pro-
cedure. "Let the Schrodinger radial function be
pP, where p is the normalization factor. Then
u= rP satisfies the differential equation (d'u/dr')

+ (8~'m/k') (8—e V)u= 0. The potential V is
found by the statistical method, and the equation
solved" for A=0 by the method of Wentzel-
Brillouin. One sets u=kR sin 0, where Ro(d8/dr
= 1. k may be determined by matching such a
solution with the power series development
about the origin.

To evaluate p, it is supposed that at a point
g a perturbation Xb(r —$) is introduced, where ),
is an arbitrary parameter and 8 is the Dirac
improper function. The first-order perturbation
energy is then DE=4 Xp uor($o). oAt the point P,
the value of I will not be changed, but there will
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be a phase change 60. If this were m, the number
of nodes would be different by unity. Therefore,
put AE = —(68/ir) (dE/dn) The. discontinuity
at f introduced by the perturbation into the
first derivative of the wave function is du'
= (8m'm/h')lou($) .Now u'= kR' sin 8+kR cos
8 && (d8/dr). Therefore

hu' = kR sin 86(R'/R) + (k/R sin 8)A(sin 8 cos 8)
= kR sin 86(R'/R) + (k/2R sin 8)h(sin 28)
= kRR' sin 86(1/R)+(k/R sin 8) cos 2868

provided that R' is not appreciably altered. "
Since hu = 0, we have (R+AR) sin (8+68)
=R sin 0, or AR = —8 cot 060. Accordingly,
2 (1/R) = (1/R) cot 868, and Au'=kR' cos 868
+(k/R sin 8) cos 2868. Now let us choose" the
point & so that 8= ir/2. Then" (68) r2

——

—(8vr' m/h')XR'. Substituting in the expression
for hE, we finally obtain p'= (2m/h'k')(dE/dn)
The value of k was determined for 15 atoms by
Amaldi and Fermi, "and correction factors with
respect to the formula P(0)= (1/sa')(Z/2Rh)
&&(dE/dn) were calculated for various values of
Z. For small Z, the factor is approximately unity.
If, then, we have a Rydberg series, we can
readily compute P(0) from the empirical value

"This will probably be the case, since R is the amplitude
of the oscillating function.

"This brings up the question as to whether the pro-
cedure is actually independent of the choice of (. Fermi
and Segre do not discuss the point.

'4 This is in agreement with formula (30), p. 152,
reference 5, for 8=7r/2, but we are unable to check the
general validity of this formula.

'"" Reference 30 (reference 5). Apparently, this work is
still unpublished.

of dE/dn, so that this formula is quite useful.
The calculations of Fermi and Segre seem to

us somewhat incomplete, however, since they
have not found a set of mutually orthogonal
single-electron wave functions. This is, appar-
ently, the principal reason for the disagreement
between our results and theirs, as may be seen
by a comparison of the nonorthogonal 4s
functions calculated by the two methods. The
sta, tistical method gives x4.2(0) =13.7; while the
Hartree method results in x4P(0) =9.76. The
agreement is, in our opinion, as good as is to be
expected.

We do not at present feel able to estimate how
accurate the results from the Hartree method
are. Experience to date seems to indicate that
the Hartree functions are fairly reliable, espe-
cially when applied to scattering problems. We
conclude that the value of the magnetic moment
found from the Hartree method is probably the
most accurate so far, but may be subject to
modification when better wave functions . are
known. Because of this uncertainty, we have not
calculated a value of the magnetic moment from
the splitting of the 'I'3/2 state, for even if agree-
ment with the value from the 'S~/2 state were
obtained, it might not be overly significant. "

Finally, our value of 1.2 nuclear magnetons is
not as abnormally low as that found by Millman,
Fox and Rabi, so that we do not consider that
there is any basis for regarding the structure of
the K" nucleus as exceptional.

"The 'P state is probably perturbed, according to
Fermi and Segre (reference 5, p. 141).


