
686 L. PAULING AND J. Y. BEACH

rather good considering the difference in the
methods. Fig. 5 shows a similar comparison be-
tween the radial charge density for (1s)(2p) 'P
and (1s)(2p) 'P as computed by Eckart' by the

. variational method and dZ—/dr for this state
from the self-consistent field calculations. The
agreement is again seep to be very gratifying. It is

interesting to note that the density for the singlet
state of Eckart agrees better with the present
values than does that for the triplet.

The authors wish to express their gratitude to
Dr. F. E. White for his kind assistance in connec-
tion with the drawing of the curves and with
some of the calculations.
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The van der Waals Interaction of Hydrogen Atoms
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The van der Waals interaction energy of two hydrogen atoms at large internuclear distances
is discussed by the use of a linear variation function. By including in the variation function, in

addition to the unperturbed wave function, 26 terms for the dipole-dipole interaction, 1.7 for
the dipole-quadrupole interaction, and 26 for the quadrupole-quadrupole interaction, the
interaction energy is evaluated as .
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in which p =Rjap, with R the internuclear distance. Some properties of the functions F,y„((,8, q),
which are orthogonal for the volume element (d&-sin Ododq, are discussed, and their usefulness
in atomic problems is pointed out.

INTRoDUcTIoN

A N approximate second-order perturbation
treatment of the inverse sixth power inter-

action energy of two hydrogen atoms a large
distance apart (corresponding to the so-called
dipole-dipole van der Waals attraction) was given
in 1930 by Eisenschitz and London. ' This treat-
ment led to the result W"= —e'2/cop', with

p= r,q /ae, (rye being the internuclear distance for

the two atoms), A being evaluated as 6.47. Ap-

plications of the variation method by Hasse' and

by Slater and Kirkwood' verified this result es-

sentially, the constant A being shown to be

equal to or greater than 6.4976.
As early as 1927 this problem had been at-

tacked by Wang, 4 using the method developed

by Epstein' for the treatment of the Stark effect.

' R. Fisenschitz and F. London, Zeits. f. Physik 60, 491
(1930).' H. R. Hasse, Proc. Camb. Phil. Soc. 27, 66 (1931).

' J. C. Slater and J, G. Kirkwood, Phys. Rev. 37, 682
(1931).

4 S. C. Wang, Physik. Zeits. 28, 663 (1927).
' P. S. Epstein, Phys. Rev, 28, 695 (1926).

Wang claimed to have obtained an exact solution;
it was, however, pointed out by Eisenschitz and
London that Wang's result is necessarily in error.
It, seemed to us possible that Wang's work might
have contained only a numerical error, and that
the method might actually be capable of giving
an exact solution. Because of the usefulness
which a method of exact solution of problems of
this sort would have, we thought it worth while

to study the problem thoroughly. We have found
that the method used by Wang does not give an
exact solution, ' but that it can be extended to
give as closely approximate a solution as is de-

sired. The results of the treatment are com-

municated in this paper.
A rough treatment of the dipole-quadrupole

and quadrupole-quadrupole interactions of two

hydrogen atoms has been published by Mar-

' Wang does not present the final steps in his calculation
in detail, but states that he set up a sixth degree secular
equation from which he obtained an accurate value for the
energy. We believe that the error in his treatment occurs
at this point.



VAN DE R KAALS I NTERACTION 687

genau. ' We have applied our method to obtain
reasonably accurate expressions for these inter-
actions also.

FORMULATION OF THE PROBLEM

In the wave equation for two hydrogen atoms
HP = WP let us put H =H2+H', H2 being the part
of the Hamiltonian corresponding to two isolated
hydrogen atoms and II' representing the interac-
tion of the two hydrogen atoms. In order to do
this we neglect the resonance phenomenon (which
is unimportant at large distances), taking as the
unperturbed wave function the product function
tI'ipp(A. 1) pipp(82); that is, we consider electron 1

to be attached to nucleus A and electron 2 to
nucleus B. We also write W= W'+ W" (W', the
first-order perturbation energy, being equal to
zero). We shall consider only the interaction of
two normal hydrogen atoms, so that 8" is equal
to —e2/a2. Making the substitutions $1——2rA1/a2
and $2

——2r112/a2, the wave equation becomes

HV =&4. (1)
28

in which X= —W"122/2e2.

The interaction II' is equal to

terms represent the dipole-quadrupole and
quadrupole-quadrupole interactions, respectively.
It can be easily shown that in the calculation of
the second-order perturbation energy the terms
can be considered separately, their contributions
being additive.

In the solution of the problem we shall make
use of the functions F„q„(f,8, 22) discussed in the
appendix. Each of these functions can be made
identical with a hydrogen-like wave function

(r, il1, 22) by choosing a suitable linear rela-
tion between r and $; the functions F„1„all con-
tain the same exponential function, in contra-
distinction to the functions $„1 . We have defined
&1 and p2 in such a way that F&pp ($1, 81, 221) and
F122 (f2, A, &p2) are identical with fioo (ri, 61, yi)
and $122 (r2, 82, p2), respectively; that is, the un-
perturbed wave function can be written as
Fioo ($1) Fmo ($2). We now apply the variation
method in treating. the perturbed wave equation,
using as the variation function a linear combina-
tion of the product functions F„,1,„, ($1, 81, 221)

F„,i,„, ((2, 82, q2), with arbitrary coefficients. It
can be seen that the second-order perturbation
energy for the perturbation function

II = —(28 /82) {a)1/2 cos 81 cos t92

+P)1)2' cos 2ii(3 cos' 02 —1)

+yfi $22(3 cos 81—1)(3 cos 62 —1)

s'/rA2 /sr —+111e'/r Am+ e'/r1 . 2

If R(= rAs) is large, this can be expanded' in in-
verse powers of R to give the expression

in which

n = (6) la22/SR2, g = (30)lg24/32R4,

+ } (3)

II' = (e'/R') (xix2+yiy2 28ls2)

+ (3/2) (e'/R') {ri's2 —r2'z,

+ (»ix2+2yiy2 3sis2) (si —s2) }

+ —,
2 (e'/R') {ri'r2' —5r2'si' —5ri-'s2'

15&1 22 +2(2 12 2+yly2+4sls2) }+ ' ' '
~ (2)

In this expression x&y&z& are Cartesian coordinates
of electron 1 relative to nucleus A, and xty2s2
those of electron 2 relative to nucleus 8, the z
axis for each being directed towards the other
nucleus. The first term represents the mutual
energy of two dipoles; this term alone is impor-
tant for large values of R. The second and third

"H. Margenau, Phys. Rev. 38, 747 (1931).

and y = (70) 'a2""/128R" (4)

is identical with that for the function of Eq. (2),
and, moreover, that to obtain the first-order
perturbed wave function and the second-order
perturbation energy, the variation function used
need contain, in addition to the unperturbed
part Fioo ($1) Fioo ((2), only the terms F,io ($1, 81)
F QQ ($2 82) (for the dipole-dipole term in u),
F., io ($1 4) F., 22 ((2, +2) (for the term in p), and
F., 22 ($1, 2ii) F., 22 (f2 62) (for the term in y).'

8 Oo application of the ordinary methods of perturbation
theory, it is seen that the first-order perturbed wave func-
tion for a normal hydrogen atom with perturbation func-
tion f(r)T(6, q), where T is a tesseral harmonic, has the
form %&100(r)+c (r) T(6, q), the perturbed part involving
the same tesseral harmonic as the perturbation function.
The statements in the text can be verified by an extensio~
of this argument.
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~;*@A~&d~2,

being equal to $P sin 8&dgzd6&dp& (with dr&

dtA'ering only in the subscripts) and the integrals
extending over the configuration space of the
system. It is to be noted that the volume element
dvidv2 is not such as to make the functions 4
mutually orthogonal. The integrals can be
evaluated with the help of the relations given in
the appendix. To obtain the second-order per-
turbation energy we need introduce the term in )
in the row and column corresponding to the wave
function for the unperturbed system only.

~
K;pp+X;p' —6;pX

~

= 0,
in which

@;*(Vi'+ (1le i) —
&

p

+qp'+(1/$p) —,')4 p—dr)drp)

K;p' = I;*(—(ap/2e')Ii') 4 adrgdr p,

For a linear variation functio'n P~a~C~ (where and
C t represents the product functions I'„,~,„,
($~, A, pp&) F„,q, „, ($p, Bp, ppp)) the secular equation
corresponding to the wave equation (1) is the
determinantal equation' T1

THE DIPQLE-DIPQLE INTERAcTIoN

The secular equation for the dipole-dipole interaction is

vl A] P]v2XgP2

100100
210210
210310
310210
310310
210410
410210
310410
410310
410410

—4x
320!

—16o.
—16'

8a
0
0
0
0
0

32m —16m —16m 8a
—8 2 2 0

2 —14 0 4
2 0 —14 4
0 4 4 —24
0 Q(10) 0 0
0 0 g (10) 0
0 0 0 2q(10}
0 0 0 2$(10)
0 0 0 . 0

0 0 0
0 0 0

i/(10) 0 0
0 Q(10) 0
0 0 2$(10)

—20 0 6
0 —20 0
6 0 —34
0 6 0
0 0 3q(10)

0
0
0
0

2 4 (10)
0
6

—34
3q(10)

0
0
0
0
0
0
0

3q(10)
31/(10)

—48

~ ~ =0, (6)

the rows and columns corresponding to the values of vi p, 2 shown at the left. We obtain successive
approximations to the solution of this equation by neglecting. rows and columns beyond the nth. This
process has been carried out for n= 2, 5, 10, 17 and 26. Some simpli6cation is achieved by combining
rows (and columns) with vq and vp interchanged, the corresponding functions having the same
coefficient. The results of the calculation are given in Table I, in terms of the constant A in the ex-

TABLE I. The di pole-dipo je
interaction constant A.

TABLE I I. The di pole-quadrupole
interaction constant B.

TABLE II I, The quadrupole-quad-
rupole interaction constant C.

Degree of
approx'.

Terms
included

Degree of
approx.

Terms
included

Degree of
approx.

Terms
included

2
5

10
17
26

vi~2, v2~2
3 3
4 4
5 5
6 6

6
6.4822
6.4984
6.49899
6.49903

2 v1~2, v2~3
5 3 4

10 4 5
17 5 6

115~ 7
124.10
124,386
124,399

2
5

10
17
26

«3 v (3
4
5 5
6 6
7 7

1063.1
1132.6
1134.35
1135.12
1135.21

pression W"= —Ae'/appP, with p=R/ap (A being equal to 3X/16n')
It is seen that the convergence is rapid, the 6nal value of A, 6.49903, being trustworthy to within

one unit in the last decimal place.

See, for example, L. Pauling and E. B. Wilson, Jr. , Introduction to Quantum Mechanics, with Applications to
Chemistry, McGraw-Hill Book Co. , 1935, Chap. VII.
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THE DIPOLE-QUADRUPOLE INTERACTION

The secular equation for the dipole-quadrupole interaction is

689

VI AI.PIP~gA2Pg

100100
210320
310320
210420
310420
410320
210520
410420
310520
410520

—4X
—192$(3}p

96/ (3)p
96v2p

—48V2p
0
0
0
0
0

—192/(3)p
—14

q (6)
0
0
0
0
0
0

96'(3)p

—24
0

2y (6}
2V (10)

0
0
0
0

96%2p —48v2p 0
Q(6) 0 0

0 2 Q (6) 2 Q(10)
—20 6 0

6 —34 0
0 0 —34

q(14) 0 0
0 3$(10) 3Q(6)
0 2Q(14) 0
0 0 0

0 0 0
0 0 0
0 0 0

q(14) 0 0
0 3$(10) 2Q(14)
0 3V(6) 0

—26 0 8
0 —48 0
8 0 —44
0 34 (14) 4V (10)

0
0
0
0
0
0
0

3q (14)
4g (10)

—62

~ ~ I
'

0 (7)

We have solved this equation approximately, the results being given in Table II in terms of the
constant 8 in the energy expression Be'jaopo. —

The error in the final value of 8 we estimate to be less than one unit in the last figure quoted.

THE QUADRUPOLE-QUADRUPOLE INTERACTION

The secular equation for the quadrupole-quadrupole interaction is

Pih&PlPgXgg„'

100100
320320
320420
420320
420420
320520
520320
420520
520420
520520

-4x 3456~
3456' —24
—576$(6)y 2Q(6)
—576/(6)y 2Q(6)

576' 0
0 0
0 0
0 0
0 0
0 0

—576/ (6)7
2~(6)

—34
0

3g(6)
2Q (14)

0
0
0
0

—576' (6)&
2 g(6)

0
—34

3q (6}
0

2q (14)
0
0
0

576'
0

3q(6)
3g(6)
—48

0
0

3 q(14)
3q (14}

0

0
0

2 g (14)
0
0

—44
0

4g (6)

0

0
0

2 Q (14)
0
0

—44
0

4q(6)
0

0
0
0
0

3q (14)
4q(6)

0
—62

0
4+(14)

0
0
0
0

3 q (14}
0

4g (6)
0

—62
4Q(14)

0
0
0
0
0
0
0

4$(14)
4V (14)

—80

~ ~ e 0 (8)

The results of the approximate solution of this equation, in terms of the constant C in the energy
expression —Ce'/aop", are given in Table III.

The final value, C= 1135.21, is reliable except for the last figure.

DISCUSSION OP RESULTS

We have thus found for the interaction energy of two normal hydrogen atoms at the large distance
R= pap the expression

6.49903 e' 124.399 e' 1135.2 1. e'
8'/' ~ ~ ~

app appS Cpp

It is interesting to note that the value A = 6.4976 found by Hasse for the dipole-dipole coefficient by
the use of a variation function Phoo (ri) Phoo (ro) II+IP(A+Brzro+CrPro+Dr&'r&') I is very close to
our value for v&=4, vo=4, which is based on a variation function involving all terms (unsymmetric
as well as symmetric) out to reer/ This indicat. es that the unsymmetric terms are of minor importance.

"We use here shortened symbols, such as F„,F„, for F„gpppg(gi, 8I,'ql. )F..), „.(pg, O2, q ..), etc.
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The approximate second-order perturbation energy Wo"= (II«')'/Wo', with Wo' ———e'/ao, leads to
the values A =6, 8=135, and C= 1417.5, the last two values being given by Margenau. It is seen
that the value of A is too low, and those of 8 and C are too high. This means that the dipole-dipole
interaction is due more to excited states with negative energy (less than e'/ao above the normal state
of the system of two hydrogen atoms) than to excited states with positive energy, whereas the dipole-
quadrupole and quadrupole-quadrupole interactions are due more to the latter than to the former
states.

As has been pointed out by earlier authors, the van der Waals forces are more important than ex-
change forces for values of 8 greater than about 7ao. At this distance the dipole-quadrupole force is
about one-half as large as the dipole-dipole force, and the quadrupole-quadrupole force is about
one-eighth as large, the dipole-dipole attraction becoming relatively still more important at large'r

distances. This van der Waals calculation, based on product wave functions, is not significant for
values of R much less than 7co because of neglect of the resonance phenomenon and because of failure
of the expansion given in Eq. (2).

While our treatment has not led to an exact solution of our problem, the use of the functions

F„q„($,8, y) has permitted the reasonably accurate approximate solution to be made with considerable
ease, and we feel that these functions may be found useful in the treatment of other problems of atomic
and molecular structure. "

The functions F,~„($, 8, q)

APPENDIX

with

I. being an associated Laguerre polynomial,

o .(a) = IL(2m+1)(X —p)!1/2(X+ p)!}:&~ ~(cos e),

P being an associated Legendre function, and

The functions are orthogonal and normalized for the weight function P sin 8, satisfying the equa-
tion

Qo Ã y2 7I'

F', y, ($, 8, y) F,y„($, 8, p) $ sin 8d ydrM) = 6, ,8z y8„„.
'0 0 O

F„q„($, 8, q) satisfies the differential equation

The following relations involving the A. s can be easily derived from the properties of the associated
Laguerre polynomials;

$A„g ———I(v —X)(v+X+1)}lA„„g ), +2vA„g —I(v+X)(v —X —1) }lA„g g.

PA.g = —}(v —X)(v+X+1)(v+X+2)(v+X+3)} 'A„~2, g+g

+2(2v —X) I(v+X+1)(v+X+2) }lA„+i g+g —6vI(v+X+1)(v —X —1) }~A„, g+g

+2(2v+'A) I(v —X —1)(v—X—2) }lA„,, )+g —}(v+X)(v—X —1)(v—X —2)(v —) —3) }lA, g, )+g.

"Addedin Proof: Professor J. H. Van Vleck has pointed out to us that the functions were used in the treatment of
dispersion by hydrogen-like atoms by B. Podolsky, Proc. Nat. Acad. Sci. 14, 253 (1928).
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g'A„l, = —{(1 —X) (0+) +1)(1+X+2)(1+X+3)(1+X+4)(1+Ii+5)}&A,+0, x+0

+2(31 —2X) {(1+X+1)(1+X+2}(v+X+3)(1+X+4)}*'A,+0, 1+0

—5(31 —)) ', (1 —X—1)(1+)+1)(1+X+2)(1+X+3)j lA„+1, l+0

+201 {(1+X+1)(1+X+2)(1—X—1)(v—X —2) j'*A,
, x+0

—5(31+X){(1+X+1)(v—X —1)(1 —X—2)(1 —X—3) }lA„1,l+0

+2(31+2K){(1—X—1)(1—ll —2)(1 —X—3)(1 —X—4) }lA. 0, l+0

—{(1+X)(1—ll —1)(1 —X —2)(P —X —3)(1 —X —4)(1 —X —5) }~A„0, g+0.

From these we obtain similar relations in the I' s. The following special cases are needed in evaluating
the matrix elements in Eqs. (6), (7) and (8):

$F100 ~2F000+2F100I

p Cos O'F100 = 2 It2F0M+442F010I

P(3 cos '+ —1)F100 = —24F400+244 (6)F000

The evaluation of the matrix elements

In order to illustrate the method of construction of the matrices in Eqs. (6), (7) and (8), we shall
evaluate some of the integrals. Let us 6rst consider the integral"

K VI'V2'VIV2 = F*VI'F*V2' {7'1 + 1/$1 4+7'0 + 1/$0 g j F VIFVVdrldrl

By using. the differential equation for F„1„($,8, l0), the equation becomes

X", v, "2"gv0= ~ F0vI'F*', '{—(ll —I)/$1 —(v0 —1)/(0}F.,Fv $1''$0' sin 81sin -80dtlddldrpldfpd80drp0

F*., 'F*.2'{ —(1"1—1)t0 —(1'V —1)$1}Fl'IFVV )1)0 sin 81 sm O0d(ld81d old)0d80dlp0

For Eq. (6) (Xl.=),0=1, pl= @0=0) this becomes

X vI I 9 I Iv'I ' F vI F v9 [(P 01) {(1I1 1)(P 1+)2} Fv]+1Fvg+ (P 11) 1 (1IQ 1)(1I0+2) j Pvl Fv2+1

2 (2 1I1P0 1I1 1I0)FvI Fvgt+ (10—1)I{(Pl+ 1)(112)Ij IFvI —1Fv0

+(1I1—1) {( +11I)0(1I0—2) j 'FVIFVV —1$)lt0 sin 81 sin 80dgld81dIpldb(B0dIp0,

and hence we obtain

all others being equal to zero.

X, vI+1, v, , vI, v, =(10 1}{(11 1)(11+2)j'I
3C vI, Iv+1, vI, vg = (111){I(lv0 1)(P0+2) j '*I

1, 0, i. 0=(~0—1){(~1+1)(~1—2)}*

iX vI, vg —1. vy, v0 = (1I1 1){(1I0+1)(PR 2) j

K vI, vg vI vv 2 (2 o1I1P1I1 Q) 1II
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In Eq. (7) we have

sc'...„=4 JF., *is., dh' cosd, (3 cos' 4, —1)t dh'1, sin 'csin ;dd0dddsdhddds
t

=p f ' ' ' Fnd*Frd*I48&2F210F420 —964 (3)F210F220 96V2F210F420

and hence
+192/ (3)Fo]0F220}$1/2 s111 81 s1n 82dI)1d81d0218$2d82d p2,

sic 22 11=192ns (3)P, ~'22 11———96/ (3)P, 24, 11= —96V2P,

and BC'&4, »=48&2P, all others being equal to zero.
To illustrate the evaluation of the integral 6 let us consider 611 11..

~11, 11 ' ' ' Flpp 1 Flpp 2 1 2 sin 1»»2d ldld +id 2d2~+2

F1QQ 1 Flpp 2 2F2pQ 1 F2pp 2 2V2F2pp 1 F10p 2 2&2F100 1 F2pQ 2

+4 F100(tl) F100($2) }$152»n &»l»2d$1d&1dd121dbd&2d 0'

or, making use of the orthogonality and normalization of the F's, 6&1, »=4.
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The Magnetic Moment of the K" Nucleus

J. J. GIHBQNs, JR. AND J. H. BARTLETT, JR., Department of Physics, University of Illinois

(Received March 16, 1935)

Starting with the K+ field given by Hartree, a 4s wave
function has been found by numerical integration. The
orthogonality correction diminishes the value of the wave
function at the origin by about one-third. The experimental
value of the hyperfine structure separation of the 'S normal
state is 0.015 cm '. From this is calculated a molecular

magnetic moment of 1 ~ 2 nuclear magnetons, as compared
with the value of 0.38 nuclear magnetons calculated by
Millman, Fox and Ra.bi on the basis of the modified
Goudsmit's formula. The disagreement seems to be due
chieAy to the possibility that the single electron wave
functions of Fermi and Segre are not mutually orthogonal.

HERE have recently been published two
independent determinations of the h.f.s.

separation of the normal state of the K" atom.
Jackson and Kuhn' have used a spectroscopic
method; Millman, Fox and Rabi' have relied on
the method of molecular beams. The numerical
agreement is good, and 0.015 cm ' may be taken
as the value of the separation.

From this, Millman, Fox and Rabi estimate
the value of the nuclear magnetic moment to be

' D. A. Jackson and H. Kuhn, Nature 134, 25 (1934);
Proc. Roy, Soc. A148, 335 (1935,'.

2 Millman, Fox and Rabi, Phys. Rev. 46, 320 (1934).
These authors were able to determine the spin as well as
the h. f.s. splitting,

0.38 nuclear magneton, using the semi-empirical
formula due to Goudsmit' and Fermi and
Segre. 4 ' Since previous cases of low magnetic
moments have been associated with isotopes of
even mass number, the above value seemed
somewhat anomalous, and we therefore thought
it of interest to ascertain whether or not the
"anomaly" could be removed by the use of a
Hartree wave function. This we now proceed to
investigate.

' S. Goudsmit, Phys. Rev. 43, 636 (1933).' E. Fermi and E. Segre, Zeits. f. Physik 82, 729 (1933).' E. Fermi and E.Segre, Memorie, R. Accademia d'Italia
4. 131 (1933),


