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Normalized one-electron wave functions and the corresponding fields and energy parameters
have been computed by the self-consistent field method for the following excited states of
helium: (1s)2, (1s}(2s), {1s)(2p), (2s)', {2p)' and (2s)(2p). The results have been compared
with those obtained by other methods arid with experimental values.

INTRoDUcTIoN

HE "self-consistent field" method of calcu-
lating atomic wave functions has been ap-

plied successfully to a number of atoms. So far
as the authors are aware the following constitutes
a reasonably complete list. 0+' to 0, Ne, Na+,
Si+4, Cl, K+, Cu+, Cs+ have all been computed
by D. R. Hartree and collaborators' with high
accuracy. He, Li and Li+, Be+, Be+'and Be,B 8+'
and 8+', F—and F, Ca+', C, N, Na and Hg have
been calculated with less emphasis on extreme
accuracy. ' Rather recently Si+' and Si+' have
been worked out approximately by H. L. Donley
at Brown University (at present unpublished).

The present paper contains the results of
similar calculations for certain excited states in
helium. Wave functions for some excited states
in helium-like atoms have already been obtained3

by the use of variational methods. Opportunity
is taken here to compare the results of the "self-
consistent field" calculations both as to wave
functions and energy parameters with those of
other methods.

METHOD OF THE CALCULATIONS

The method of the "self-consistent field" has
been described so often' and is now so familiar,

'See, for example, Hartree, Proc. Roy. Soc. A141, 282
(1933) for a good survey of the method and some results. '

Hartree and Black, Proc. Roy. Soc. A139, 311 (1'933};
Hartree, Proc. Roy. Soc. A143, 506 (1934);J. McDougall,
Proc. Roy. Soc. A136, 549 (1932); A138, 550 (1932).' Hartree, Proc. Camb. Phil. Soc. 24, 89 (1928); J. Har-
greaves, Proc. Camb. Phil. Soc.25, 75 (1929);F.W. Brown,
J. H. Bartlett and C. G. Dunn, Phys. Rev. 44, 296 (1933);
Hartree, Phys. Rev. 46, 738 (1934); C. C. Torrance, Phys.
Rev. 46, 388 (1934); E. H. Kennard and E. Ramberg,
Phys. Rev. 46, 1034 (1934).' See, for instance, C. Eckart, Phys. Rev. 36, 878 {1930);
J. P. Vinti, Phys. Rev. 3'7, 448 (1931);F. G. Fender and
J. P. Vinti, Phys. Rev. 46, 77 (1934).Also E. A. Hylleraas,
see reference 12.

4 e,g. , Hartree, Proc. Camb. Phil. Soc. 24, 89 {1928).

that it is unnecessary to redescribe it in detail
here. The limitations of the method have also
been amply dealt with elsewhere. ' We shall con-
tent ourselves with discussing brieHy the tech-
nique used in the application of the method in the
present calculations.

The states of helium investigated are: (1s)'
(already worked out by Hartree, but repeated
for the sake of completeness and to tabulate the
wave function using smaller intervals of (r),
(1s)(2s), (1s)(2p), (2s)', (2p)' and (2s)(2p).

The only important point in which the method
used in this paper differs from that recommended
by Hartree is that direct integration was used
throughout in preference to the so-called varia-
tion method* in obtaining the join of the inward
and outward integrations of the appropriate
Schrodinger equation. The extra work involved
in this procedure was probably compensated for
by the greater assurance of the elimination of
errors. In any case the labor involved is by no
means so great as might at first be thought. The
successive approximations to the self-consistent
field were in general made in each case by using
the final field of the previous approximation. An
important consideration is, of course, the assump-
tion of the initial field, i.e., the initial Z„(the
effective nuclear charge for potential. t Several
schemes have been investigated. The one gen-
erally followed may be brieHy summarized as
follows.

The wave function of He+ in the (1s) state was
first tabulated and the corresponding field calcu-
lated. This at once provided an approximate
initial Z~ for the (2s) electron in the singly ex-
cited (1s)(2s) state. From the distribution of

' J. C, Slater, Phys. Rev. 35, 210:(1929);V. Fock, Zeits.
f. Physik 61, 126 (1930).* Cf. Hartree, reference 4, p. 95.

t Cf. Hartree, reference 4, p. 115.
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FK'. 1. Plot of the normalized wave function P.

charge of the (2s) electron the initial Z„for the
2s electron in the, state (2s)' was computed.
Similarly the distribution of charge for the (1s)
electron in the (1s)(2s) state was used to com-
pute an initial Z„for the (2p) electron in (1s)(2p),
and the (2s)(2p) case was handled by starting
from (2s)' and the (2p)' case from (2s)(2p). The
number of successive approximations required to
attain self-consistency in these various cases
varied from two to nine.

An alternative method of estimating the initial
Z„holding out some promise of value consisted
in extrapolating the wave functions for the atoms
in the. second period of the natural system as
calculated by Brown, Bartlett and Dunn. ' If the
reciprocals of the positions of the maxima for the
(2s) wave functions from boron to neon as given

by them are plotted and extrapolated to beryl-
lium, a "stretch" factor may be obtained allow-

ing one to compute very simply the normalized
(2$) wave fililctioil foi' beryllium, wllicll lias iil
the normal state 2 (1s) electrons and 2 (2s)
electrons. The latter move in the field of a nucleus
of 4 positive charges and the 2 (1s) electrons.
Hence to a first approximation the field for large
r at least may be considered to be like that for
the (2s) electrons in helium. This choice proves
to be a rather satisfactory one as Fig. 1. shows.
This presents the plot of the normalized wave
function P corresponding to the assumption just .

indicated (curve I) compared with that obtained
by using the initial Z„from the method described. .

in the previous paragraph (curve II) and with
the final P function (curve III) for the (2s)'
state. In this case the alternative method yields
a rather better first approximation. '

REsUl. rs AND Dlscvssrow

The principal results of the calculations are
exhibited in Tables I, II, III and IV, presenting,

' In this connection it may be remarked that a study
was made of the use of the Fermi statistics as applied by
Baker (cf'. E. Fermi, Zeits. f. Physik 48, 73 (1928); E. B.
Baker, Phys. Rev. 36, 630 (1930))'to ions of any order.
This shoe ed that for the heavier atoms the values ob-
tained from Baker's table provide an excellent initial field
for Hartree calculations, In particular in the case of Si+4
the former values of Z„agree with those for the self-
consistent field to within a maximum deviation of 2 percent.

TABLE I. ¹rrnulized muve flnctiogs (P) for hetium.

(is)'
r (18)

0.00 0.0000
.05 .2152
.10 .8900
.15 .5808
.20 .6428

(») (2e)
(») (2s)

0.0000
.2540
.4597
.6240
.7580

0.0000
.0549
.0998
.1349
.1628

0.0000
.0767
.1882
.1864
.2228

(2~)(2u)
(2~) (2y)

0.0000 0.0000
.0701 .0028
.1265 .0089
.1705 .0190
,2088 .0822

0.0000
.0021
.0079
.0169
.0286

(18}
(»)

0.0000
.2556
.4626
.6279.7576

(2u)
(2u)

0.0000
.0007
.0025
.0055
.0098

3.4
3.6
8.8
4.0

.3 .7984

.4 .8858

.5 .9241

.6 .9296

.7 .9128

.8 .8798

.9 .8874
1.0 .7898

.6859

.5886
1.6 .4891
1.8,4054
2.0 .8881

.2718
2.4,2205
2.6 .1.780
2.8 .1431

.9254
1.0110
1.0858
1.0189
.9746
.9184
.8427
.7680

.6202

.4869

.8746

.2887

.2122

.1572

.1155

.0848

.0612

.1999

.2178

.2218

.2141

.1989

.1778

.1522

.1285

.0601—.0069—.0787—.1877—.1972—.2514—.2995—.8418—.8768

.2654

.2759

.2620

.2808

.1859

.1880

.0750

.0144

—.1065—.2184—.8155—.3958—.4576—.5084
'—.5845—.5528—.5608

.2429

.2526

.2408

.2118
,1719
.1242
.0720
.0174

—.0919—.1940—.2888—.8592—.4198—.4664—.5002—.5227—.5866

.0656

.1057

.1497

.1954

.2418
'2859
.8284
.8681

.4871

.4918

.5806

.5561

.5696

.5728

.5676

.5557

.5888

.0582

.0988

.1829

.1786

.2145

.2546

.2927

.8287

.8924
4440
.4886
.5117
.5298
.NSO
.5408
.5365

. .5272

. 8.0 .1147 .0442 —.4061 —.5590 —.5400
3.2 .0916 .0818 —.4296 —.5507 —.5378

.5180 .5140

.4946 .4978

.9804
1.0157
1.0396
1.0215
.9759
.9184
.8416
.7659

.6166

.4826

.8700

.2794.2084

.1MS

.1128

.0822

.0595

.0198

.0817

.0459

.0617

.0785

.0962

.1145

.1882

.1709

.2081

.2440

.2776

.8085

.8864.8609

.8821

.4000

4.8
5.2
5.6
6.0

6.8
7.6
8,4
92

10.0

12
14
16
18
20-

22
24
26
28

.0429

.0308
,4145
.4258

(»)s (1s)(28)
(») (») (2s)

.0729 .0228 —.4476

.0580 .0163 —.4606'.0460 .0116 —.4690.0864 .0082 —.4788

.0227 .0042 —.4718

.0140 .0021 —.4582

.0086 .0010 —.4869

.0053 .0005 —.4102

.0082 .00025 —.8801

.0012

.0004

.0001.0000

.0001 —.8162

.0000 —.2546—.1999—.1587—.1168

—.0548—.0248—.0104—.0048—.0017

.0007

.0008

.0001

.0000

(23)'-
(»)

(28)(2u)
(2s} (2y)

—.5868 —.NOQ—.5187 —.5178—.4976 —.5021
.4742 —.4887

.4695
,4484
,4168
.3904

—.4241—'.3729—.8286
—,2776—.2861

—.4419—.3967—.8511—.8078—.2668

.8890

.2918
2480

,2096
.1761

—.1669—.11N—.0782-—.0523—.0846

—.0117
—,0088—.0012—.0004—.0001

—.1958—.1898—.0981—.0677—.0462

—.0170—.0059—.0020—.0007—.0002

.1228

.0885

.0562

.0874

.0246

.0084

.0028

.0009

.0008

.0001

0000 —0000- 0000—.0000

(»)(2u)
(») (2y&

.0220 .4811

.0157 .4896

.0112 .4425

.0079 .4480

.4798

.4591

.4879

.4160

.0040 .4876

.0020 .4254

.0010 .4078

.0005 .8864'.00025 .3625

.8717

.8288

.2878

.2495

.2152

.1573

.1128

.0797

.0556

.0884

.0146

.0054

.0019

.0007

.0002

.0001 .8110

.0000 .25S6
.2119
.1699
.1842

.0706

.0851.0168

.0078.0085

.0001

.0000
.0016
.0007
.0008
.0001
.0001
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TABLE Ia. Values of Pjr'+' for small r,

0.00
.05
.10

(28) (2u)
(2y)

0.00000
.04583
.08721

(2u)'
(2p)

0.00000
.04143
.07884

(») (2y)
(2u)

0.00000
.01336
.02547

respectively, the normalized wave functions
(P values) for the various excited states, the
contributions to Z (the effective nuclear charge
for field intensity) of the various electrons, their
contributions to Z„,7 and finally the values of the
one-electron parameter e. The figures in the first
three tables are given to four decimal places, the
accuracy of the computations being such that
any error in I' may be expected not to exceed 2 in
the fourth place, and any error in Z or Z„,1 in
the fourth place. ' All values in the tables have
actually been found by straightforward calcula-
tion: none has been interpolated. In fact the
intervals used in the computation were in general
half the size of those given in the tables. Table
I(a) contains the values of P/r'+' for small r
in the case of the 2p electrons: these are of value
in starting the outward integration. Correspond-
ing values for the (1s) and (2s) states need not be
tabulated since they can be computed with suffi-

cient accuracy directly from I'.
It may be noted in passing that the values of

Z and Z„for (1s)' do not agree precisely with
those of Hartree (first paper in reference 2;
note that the values there quoted refer to the
two electrons and must be divided by 2 for com-
parison with those of the present paper). It
should be remarked that Hartree in the case of
helium limited the consistency between initial
and final fields to 2 in the third decimal place
which falls considerably short of the standard of
accuracy set in the present paper. Incidentally as
a check on the accuracy throughout the work,

fp drf „"P'/rdr has been calculated for each
electron. This gives Z„for r=0 which should be
unity for each electron. In the present work, it
does so in every case to within 5 in the fifth
decimal place.

' Strictly speaking these are unnecessary. Their utility,
however, dictates their inclusion here. Cf. Hartree, refer-
ence 1.' This means of course that the maximum error to be
expected in the total Z and Z„(not tabulated since they
are readily obtainable by summing the contributions of
the individual electrons) is 2 in the fourth decimal place.

The values of e in Table IV are given in general
to three decimals and may be assumed to be cor-
rect to that place: the extra place used in obtain-
ing them has been discarded. Those values listed
to four decimal places are expected to be in error
by no more than 2 in the last place and the error
for the (1s)(2s) and (1s)(2p) is probably con-
siderably less. Table IV also includes —2v0* and
values of e computed by other methods as men-
tioned in the Introduction. Comparison with
experimental results is rather difficult since the
latter are usually given in terms of the ionization
energy of the atom in a given state' while the
present values are one-electron energy param-
eters. These can of course be used in connection
with the wave functions to compute the total
atomic energy values (cf. Hartree and Black' ).
For (1s)', (2s)p and (2p)' this calculation can be
carried out approximately by assuming that ~

itself is a good approximation to the ionization
energy. The computed total energy for these
three states then appears as 5.836, 1.4606 and
1.3861, respectively. The experimental value is
known definitely only for the first and is 5.808.
Some evidence with respect to the second is at
hand in the recent experiments of Whiddington
and Priestley on energy losses in inelastic colli-
sions in helium. Their work indicates a loss of
59.25+0.12 volts in a single collision of an elec-
tron with a helium atom. Now the difference
between the total energy in the (1s)' state (5.808)
and that in the (2s)' state (1.4606) is 4.347, cor-
responding to 58.81 volts, which is very close to
Whiddington and Priestley's value, making it
seem likely that the transition corresponding to
their indicated energy loss is really (1s)P—(2s)P. If
the present calculations are at all correct it is
much more likely this than (1s)'—(2p)', al-

though the possibility is not excluded that it
may be (1s)'—(2s) (2p). Not until the total energy
for the (2s)(2p) is calculated can this point be
decided.

In the (1s)(2s) and (1s)(2p) states since the p

value for the (1s) in each case is much greater
numerically than that for the 2-quantum elec-
tron, we may expect that the removal of the

" Cf. Hartree, reference 4, p, 95.
8~ e.g. Bacher and Goudsmit, Atonsic Energy States.' R. Whiddington and H. Priestley, Proc. Roy. Soc.

A145. 462 (1934).
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TABLE II. Contribgtions to Z of the eariols ejectrons in heligrn.

0.00
.Q5
.10
.15
.20

,3

.5

.6

.7

.8
Q

1.0

1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.0
2.8

(»)'
(ls)

1.0000
99Q2.9944

,9836
.9662

,9131
.8414
.7590
.6726
.5875
.5071
.4332
.3670

.2579.1773

.1197

.0797

.0525

.0342

.Q221

.0142

.0091

,9989 .9999
.9922 .9996
.9772 . .9989
.9533 .9978

.9999

.9993

.9980

.9958

.8812

.7862.6806

.5744

.4?47.3854.3081.2432

.1467

.0854

.0484

.0269

.0146

.0079

.0042

.0022

.0011

.9945

.9900

.9853

.9804

.9761

.9725

.9698
~9679

.9661

.9659

.9655 .

.9632

.9575

.9473

.9321

.9114

.8856

.9897

.9823

.9749

.9688

.9644

.9618

.9607

.9605

.9598

.9542

.9397

.9141

.8774

.8310

.7768

.7175

.6554

(ls}(2s} (2s)~
(ls) (2s) (2s)

1.0000 1.0000 1.0000 1.0000.9999
.9994
.9983
.9965

.9914.9851

.9790

.9738

.9700.9679.9669.9667

.9662

.9619

.9502

.9293

.8987

.8592

.8123

.7598

.7037

1.0000
1.0000
1.0000
1.0000
1.0000

.9997
,9990
.9973
.9943
.9896
.9826.9731
.9610

.9311

.8876
,8349
.7755
.7117
.6461
.5807
.5173
.4571

(»)(2u)
(») (2p)

(2u)'
(21)

1.0000
1.0000
1.0000
1.0000
1.0000

0.9998.9992
.9979
.9955
.9918
.9863
;9787
.9691

.9429

.9077

.8644

.8147

.7603

.7030

.6446

.5865.5298-

1.0000
.9989
,9921
.9770
.9527

.8798

.7838

.6774

.5706
4704
.3810
.3038
.2392

.1434

.0831
,0468
.0258
.0140
.0075
.0039
.0021
.0011

1.0000
1.0000
1.QOQQ

1.0000
1.0000

1.0000
~9999
.9998
.9995
,9990
.9982
.9971.9956

.9909

.9837

.9735
,9598
.9426
.9218
.8S74
.8697.8391

(ls)(2S)
(is) (2u)

3.0
3.2
3.4
3.6
3.8
4.0

44
4.8
5.2
5.6
6.0

6.8
7.6
8.4
9.2

10.0

12
14
16
18
20
22

.0002

.0001
.5625
.4758
.3955
.3236
.2611

.1638.0985

.0573

.0323

.0178

.0037

.0007
0.0001
0.0000

(ls)s (ls) (2s)
(ls) (ls) (2s)

.0058 .0006 .8548

.0036 .0003 .8198

.0023 .0002 .7812

.0014 .0001 .7399

.0009 0.0000 .6966

.0006 ,6522

(2s)'
(»)

(»)(2u)
(2s) (2u)

.5923

.5309

.4717

.4159

.3642

.3170

.6457

.5875

.5304

.4754

.4234

.3747

.4011

.3496

.3030

.2611

.2240

.1913

.2361

.1725

.1240

.0878

.0615

.02S2

.0134

.0060

.0026

.0011

.2888

.2184

.1624

.11S1

.0862

.0437

.0214

.0102.0047

.0021

.1379

.0981

.0690

.0480

.0331

.0154

.0069

.0031

.OQ13

.0006

0001 0003 0 0001
0.0000 0.0000

(2V)'
(2u)

.4756

.4243

.3765

.3325.2922

.2558

.1937

.1447

.1068

.0780

.0564

.0288

.0143

.0069

.0033

.0015

~0002

(») (2n)
(») (2u)

.0005 .8059

.0003 .7705

.0001 ,7335

.0001 .6953
.6564
.6163

.5393
,4647
.3951
.3320
.2758

.1848

.1193

.0752

.0460

.0276

.0071

.0017

.0004

.0001

TAsLE III. Contributions to Z~ of the var~ous electronsin helilm.

.05

.10

.15

.20

.9161

.8344

.7564

.6832

.3
4

.5522

.4423
.5 '.3520
.6
,7
.8
Q

1.0

1.2
1,4
1.6
1.8
2.0
2.2
2.4
2.6
2,8

.2787

.2198

.1728

.1356.1061

.0647

.Q393

.0237

.0143

.0086

.0051

.0031

.0018.0011

(is)s
(ls)

0.00 1.0000

(2s)
(2s)

1.0000
.9850
.9702
.9556
.9413

.4849

.3667

.274Q

.2027

.1488
,1084
.0786
.0566

.0291

.0147

.0074
~0037
.0018
.0009
.0004
.0002
.0001

.9137

.8875

.8624

.8383

.8150

.7922

.7699

.7478

.7039

.6603

.6166

.5731

.5300

.4878

.4466

.4070
~3691

(ls)
(1.)

1.0000
.9013
.8057
.7154
.6314

(2s)
(2s's

1.0000
.9788
.9580
.9375
.9176

.8798
,8442
.8105
.7783
.7469
.7160
.6854
.6548

.5937

.5330

.4737

.4169

.3635

.3143

.2696

.2297.1945

1.0000
.9804
.9611
.9422
.9237

.8883

.8549

.8231

.7924

.7625

.733Q
. .7037
.6745

.6161

.5580

.5010

.4460

.3938

.3452

.3005

.2599.2236

1.0000
.9778
.9555.9333
.9110

.8666

.8223

.7783

.7348

.6918

.6498

.6087

.5688

.4933
,4241
.3617
.3064
.2579
.2159
.1799.1492
.1233

(»}(2~)
(2s) (2u)

(2u)'
(2y)

1.0000
.9795.95Sl
.9386.9182

.8773

.8366

.7960

.7559

.7162

.6772

.6390

.6018

~5306
.4646
.4041
.3495
.3007
.2575
.2196.1865
.1579

1.0000
.9007
.8046
.7138
.6295

.4824

.3640

.2713

.2002

.1465

.1065

.0770

.0553

.0282

.Q142

.0071
:OO35
,0017
.0008
.O004
.0002
.0001

1,0000
.9873
.9745.9618
9491

.9236

.8982

.8727

.8473

.8220

.7968

.7717.7467

.6973

.6489

.6017

.5561

.5121

.4700

.4300

.3921

.3569

(») (2u)

3,0
3.2
3.4,
3.6
3.8

4.4
4.8
5.2
5.6
6.0

6.8
7.6
8.4
9.2

10.D

12
14
16
18
20

.0006

.0004
,0002
.0001.0001
.0000

.00005 .3332
.2996
.2682
.2392.2126
.1882

.1462

.1122.

.0852

.0641

.0478

.0260

.0138

.0071.0036

.0018

.0003

.0001

.1638

.1372

.1144

.0950

.0786

.0648

.0437
,0291
,0192
.0126
.0082

.0034

.0014

.OQ06

.0003.0001

(ls)2 (ls)(2s) (2s}
(ls) (ls) (2s) (2s)s

(»)(2u)
(2s) (2y)

.1913 .1016

.1629 .0834.1381 .0683

.1167 .0558

.0982 .0454.0823 .0369

.0574 . ,0243.0395 .0158

.0271 .0103.0184 .0066

.0124 .0042

.0055 .0017

.0024 .0007

.0011 .0002

.0005 .0001.0002

.0000

(2u)'
(2y)

.1333

.1121

.0941

.0788

.0658

.0549

.0379

.0260
,0177
.0120
.0081

.0036

.0016
,0007
.0003
.0001

.0000

(»)(2u)
(ls) (2p)

,0000 .3232
.2921
.2634
.2369.2124
.1900

.1511

.1191

.0933

.0724

.0559

.Q327

.0187

.0105

.0058

.0032

.0007

.0001

(»)'

(ls) (2s)

(2s)'

(2u)'

(ls) (2y)

ELECTRON

(ls)

(2s)

(2s)

(2u)

(2u)

(2y)

3.374

3.972
0.600

0.785
0.890

0.818

3.SS5
0.510

s CALC.

3.469
D.3068

0.4606

0,4195
0.4443

0.3861

3.496
0.2522

e CALC. BY
OTHER METHOns

1.809a

& E. A. HyBeraas, Zeits. f. Physi 65, 20S (1930).
b F.Q. Fender and S. P. Vinti, Phys. Rev. 46, 78 (1934).

/ABLE IV. One-election. energy parameters. latter electron will not materially acct the wave
function of the (1s) electron and hence the
ionization energy to a fair approximation will be
equal to the (2s) or (2p) value of e. We can then
compare with the experimental values quoted by
Bacher and Goudsmit (reference Sa, p. 220).
They give 0.3506 for the (1s)(2s) '5 and 0.2921
for (1s)(2s) '5; the latter is in fair agreement with

our computed value. The experimental value for

(1s)(2p) '8 is 0.2665 and that for (1s)(2p) 'P is
0.2478; the latter again agrees fairly well with
our 0.2522. In each case the agreement appears to
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be better with the singlet than with the triplet
state. One might indeed expect that the self-
consistent field value would agree better with
some average of the singlet and triplet energies.
It must be emphasized again, however, that the
~ values are one-electron energy parameters only
and further discussion of this question must
await the calculation of the total energies of the
various states. These are now under way and will
be published shortly. It may be remarked that
Hylleraas" has recently computed by the general
method of his previous papers many discrete
energy levels for singly excited helium, such as
both the singlet and triplet terms of (1s)(2s) and
(1s)(2p). He neglects the effect of the excitation
on the inner electron. The agreement of his re-
sults with experiment is in general excellent.

j' E. A. Hylleraas, Zeits. f. Physik 83, 739 (1933).

In line with the procedure of some other
writers, curves are presented (Figs. 2 and 3)
exhibiting the radial charge density —dZ/dr as a
function of r for the individual electrons as well

as the completed group in the various states.
These are self-explanatory and need no comment.

A further comparison of the res'ults of the
present calculat1ons w1th those of other methods
is suggested in connection with the radial charge
density. Using a variational method Vinti' has
found an analytic wave function for the (1s)(2s)
'5 state. After the function has been suitably
normalized to unity the radial charge density for
the two electrons may be computed by multiply-
ing the integral 2fo 4srm'I gl'dr2 (a function of
r&= r) by 4~r'. The result is plotted in Fig. 4 and
compared with —dZ/dr for the corresponding
ease of the present paper. The agreement is
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rather good considering the difference in the
methods. Fig. 5 shows a similar comparison be-
tween the radial charge density for (1s)(2p) 'P
and (1s)(2p) 'P as computed by Eckart' by the

. variational method and dZ—/dr for this state
from the self-consistent field calculations. The
agreement is again seep to be very gratifying. It is

interesting to note that the density for the singlet
state of Eckart agrees better with the present
values than does that for the triplet.

The authors wish to express their gratitude to
Dr. F. E. White for his kind assistance in connec-
tion with the drawing of the curves and with
some of the calculations.
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The van der Waals Interaction of Hydrogen Atoms
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The van der Waals interaction energy of two hydrogen atoms at large internuclear distances
is discussed by the use of a linear variation function. By including in the variation function, in

addition to the unperturbed wave function, 26 terms for the dipole-dipole interaction, 1.7 for
the dipole-quadrupole interaction, and 26 for the quadrupole-quadrupole interaction, the
interaction energy is evaluated as .

6.49903 e'- 124.399 e' 1135~ 21 e'"
~ ~ ~

t
ap p app a p1P

in which p =Rjap, with R the internuclear distance. Some properties of the functions F,y„((,8, q),
which are orthogonal for the volume element (d&-sin Ododq, are discussed, and their usefulness
in atomic problems is pointed out.

INTRoDUcTIoN

A N approximate second-order perturbation
treatment of the inverse sixth power inter-

action energy of two hydrogen atoms a large
distance apart (corresponding to the so-called
dipole-dipole van der Waals attraction) was given
in 1930 by Eisenschitz and London. ' This treat-
ment led to the result W"= —e'2/cop', with

p= r,q /ae, (rye being the internuclear distance for

the two atoms), A being evaluated as 6.47. Ap-

plications of the variation method by Hasse' and

by Slater and Kirkwood' verified this result es-

sentially, the constant A being shown to be

equal to or greater than 6.4976.
As early as 1927 this problem had been at-

tacked by Wang, 4 using the method developed

by Epstein' for the treatment of the Stark effect.

' R. Fisenschitz and F. London, Zeits. f. Physik 60, 491
(1930).' H. R. Hasse, Proc. Camb. Phil. Soc. 27, 66 (1931).

' J. C. Slater and J, G. Kirkwood, Phys. Rev. 37, 682
(1931).

4 S. C. Wang, Physik. Zeits. 28, 663 (1927).
' P. S. Epstein, Phys. Rev, 28, 695 (1926).

Wang claimed to have obtained an exact solution;
it was, however, pointed out by Eisenschitz and
London that Wang's result is necessarily in error.
It, seemed to us possible that Wang's work might
have contained only a numerical error, and that
the method might actually be capable of giving
an exact solution. Because of the usefulness
which a method of exact solution of problems of
this sort would have, we thought it worth while

to study the problem thoroughly. We have found
that the method used by Wang does not give an
exact solution, ' but that it can be extended to
give as closely approximate a solution as is de-

sired. The results of the treatment are com-

municated in this paper.
A rough treatment of the dipole-quadrupole

and quadrupole-quadrupole interactions of two

hydrogen atoms has been published by Mar-

' Wang does not present the final steps in his calculation
in detail, but states that he set up a sixth degree secular
equation from which he obtained an accurate value for the
energy. We believe that the error in his treatment occurs
at this point.


