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Normalized one-electron wave functions and the corresponding fields and energy parameters
have been computed by the self-consistent field method for the following excited states of
helium: (1s)2, (1s)(2s), (1s)(2p), (25)2, (2p)? and (25)(2p). The results have been compared
with those obtained by other methods and with experimental values.

INTRODUCTION

HE “self-consistent field”’ method of calcu-
lating atomic wave functions has been ap-
plied successfully to a number of atoms. So far
as the authors are aware the following constitutes
a reaéonably complete list. O** to O, Ne, Nat,
Sit4, Cl—, K+, Cut, Cs* have all been computed
by D. R. Hartree and collaborators! with high
accuracy. He, Li and Lit, Bet, Be*? and Be, B, B+2
and B*3, F~and F, Ca*?, C, N, Na and Hg have
been calculated with less emphasis on extreme
accuracy.? Rather recently Si*? and Sit? have
been worked out approximately by H. L. Donley
at Brown University (at present unpublished).
The present paper contains the results of
similar calculations for certain excited statesin
helium. Wave functions for some excited states
in helium-like atoms have already been obtained?
by the use of variational methods. Opportunity
is taken here to compare the results of the ‘“‘self-
consistent field” calculations both as to wave
functions and energy parameters with those of
other methods.

METHOD OF THE CALCULATIONS

The method of the ‘‘self-consistent field”’ has
been described so oftent and is now so familiar,

1See, for example, Hartree, Proc. Roy. Soc. A141, 282
(1933) for a good survey of the method and some results:.
Hartree and Black, Proc. Roy. Soc. A139, 311 (1933);
Hartree, Proc. Roy. Soc. A143, 506 (1934); J. McDougall,
Proc. Roy. Soc. A136, 549 (1932); A138, 550 (1932).

2 Hartree, Proc. Camb. Phil. Soc. 24, 89 (1928); J. Har-
greaves, Proc. Camb. Phil. Soc. 25, 75 (1929); F. W. Brown,
J. H. Bartlett and C. G. Dunn, Phys. Rev. 44, 296 (1933);
Hartree, Phys. Rev. 46, 738 (1934); C. C. Torrance, Phys.
Rev. 46, 388 (1934); E. H. Kennard and E. Ramberg,
Phys. Rev. 46, 1034 (1934).

3 See, for instance, C. Eckart, Phys. Rev. 36, 878 (1930);
J. P. Vinti, Phys. Rev. 37, 448 (1931); F. G. Fender and
J. P. Vinti, Phys. Rev. 46, 77 (1934). Also E. A. Hylleraas,
see reference 12.

4e.g., Hartree, Proc. Camb. Phil. Soc. 24, 89 (1928).

that it is unnecessary to redescribe it in detail
here. The limitations of the method have also
been amply dealt with elsewhere.® We shall con-
tent ourselves with discussing briefly the tech-
nique used in the application of the method in the
present calculations.

The states of helium investigated are: (1s)?
(already worked out by Hartree, but repeated
for the sake of completeness and to tabulate the
wave function using smaller intervals of (7),
(15)(2s), (15)(2p), (25)%, (2p)* and (25)(2p).

The only important point in which the method
used in this paper differs from that recommended
by Hartree is that direct integration was used
throughout in preference to the so-called varia-
tion method* in obtaining the join of the inward
and outward integrations of the appropriate
Schrodinger equation. The extra work involved
in this procedure was probably compensated for
by the greater assurance of the elimination of
errors. In any case the labor involved is by no
means so great as might at first be thought. The
successive approximations to the self-consistent
field were in general made in each case by using
the final field of the previous approximation. An
important consideration is, of course, the assump-
tion of the initial field, i.e., the initial Z, (the
effective nuclear charge for potential.f Several
schemes have been investigated. The one gen-
erally followed may be briefly summarized as
follows. :

The wave function of He* in the (1s) state was
first tabulated and the corresponding field calcu-
lated. This at once provided an approximate
initial Z, for the (2s) electron in the singly ex-
cited (1s)(2s) state. From the distribution of

5 J. C. Slater, Phys. Rev. 35, 210:(1929); V. Fock, Zeits.
f. Physik 61, 126 (1930).

* Cf. Hartree, reference 4, p. 95.

t Cf. Hartree, reference 4, p. 115.
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FI1G. 1. Plot of the normalized wave function P.

charge of the (2s) electron the initial Z, for the
2s electron in the state (2s5)? was computed.
Similarly the distribution of charge for the (1s)
electron in the (1s)(2s) state was used to com-
pute an initial Z, for the (2p) electron in (1s)(2p),
and the (2s5)(2p) case was handled by starting
from (2s)? and the (2p)? case from (25)(2p). The
number of successive approximations required to
attain self-consistency in these various cases
varied from two to nine.

An alternative method of estimating the initial
Z, holding out some promise of value consisted
in extrapolating the wave functions for the atoms
in the second period of the natural system as
calculated by Brown, Bartlett and Dunn.? If the
reciprocals of the positions of the maxima for the
(2s) wave functions from boron to neon as given
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by them are plotted and extrapolated to beryl-
lium, a ‘“‘stretch’ factor may be obtained allow-
ing one to compute very simply the normalized
(2s) wave function for beryllium, which has in
the normal state 2 (1s) electrons and 2 (2s)
electrons. The latter move in the field of a nucleus
of 4 positive charges and the 2 (1s) electrons.
Hence to a first approximation the field for large
7 at least may be considered to be like that for
the (2s) electrons in helium. This choice proves
to be a rather satisfactory one as Fig. 1 shows.
This presents the plot of the normalized wave
function P corresponding to the assumption just .
indicated (curve I) compared with that obtained
by using the initial Z, from the method described
in the previous paragraph (curve IJ) and with
the final P function (curve III) for the (2s)?
state. In this case the alternative method yields
a rather better first approximation.®

ResuLTs AND DiscussioNn

The principal results of the calculations are
exhibited in Tables I, II, III and IV, presenting,

6 In this connection it may be remarked that a study
was made of the use of the Fermi statistics as applied by
Baker (cf. E. Fermi, Zeits. f. Physik 48, 73 (1928); E. B.
Baker, Phys. Rev. 36, 630 (1930)) to ions of any order.
This showed that for the heavier atoms the values ob-
tained from Baker's table provide an excellent initial field
for Hartree calculations. In particular in the case of Si*t
the former values of Z, agree with those for the self-
consistent field to within a maximum deviation of 2 percent.

TaBLE 1. Normalized wave functions (P) for helium.

(18)2 (18)(2s) (28)? (28)(2p) (2p)? (18)(2p) (1) (18)(2s) (28)2 (25)(2p) (2p)? (1s)(2p)
7 (18) (1s) (2s) (2s) (28) 2p)  @p  (1s)  (2p) r (1s) (1s) (2s) (2s) (2s) 2p)  @p) (1)  (2p)
0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 3.4  .0729 .0228 —.4476 —.5368 —.5300 4695 4793 .0220 4341
05 2152 2540 0549 0767  .0701 .0023 0021 .2556 .0007 | 3.6  .0580 .0163 —.4606 —.5187 —.5178 4434 4591 0157 4390
10 3900 4597 0993  .1382 1265 .0089 .0079 4626 .0025| 3.8 .0460 0116 —.4690 —.4976 —.5021 4168 4379 0112 .4425
15 5308 .6240  .1349  .1864  .1705 .0190 .0169 .6279 .0055 | 4.0  .0364 .0082 —.4733 —.4742 —.d4837 .3904 4160 .0079 .4430
20 .6428 7530 1628  .2228  .2038 .0322 .0286 .7576 .0093 .
. 44 0227 0042 —.4713 —.4241 —.4419 3390 3717 .0040 4376
3 7984 19254 1999 2654 .2429  .0656 .0582 9304 .0193 | 4.8 0140  .0021 —.4582 —.3729 —.3967 2913 .3283 .0020 .4254
4 8853 1.0110 2178  .2759  .2526 .1057 .0938 1.0157 .0317| 5.2  .0086 .0010 —.4369 —.3235 —.3511 2480 .2873 .001C .4078
5 9241 1.0358 2213 2620 2403 .1497 1329 1.0396 .0459 | 5.6 0053 .0005 —.4102 —.2776 —.3073 .2006 .2495 .0005 .3864
6 9296 1.0189 2141 2303 2118 .1954 .1736 1.0215 .0617| 6.0  .0032 .0002; —.3801 —.2361 —.2663 .1761 .2152 -.00025 .3625
79123 9746 1989  .1859 1719 2413 2145 9759 .0785
8 8798 9134 1778 1330 1242 2859 2545 9134 .0962 | 6.8 0012 .0001 —.3162 —.1669 —.1953 .1223 .1573 .0001 .3110
9 8374 8427 1522 0750 0720 3284 .2927 8416 .1145| 7.6 0004 0000 —.2546 —.1153 —.1398 .0835 .1128 .0000 .2596
1.0 7893 .7680 1235 0144 0174 3681 3287 .7659 .1332| 8.4 .0001 —.1999 —.0782. —.0981 .0562 .0797 2119
. 9.2 .0000 —.1537 —.0523 —.0677 .0374 0556 1699
1.2 6859 .6202 0601 —.1065 —.0019 .4371 3924 .6166 .1709 | 10.0 —.1163 —.0345 —.0462 .0246 .0384 1342
14 5836 .4869 —.0069 —.2184 —.1940 .4913 4440 .4826 .2081
1.6 4891 3746 —.0737 —.3155 —.2838 .5306 .4836 .3700 .2440 |12 —.0548 —.0117 —.0170 .0084 .0146 .0706
1.8 4054 2837 —.1377 —.3953 —.3592 .5561 5117 2794 2776 | 14 —.0243 —.0038 —.0059 .0028 .0054 0351
2.0 3331 2122 —.1972 —.4576 —.4198 .5606 .5298 .2084 3085 | 16 —.0104 —.0012 —.0020 .0009 .0019 0168
22 2718 1572 —.2514 —.5034 —.4664 .5728 5300 .1539 .3364 | 18 —.0043 —.0004 —.0007 .0003 .0007 .0078
2.4 2205 .1155 —.2005 '—.5345 —.5002 .5676 .5408 .1128 3609 | 20 —.0017 —.0001 —.0002 .0001 .0002 .0035
2.6  .1780 0843 —.3413 —.5528 —.5227 .5557 .5365 .0822 3821
2.8  .1431 0612 —.3768 —.5603 —.5355 .5388 .5272 .0595 .4000 | 22 0007 0000 ~--.0000; .0000 .0001 0016
24 .0003 ~.0000 0000 .0007
3.0 1147  .0442 —.4061 —.5590 —.5400 .5180 5140 0429 4145 |26 .0001 .0003
3.2 0916 .0318 —.4296 —.5507 —.5378 4946 .4978 .0308 .4258 %g .0000 .ggg}
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TaBLE Ia. Values of P/r** for small r.

(28)(2p) (2p)? (1s)(2p)

r (2p) (2p) (2p)
0.00 0.00000 0.00000 0.00000
.05 .04583 04143 01336
.10 08721 07884 02547

respectively, the normalized wave functions
(P values) for the various excited states, the
contributions to Z (the effective nuclear charge
for field intensity) of the various electrons, their
contributions to Z,,” and finally the values of the
one-electron parameter e. The figures in the first
three tables are given to four decimal places, the
accuracy of the computations being such that
any error in P may be expected not to exceed 2 in
the fourth place, and any error in Z or Z,, 1 in
the fourth place.® All values in the tables have
actually been found by straightforward calcula-
tion: none has been interpolated. In fact the
intervals used in the computation were in general
half the size of those given in the tables. Table
I(a) contains the values of P/r*! for small
in the case of the 2p electrons: these are of value
in starting the outward integration. Correspond-
ing values for the (1s) and (2s) states need not be
tabulated since they can be computed with suffi-
cient accuracy directly from P.

It may be noted in passing that the values of
Z and Z, for (15)? do not agree precisely with
those of Hartree (first paper in reference 2;
note that the values there quoted refer to the
two electrons and must be divided by 2 for com-
parison with those of the present paper). It
should be remarked that Hartree in the case of
helium limited the consistency between initial
and final fields to 2 in the third decimal place
which falls considerably short of the standard of
accuracy set in the present paper. Incidentally as
a check on the accuracy throughout the work,
Jo“dr[,”P*/rdr has been calculated for each
electron. This gives Z, for »=0 which should be
unity for each electron. In the present work, it
does so in every case to within 5 in the fifth
decimal place.

7 Strictly speaking these are unnecessary. Their utility,
however, dictates their inclusion here. Cf. Hartree, refer-
en&cgr%l‘is means of course that the maximum error to be
expected in the total Z and Z, (not tabulated since they

are readily obtainable by summing the contributions of
the individual electrons) is 2 in the fourth decimal place.
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The values of €in Table IV are given in general
to three decimals and may be assumed to be cor-
rect to that place: the extra place used in obtain-
ing them has been discarded. Those values listed
to four decimal places are expected to be in error
by no more than 2 in the last place and the error
for the (1s)(2s) and (1s)(2p) is probably con-
siderably less. Table IV also includes — 27,* and
values of € computed by other methods as men-
tioned in the Introduction. Comparison with
experimental results is rather difficult since the
latter are usually given in terms of the ionization
energy of the atom in a given state®* while the
present values are one-electron energy param-
eters. These can of course be used in connection
with the wave functions to compute the total
atomic energy values (cf. Hartree and Black?).
For (1s5)?%, (2s5)? and (2p)? this calculation can be
carried out approximately by assuming that e
itself is a good approximation to the ionization
energy. The computed total energy for these
three states then appears as 5.836, 1.4606 and
1.3861, respectively. The experimental value is
known definitely only for the first and is 5.808.
Some evidence with respect to the second is at
hand in the recent experiments of Whiddington
and Priestley? on energy losses in inelastic colli-
sions in helium. Their work indicates a loss of
59.254+0.12 volts in a single collision of an elec-
tron with a helium atom. Now the difference
between the total energy in the (15)? state (5.808)
and that in the (2s)? state (1.4606) is 4.347, cor-
responding to 58.81 volts, which is very close to
Whiddington and Priestley’s value, making it
seem likely that the transition corresponding to
their indicated energy loss is really (1s)2— (2s)2 If
the present calculations are at all correct it is
much more likely this' than (1s)2—(2p)?% al-
though the possibility is not excluded that it
may be (15)2— (2s5)(2p). Not until the total energy
for the (2s)(2p) is calculated can this point be
decided.

In the (15)(2s) and (1s)(2p) states since the ¢
value for the (1s) in each case is much greater
numerically than that for the 2-quantum elec-
tron, we may expect that the removal of the

* Cf. Hartree, reference 4, p. 95.

82 e.g. Bacher and Goudsmit, Atomic Energy States.

® R. Whiddington and H. Priestley, Proc. Roy. Soc.
A145. 462 (1934).
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TaBLE 11. Contributions to Z of the various electrons in helium.

(1s)2 (15)(2s) (28)2 (25)(2p) (2p)? (1s)(2p) (1s)2 (18)(2s) (25)2 (2s)(2p) (2p)? (1s)(2p)
r (1s) (1s)  (28)  (29) @2 2p @p (s @p | r (1s) (1s) (2 (29) (29 (2p)  (2p) (1) (2p)
0.00 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 10000 10000 1.0000| 3.0  .0058 .0006 .8548 .3923 .6457 4011 .4756 .0005 .8059
05 9992 9989 0999 9999 .9999 1.0000 10000 9989 10000 | 3.2  .0036 .0003 8198 5300 5875 3496 4243 0003 .7705
10 9944 9922 9996 .0993 0994 10000 1.0000 9921 1.0000| 3.4 0023 0002~ 7812 4717 5304 3030 .3765 .0001 .7335
15 9836 0772 9989 0980 .9983 1.0000 10000 9770 1.0000| 3.6  .0014 0001 7399 4150 4754 2611 3325 .000L .6053
20 9662 9533 9978 0958 .9965 1.0000 10000 9527 10000 | 3.8 0000 00000 6066 3642 4234 2240 2922 6564
40 10006 6522 3170 3747 1913 2558 6163
3 0131 8812 9945 0807 9914 9007 0.9998 .8798 1.0000
4 sa14 7862 9900 9823 9851 9990 9902 7838 9999 | 4.4  .0002 5625 2361 2888 1379 1937 5393
5 7500 6806 9853 9749 9790 9973 9979 6774 .9998 | 4.8  .0001 AT38 1725 2184 0981 1447 4647
6 6726 5744 9804 9688 .9738 9043 9955 5706 .9995 | 52 3055 11240 1624 .0690 .1068 3951
7 5875 4747 9761 9644 9700 9896 9918 4704 9990 | 5.6 3236 0878 1101 0480 0780 3320
8 5071 3854 9725 9618 0679 0826 9863 .3810 .9982 | 6.0 2611 0615 0862 0331 .0564 2758
9 4332 3081 9698 9607 .9660 .073L 9787 3038 9071
10 3670 2432 9679 9605 9667 .9610 9691 .2392 9956 6.8 1638 0202 .0437 0154 0288 1848
76 0085 0134 .0214 0069 .0143 1193
12 2579 1467 9661 9508 9662 9311 .9420 1434 9909 | 84 0573 0080 0102 0031  .0069 0752
14 1713 0854 9659 9542 9610 8876 9077 0831 .9837| 902 0323 10026 0047 0013 .0033 10460
16 1197 0484 9655 9307 9502 8349 8644 0468 9735|100 0178 001l 0021 0006 .00i5 10276
18 0797 0260 9632 9141 9203 7755 8147 0258 .0508
20 0525 0146 0575 8774 8987 7117 7603 0140 .9426 | 12 0037 0001 0003 0.0001 .0002 0071
22 0342 0079 9473 8310 8502 .6461 7030 0075 9218 | 14 10007 0.0000 0.0000 0017
24 0221 0042 9321 7768 8123 5807 6446 .0030 8974 | 16 0.0001 10004
25 0182 0022 9114 7175 7598 5173 5865 0021 8697 | 18 0.0000 10001
28 0091 00 886 6554 7087 45T 508 0011 8391 20
TaBLE II1. Contributions to Z, of the various electrons in helium.
(1s)? (1s)(29) (28) (25)(2p) (2p)? (1)(2p) (192 (1s)(2s) (28) (25)(2p) (2p)? (15)(2p)
r (1s) (1s)  (29) @22 (23  (@2p)  (2p) (1) (2p) r (18) (1) (29) (25)2  (25) (2p) (2p) (19 (@2p)
0.00 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 10000 1.0000 1.0000| 3.0  .0006 .0000s .3332 .1638 .1913 .1016 .1333 .0000 .3232
05 9161 9013 .9850 9788 9804 9778 9795 9007 9873 | 32 0004 2096 1372 .1620 0834 .1121 2001
0 8344 8057 9702 9580 9611 9555 0501 8046 9745 | 34 0002 9682 1144 1381 0683 0041 2634
15 7564 7154 9556 9375 9422 9333 9386 7138 9618 | 3.6  .0001 2392 0950 1167 .0558 .0788 2369
20 6832 6314 9413 9176 9237 9110 9182 6205 .9401| 38 0001 21% 0785 0982 0454 .0658 2124
40 10000 1882 0648 0823 0369 .0549 1900
3 5522 4849 9137 8798 8883 .8066 .8773 4824 9236
4 4423 3667 8875 8442 8540 8223 8366 3640 .8082 | 4.4 1462 0437 0574 0243 0379 1511
5 3520 2740 8624 8105 .8231 7783 7960 2713 8727 | 43 1122 0291 .0395 0158  .0260 1191
® 2787 2037 8383 7783 7924 7348 7550 2002 8473 | 5.2 0852 0192 0271 0103 0177 10033
7 2108 1488 8150 7469 7625 6018 7162 .1465 8220 | 5.6 0641 0126 .0184 .0066 .0120 0724
8 1728 1084 7922 7160 7330 6498 6772 .1065 .7968 | 6.0 0478 0082 0124 0042 .0081 10559
9 1356 0786 .7699 .685¢ 7037 .6087 .6390 0770 7717
10 1061 0566 .7478 6548 6745 .5688 .6018 .0553 .7467 | 6.8 0260 0034 0055 .0017 .0036 0327
7.6 0138 0014 0024 0007 .0016 0187
12 0647 0201 7030 5037 6161 .4933 .5306 .0282 .6073 | 84 0071 0006 0011 .0002 .0007 0105
14 0393 0147 6603 5330 5580 4241 4646 0142 6480 | 02 0036 0003~ .0005 .0001 .0003 10058
16 0237 0074 6166 4737 5010 3617 4041 0071 6017 | 10.0 0018 0001 0002 10001 10032
18 0143 0037 5731 4169 4460 .3064 .3495 .0035 5561
20 0086 0018 5300 3635 3938 2579 .3007 .0017 512112 0003 0000 0000 0007
22 0051 0009 4878 3143 3452 2159 2575 .0008 .4700 | 14 10001~ 10001
24 0031 0004 4466 2606 3005 .1799 2196  .0004 4300 |16
26 0018 0002 4070 2297 2509 .1492 1865 .0002 .3921 | 18
28 L0011 0001 .3691 1945 2236 .1233 .1579 .0001 3560 |20
TABLE IV. One-electron. energy paramelers. latter electron will not materially affect the wave
function of the (1s) electron and hence the
€ CALC. BY . . . . . . .
Srate ELECTRON —21 ecarc.  ommmmsmiops  ionization energy to a fair approximation will be
(192 (19) 3374 1.836 1809 equal to the (2s) or (2p) value of e. We can then
(1)@ {gg 8072 3480, compare with the experimental values quoted by
m . 220).
(29 o 0.950 04606 . Bacher'and Goudsmit (reference 8a, p. 220)
29 0785 04105 They give 0.3506 for the (1s)(2s) 3S and 0.2921
28)(2 { Coor g .« . . .
@)0p) (2p) 0.890 0.4443 for (15)(2s) 1S; the latter is in fair agreement with
@p)? @) 0.818 0.5881 our computed value. The experimental value for
(15)(2p) (& byitd e (15)(2p) *P is 0.2665 and that for (1s)(2p) 'P is

s, A, Hylleraas, Zeits. f. Physik 65, 209 (1930).

b F, G. Fender and J. P, Vinti, Phys. Rev. 46, 78 (1934).

0.2478; the latter again agrees fairly well with
our 0.2522. In each case the agreement appears to
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be better with the singlet than with the triplet
state. One might indeed expect that the self-
consistent field value would agree better with
some average of the singlet and triplet energies.
It must be emphasized again, however, that the
¢ values are one-electron energy parameters only
and further discussion of this question must
await the calculation of the fofal energies of the
various states. These are now under way and will
be published shortly. It may be remarked that
Hylleraas'® has recently computed by the general
method of his previous papers many discrete
energy levels for singly excited helium, such as
both the singlet and triplet terms of (1s)(2s) and
(15)(2p). He neglects the effect of the excitation
on the inner electron. The agreement of his re-
sults with experiment is in general excellent.

1 E. A. Hylleraas, Zeits. f. Physik 83, 739 (1933).
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F1G. 4. Total radial charge density for He(1s)(2s). Solid
line, Vinti; dotted line, present paper.

F16. 5. Total radial charge density for He(1s)(2p). Solid
line, present paper; dotted line, Eckart (1s)(2p)%; dash
line, Eckart (15)(2p)'p.

In line with the procedure of some other
writers, curves are presented (Figs. 2 and 3)
exhibiting the radial charge density —dZ/dr as a
function of 7 for the individual electrons as well
as the completed group in the various states.
These are self-explanatory and need no comment.

A further comparison of the results of - the
present calculations with those of other methods
is suggested in connection with the radial charge
density. Using a variational method Vinti® has
found an analytic wave function for the (1s)(2s)
1S state. After the function has been suitably
normalized to unity the radial charge density for
the two electrons may be computed by multiply-
ing the integral 2472 |¢|%dr. (a function of
r1=r) by 4n#2. The result is plotted in Fig. 4 and
compared with —dZ/dr for the corresponding
case of the present paper. The agreement is
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rather good considering the difference in the
methods. Fig. 5 shows a similar comparison be-
tween the radial charge density for (1s)(2p) P
and (15)(2p) *P as computed by Eckart® by the
variational method and —dZ/dr for this state
from the self-consistent field calculations. The
agreement is again seen to be very gratifying. It is

PAULING AND 7J.

Y. BEACH

interesting to note that the density for the singlet
state of Eckart agrees better with the present
values than does that for the triplet.

The authors wish to express their gratitude to
Dr. F. E. White for his kind assistance in connec-
tion with the drawing of the curves and with
some of the calculations.
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The van der Waals Interaction of Hydrogen Atoms

Linus PAuLING AND J. Y. BEACH, Gales Chemical Laboratory, California Institute of Technology
(Received March 18, 1935)

The van der Waals interaction energy of two hydrogen atoms at large internuclear distances
is discussed by the use of a linear variation function. By including in the variation function, in
addition to the unperturbed wave function, 26 terms for the dipole-dipole interaction, 17 for
the dipole-quadrupole interaction, and 26 for the quadrupole-quadrupole interaction, the

interaction energy is evaluated as

W' =

6.49903 ¢* 124.399 ¢* 1135.21 ¢?

ag pb

ao p?

.y
@y pl0

in which p = R/a,, with R the internuclear distance. Some properties of the functions F\.(%, 9, ¢),
which are orthogonal for the volume element £d# sin 0d6d ¢, are discussed, and their usefulness

in atomic problems is pointed out.

INTRODUCTION

N approximate second-order perturbation
treatment of the inverse sixth power inter-
action energy of two hydrogen atoms a large
distance apart (corresponding to the so-called
dipole-dipole van der Waals attraction) was given
in 1930 by Eisenschitz and London.! This treat-
ment led to the result W'= —e? A /app®, with
p=748/a (r45 being the internuclear distance for
the two atoms), 4 being evaluated as 6.47. Ap-
plications of the variation method by Hassé® and
by Slater and Kirkwood?® verified this result es-
sentially, the constant A4 being shown to be
equal to or greater than 6.4976.
As early as 1927 this problem had been at-
tacked by Wang,* using the method developed
by Epstein® for the treatment of the Stark effect.
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Wang claimed to have obtained an exact solution;
it was, however, pointed out by Eisenschitz and
London that Wang’s result is necessarily in error.
It seemed to us possible that Wang’s work might
have contained only a numerical error, and that
the method might actually be capable of giving
an exact solution. Because of the usefulness
which a method of exact solution of problems of
this sort would have, we thought it worth while
to study the problem thoroughly. We have found
that the method used by Wang does not give an
exact solution,® but that it can be extended to
give as closely approximate a solution as is de-
sired. The results of the treatment are com-
municated in this paper.

A rough treatment of the dipole-quadrupole
and quadrupole-quadrupole interactions of two
hydrogen atoms has been published by Mar-

8 Wang does not present the final steps in his calculation
in detail, but states that he set up a sixth degree secular
equation from which he obtained an accurate value for the
energy. We believe that the error in bis treatment occurs
at this point.



