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The Normal Helium Atom
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A least-squares criterion for the goodness of approximate wave functions is proposed. The
root-mean-square energy deviation for the six-term Hylleraas function is calculated to be
3.5 volts. It is shown that no ascending power series in the variables rj, r2 and r~2 can be a
formal solution of the Schrodinger equation.

HE problem of determining the Schrodinger
eigerifunction and eigenvalue for the lowest

state of helium is one of fundamental importance
to the theory of atomic structure; if it were

solved, we should know whether or not the pres-
ent formulation of the nonrelativistic many-body
problem - is correct. The subject has received the
attention of several writers, notably Slater, '
Kellner' and Hylleraas. ' 4 ' Slater, by numerical

methods, arrived at an eigenvalue for the atom
and a charge density for an s-electron, but did

not represent the wave function analytically;
Kellner and Hylleraas used the Ritz variational
procedure, in which one guesses at the form of the
eigenfunction P and allows certain parameters to
vary so as to minimize the integral fPIIPdr.
The latest work on this by Hylleraas' resulted in

an approximate eigenvalue lower than the ex-
perimental term value by an amount which could
be attributed to relativistic effects.

The Ritz method results in an upper bound to
the true eigenvalue; a lower bound has been
sought by Weinstein' ' and MacDonald. ' Since
their methods seem somewhat difficult to justify
rigorously, we shall in the present paper try to
show how a least-squares method can aid one in

judging the relative merits of different approxi-
mate wave functions. ln addition, .we propose to
prove that no eigenfunction of the Hylleraas
type can be even a formal solution of the wave
equation.

The method of least squares suggested by
Boussinesq' consists in adjusting the constants in
an approximating function P so as to make the
integral I= f tLH E)P]'—dr as small as possible. "'
Let us set (H E)P= ef,—where e will in general
be a function of x, y and z. For any approximate
eigenvalue E, e(x, y, s) is an indication of how well

the wave equation is satisfied, at any point. The
integral I=f/''dr may then be looked upon as
a mean square energy deviation. "We shall calcu-
late its value, using an eigenfunction due to
Hylleraas.

For convenience in computation, the final

eigenfunction given by Hylleraas in reference 4
will be used. A further refinement was made in

. reference 5, but the value of E was lowered by
only 0.013 volt, so presumably the value of I
would not be inHuenced much by such a change.

The wave function is, then, P= p(ks, kt, ku),
where

p(s, t, u) =e '~'[co+C,Q+C5Q +C3$+C4S +C2P j.
The variables are s= rl+r2, t= —rl+r2 and
u= rl2, the constants are co= 1, cl= 0.0972,
c2= 0.0097, c3= —0.0277, @4=0.0025, c5
= —0.0024, and k= (I /23') = 0.9089645.

Since it is purely a routine matter to apply II
to this wave function and to calculate f(H&)'dr,
we shall give only the result. The value of this
integral is 2.1115. lf I be minimized" with re-

spect to E, then E= fPHPdr, and I= f(HQ)'dr
E'. The constants in —P may now be varied to
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» One could, alternatively, weight the square of the
deviation ~P to emphasize regions where the eigenfunction
is large.

"This fixes the relation between B and the constants
cp' ' 'c5. Up to th&s plaint Z can be assumed as independent
of t:hc constants,
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make either Z or I a minimum. (One would in

general expect that E and I do not take on
minimum values simultaneously, since the wave
function used is only an approximate one. ) We
shall suppose it is 8 that is made a minimum. The
value given by Hylleraas is E= —1.45162 Rk, so
that I=0.0043. It follows that I'=0.065 Rh,
corresponding to about 3.5 electron volts. This
root-mean-square deviation would vanish if the
wave function were actually a solution of the
differential equation.

One cannot, however, necessarily assert that
the true eigenvalue lies about 3.5 electron volts
below that calculated by Hylleraas. The r.m. s.
deviation may be viewed simply as a measure of
the goodness of the approximate wave function
used. That is, if two different approximate func-
tions should give the same value of E, then one
would suppose that function with the smallest
r.m.s. deviation to be the better of the two.

Since the actual deviation for some regions of
space will in general be larger than the r.m. s.
deviation, it seems to us that the above value of
3.5 electron volts is not small. It can be easily
verified, in fact, that the deviation becomes
infinite at any of the singularities, r& 0, r2=0, ——
or r»=0. The eigenfunction is thus probably
very badly in error in the general neighborhood
of any of these points. This prompts an investi-

gation of the relationship of the function to the
differential equation. It might seem that matters
would be improved by using a power series in-

stead of a polynomial (times an exponential fac-

tor). We shall now prove that no series in ascend-

ing powers of r&, r2 and r~2 can be a formal solution

of the wave equation.
For convenience, put x=r&, y=r2 and s=r&~.

the wave equation is then:

0 *.+ (2/~) 0*+0.v+ (2/3) 4 9+24 "+(4/s) 4 *

+ t (~'-X'+s')/»j4*'+lb" —~'+ )s/ yj4s'-

+L(l /4)+(I/~)+(I/y) —(I/2s) j|t =o.

If we expand, /= Pc~„„x'y"s", substitute, and
0

equate coefficients of powers, we find the recur-
sion formula,

(3+2)(I+3+n)cg~2.

+(m+2)(m+3+n)c(„+g, „
+(n+ 2) (2m+ 6+&+m) c~ „„+2
—(I+2)(n+2)c(+2 „.„+,
—(m+2)(n+2)c~ 2 „+& „+&+(X/4)c& „

1+el+1, m, n+CL, m+1, n gcl, m, n+1 = 0.

Substitution of various sets of values of l, ns, and
n will result in specific relationships enabling us
to determine the c~ „'s. We list a few as follows:

1) I=2) 6 = 1; cyp] =0)

l = —1, m =0, n = 0
& 2cxoo+cooo = 0&

l=1, vs=0, n= —1) 5c],0]. 2c100

Assuming that cooq= 1, we thus obtain on the one
hand cool= 0 and on the other c»,———(I/20). The
fact that at least two inconsistent values of the
same coefficient may be obtained means that the
power series in question will not satisfy the differ-

ential equation, even formally.
In our opinion, the fact that a minimum value

of 8 exists for functions of the Hylleraas type
does not shut out the possibility that appreciably
lower values of 8 may result from a use of func-

tions which come closer to satisfying the differ-

ential equation. To improve the existing situation
one may either construct functions with lower

values of 8 and I, or else look for exact solutions.

Attempts along the latter line are now being

made. It turns out to be rather easy to find formal

solutions, and whatever difficulties there are

come in with the imposition of the boundary

conditions.


