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A theoretical investigation is given of the Zeenian efkct
in molecular states intermediate between Hund's case b'

and case d'„which are the limiting cases for small and large
L;uncoupling, respectively. Zeeman patterns for the 3d
and 4d complexes of the helium molecule are calculated
and curves obtained for the variation of overall widths with
E which are compared with experiment. For small X the
energies are near the case b' curves, but as X increases a
breaking away occurs which results in. their approaching

the case d' curves. When the state in the limiting case d'

has the electronic angular momentum quantized anti-
parallel to the nuclear rotation, a crossing over of the
magnetic energy curves takes place with the passage
through a state in which the molecule is relatively insensi-
tive to the 6eld. This crossing over occurs between X equal
to 4 and 8 for the 5 states of the helium molecule consid-
ered (magnetic field 30,000 gauss), A crossing over which
occurs in one of the II states is discussed.

HE experimental work of Millis' on the
Zeeman eRect in ortho-helium bands has

shown that a wide variety of patterns is ob-
tainable of a shape intermediate between the
shapes of those patterns predicted by Hund's

limiting cases for a molecule with electrons
having orbital angular momentum. In Hund's

case b' the angular momentum vector L, is

tightly coupled to the axis of 6gure connecting
the nuclei; its component along that axis is
quantized and can be designated by the quantum
number A. On the other hand in case d' the
coupling forces between I. and the axis of figure
are negligible; A no longer has meaning as a
quantum number. It is now the mechanical

angular momentum of the revolving nuclei which

is quantized and to which can be assigned, the
quantum number R. In both cases, spin being

absent, X represents the quantum number for
the total angular momentum of the molecule.

The phenomenon of the passage from case b' to
case d' as the rotation of the molecule increases

is closely related to A-doubling and is called I.-
uncoupling. It has been treated by Hill and Van

Vleck, Kronig, Van Vleck, Dieke, Kronig and

Fujioka and others. ' The effect of an external
magnetic field has been discussed for the two

limiting cases by many authors. 3 In the inter-

mediate case the effective magnetic moment of

» Millis, Phys. Rev. 3'T, 1005 (1931); 38, 1146 (1931).
See also Crawford, Rev. Mod. Phys. 6, 112 (1934).

2 Hill and Van Vleck, Phys. Rev. 32, 267 (1928);Kronig,
Zeits. f. Physik 50, 347 (1928); Van Vleck, Phys. Rev. 33,
467 (1929); Dieke, Zeits. f. Physik SV, 71 (1929); Kronig
and Fujioka, Zeits. f. Physik 63, 168 (1930); Fujioka,
Zeits. f. Physik 63, 175 (1930).

'For a general discussion see the article by Crawford,
reference 1.

the molecule varies with E', because of the
uncoupling, in a way that causes the patterns to
depart from both of the limiting shapes. It is
the purpose of this paper to present a theoretical
investigation of this subject.

THE PERTURBATION FUNCTION

Ke shall start with case b' as the unperturbed
system and neglect all the eRects of the spin. In
the bands examined by Millis the spin is unre-
solved and it is quite satisfactory to regard the
triplet systems as singlets. This merely means
that at quite low fields the Paschen-Back effect
becomes total in all the triplet states and there-
fore the selection rule hM, =0 is rigorously
obeyed. The patterns fall on top of each other
since the term positions are built up around 0
and +2hv„ for all such triplets.

Our perturbation function is the sum of two
parts. 4 The 6rst part, II», is that due to the
rotational distortion of the molecule and serves
to remove the degeneracy which comes from the
fact that A can be parallel or antiparallel to the
axis of figure. The perturbing Hamiltonian
consists of certain terms in the Schrodinger
equation for the rotating molecule which are
usually neglected in separating the electronic and
rotational parts of the wave function, %e take
thevalue of the matrix elements of this Hamil-
tonian from Van Vleck' or Kronig. ' It is

4 For a similar computation dealing with spin-uncoupling
in molecules in a magnetic 6eld, see Hill, Phys. Rev. 34,
1507 (1929).

5 Kronig, Bund SPectra and Molecular Structure, Cam-
bridge, University Press, 1930.



ZEEMAN EFFECT IN MOLECUI-ES

H, (A, X; A~1, X) =2(BL,)(A, A~1) [(K~A)(K~A+1)]*,

all other elements being zero. In this expression

I „(A, A+1)h'
(BL„)(A,A&1) =— P.*(r) P~+ (ir)r'dr,

~ 0 8x'c3Ir'

673

(2)

where P(r) is the vibrational wave function of the molecule, 3/I is the reduced mass of the nuclei,

L„(A, A+ 1) is a matrix element of one of the components of the orbital electronic angular momentum
operator I. perpendicular to the axis of figure. We can take L„(A, A~1) as equal approximately to
—',[L(L+1)—A(A~1))'*, which multiplied by a kind of a mean value of the rotational constant B
gives us the approximate value of the above integral.

For the part due to the external magnetic field, we take the Hamiltonian function

Dq =hv„L„„ L,=L„sin 0+LE cos 0, Av„=IIs/4~me'.

II2(A, K; A, K) = 2pA'

Hg(A, K; A+1, K) = P[L(L+1) —A(A+1)]'[(K— A)(K+A+1)—]l,

Av A (K 35+1)(K+M—+1)(K—A)(K+A+ 1)

(2E+1)(2E'+3)
II2(A, K ; A, K+ 1) =

E+1-
IIi(A, X; A+1, K+1) (4)Av„(K—3E+1)(K+M+1)(K+A+1)(K+A+2)= [I.(L+ 1)—A(A+ 1)]-''

2(K+1) (2K+ 1)(2K+3)
where P=Av„M/2K(K+1).

The unperturbed energies for case b' are given by the expression

Here s is the direction of the field II, ($s~) is a set of Cartesian axes fixed in the molecule with the
origin at the center of gravity. of the nuclei. The 1 axis coincides with the internuclear line, the P

axis lies in the xy plane, and 8 is the polar angle between the internuclear line and the direction of
the field. L is the electronic orbital angular momentum operator of quantum mechanics mentioned
above. To obtain the matrix elements of this Hamiltonian, we utilize the integrals given by Reiche
and Rademacher' for the symmetrical top. We have for the non-zero elements

Wg'= f(A)+B[K(K+1) A'+I (I.+ 1)—A']—, B= h/Sm'cMr(P,
'

where f(A) is the coupling energy of an I;complex. If one makes the hypothesis of pure precession,
f(A) becomes AA', where A is the coupling constant.

CALcULATIoN QF ENERGIEs

We shall neglect the terms which are not diagonal in E. If the rotational states involved are not
close together, in doing this we are neglecting a second order effect in the field which is small. In
computing overall widths of Zeeman patterns this second order effect would cancel out because it
only gives a shift of the pattern and a distortion of its shape. Classically we are neglecting the effect
of that component of the vector L which is perpendicular to the vector E. E' precesses around. the
direction of the field and while L precesses rapidly around E, still the effect of its perpendicular com-
ponent does not average out completely for large fields. Actually we cannot expect the rotational
energy differences to be always large compared to the Zeeman displacements. However, for extreme
magnetic levels (Eparallel and antiparallel 'to the field), the effect of the perpendicular component

' Reiche and Rademacher, Zeits, f. Physik 39, 444 (1.926); 41, 453 (1927).
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is a minimum since this component is then approximately perpendicular to the field. The truth of
this fact is borne out on examining those elements of our perturbation function which are not
diagonal in E. They are seen. to be smallest for M= +E. Thus even when the effect of the non-

diagonal terms is not small, we see that it can be expected that, excepting under unusual conditions
such as two levels very near each other, their effect is not to change greatly the energy differences of
levels corresponding to extreme values of SEE, that is the overall widths, but to distort the shape of
the energy patterns.

For I.=1 the secular equation is a cubic which can be solved exactly. The three roots are

W~ =A/2+B(K'+K+1)+P+B[u'/4 up+a—'(2K+1)' jl,

W=A+B(K'+K)+2P
(6)

where u=A/B, y=1 —P/B, A=f(1). If u&0, we have a normal Pcomplex and W corresponds to
the Z state and 8' and 8'+ to the two II states. For zero fields these expressions reduce to those
given by Hill and Van Vleck for A.=doubling. The correlation with case d is easily found by expanding
in inverse powers of 2%+1 and is given in the papers by Hill and Van Vleck and by Dieke.

In the case of L,= 2, which is of interest in the helium bands, the secular equation is a quintic
which can be factored into the following quadratic and cubic determinants

(WP+SP —W)

II„(21)

II„(21)

(WP+2P —W)

(Wp'+ SP —W)

II„(21)

II„(21)

(WP+2P —W) 2II„(10) = 0, (7)

II„(10) (Wo' —W)

where H„=Hg+H2. The quadratic we can solve at once. For the cubic approximate solutions are
obtainable which are good for extreme values of the parameters and which reduce to those given

by Dieke~ for zero field if one makes the hypothesis of pure precession. Since these formulas are
rather clumsy, we shall not give them here. However if ip these expressions we retain only second

order terms in the L-uncoupling and first order terms in the field, we obtain the simplified approximate
solutions given below in Eqs. (8) and (9). More directly, we can use the simple perturbation theory.
Thus for u large, K and P/B smaH, that is near case b', we have (u) 0, K~2)

W~. =4A+B(X~+X—2)+4(K~+K —2)B~/3A+SP[1 —4(X2+K—2)/3u j= W~„

WII =A+B(K'+K+4)+8(2K+1)'B'/3A+2P[1 —8(2K+1)'/3uj

WIIb ——A+B(Z'+K+4) —4(K'+K —2)B'/3A+2p[1+4(K'+K —2)/3u j,
WZ, =B(K'+K+6)—12(K'+K)B'/A+24P(K'+K)/u

For near case d', K large, u and p/B small, we likewise have

Wbg =A +B (X 2) (X 1)+ B (1—2u —3u—') /4(2K+ 1)+4P(Z+ 1) —34Pu'/(2K+ 1),

Wb g
——A+B(X+2)(Z+3)+B(12u—3u')/4(2K+1) 4PK+-,'Pu—'/(2K+1),

Wb~ ——5A/2+B(X —1)X+B(36u—9u')/8(2K+ 1)+2P(K+ 3) (9/8) Pu—'/(2K+1),

Wa, = 3A/2+B(K+1) (K+2) —B(36 —9u')/8(2K+1) —2P(K —2)+(9/8) '/(2K+1),

W80 ——3A +BX(X+1) —B(12u —3u') (2 —u) /2 (2Z'+ 1)'+6P+ 6Pu'(3 —u)/(2K+ 1).

(8)

Here we are using the subscript a to indicate the higher energy component of a A-doublet in the

normal case and b for the lower energy component. The cubic gives the higher components as well

as the Z level to which we have also given the subscript a. 8 in Eq. (9) means that it is a 8-complex

7 See Dieke, reference 2.
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(L= 2, case d') and the subscript indicates the quantized value of I along the direction of nuclear
rotation. These expressions reduce to the Zeeman expressions for the two cases for limiting values
of n.

It should be pointed out that we can just as well begin with case d, in which case we assume the
interaction Hamiltonian to contain the square of the cosine of the angle between the L vector and
the axis of figure. The matrix elements are readily obtained from the relations given in the articles
by Van Vleck and Hill. On neglecting the elements not diagonal in E, we obtain the same secular
equation as by the above method.

In the case of the cubic we have the following simple way of obtaining values for the magnetic
energy levels from the zero-field levels. In order to use the data given by Fujioka, we take the
unperturbed (case b') energies as approximately

A=O, 1, 2. (10)

Then if Wp, TVy, W2 are the zero-field roots of the cubic and if we neglect the squared and cubed
terms in p, we can write our secular equation in the form

—( Wp —W) (Wg —W) (Wp —W) = 2P[(WpP —W) (WpP —W) +4(WpP —W) (WP —W)

—48B'X(%+1)n '+12BX(It+1)(tip(W2 W)+4B(X'+X 1)asap(W—p W)$.

To obtain the energies corresponding to Wp, we
substitute Wp for W throughout excepting in the
first bracket on the left and then solve the result-
ing linear equation. The o, s are constants, nearly
unity, introduced and evaluated by Kronig and
Fujioka in their zero-field secular determinant
so as to get the best fit with experiment. They
allow for the fact that (BP„)(A, 4+1) in the
first part of our perturbation function is not
accurately equal to pB[L(L+1)—A(A+1) )&.

APPLIcATIoN To THE HELIUM BANDs

H=P
a"='" an&

M=-K

N=-. H
Q=+ K

N=-K
Q=+ K

god

positive terms, we have remaining three states
for E odd and two for IC even. These correspond

Experimentally we find that half of the
rotational states are missing. This is because
He2 is a homonuclear molecule the nuclei of
which obey Bose statistics and therefore the
allowed states are symmetrical in the nuclei.
Since the states we are interested in are also
odd (u), they are all negative under reHection
in the origin and we must omit the positive ones.
It is easy to see just which the negative ones are.
For Z„+ states' the terms are alternately positive
and negative beginning with a positive term for
K=O. The two rotational terms of a given E
for II and 6 states are always one positive and
one negative, any one series in X being alter-
nately positive and negative. Discarding the

'See Weizel, IIandbuch der Experimental Physik, Band-
spektra, p. 136.

~=+K
and
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+2

————N-+K ~b
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f1=-K
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Fro. 1, Magnetic levels of a d-complex for the limiting
cases drawn around the zero-field energy (3f=0). Only
elf =0, &X levels are plotted. The solid curves are case b'
and the broken curves case d'. The correlation between the
states is that for n&0. The energy scale is in units of hv„.
E is the quantum number associated with the total angular
momentum of the molecule.
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FIG. 2. Magnetic levels of the 4d complex of the helium
molecule calculated from the present theory using Kronig
and Fujioka's constants. o. is approximately 10. The cross-
ing over of the levels is due to the passage from quantiza-
tion of the orbital angular momentum of the electron along
the internuclear axis to quantization along the axis of
nuclear rotation. During this process the component of
the magnetic moment along X passes through zero thus
passing through a state in which the molecule is very
insensitive magnetically. The circles give the observed
widths. In this figure and in Fig. 3, Av„ is 2.415 cm
which corresponds to a field strength of 30,000 gauss.

to our cubic and quadratic given above because,
our Hamiltonian being symmetrical, states of
unlike symmetry cannot perturb each other. '

In Fig. 1 is given for comparison the overall
widths of the magnetic energy levels for the two
limiting cases, drawn using the expression

for case b' and

E=2PA' (12)

' In Mulliken's notation the states A„Aq, II, IIq, 2,
considered in this paper are designated by A„bg, Hg, II„Z„
respectively. Rev. Mod. Phys. 3, 94 (1931).

8= PLX(X+1)+I (I.+1)—R(R+ 1)$ (13)

for case O'. In Fig. 2 are the calculated curves
for the 4d complex of molecular helium and in

Fig. 3 those for the 3d complex. All the curves
show clearly the rapid change which takes place
in passing from case b' with low X to case d'

FIG. 3, Magnetic levels of the 3d complex of the helium
molecule calculated using Kronig and Fujioka's constants.
o. being about 20, the binding to the internuclear axis is
tighter than it is for the states in Fig. 2 and the transition
to case d' is therefore slower.

with high X. The change is more rapid for the
4d complex since its angular momentum vector
is less tightly bound to the axis of figure. The
crossing over of the extreme levels occurs when

the component of the magnetic moment along
K changes its direction with respect to E. The
circles represent experimental points obtained
from Millis' data by interpreting them in the
light of the present theory. The values for the
overall widths so obtained are not all self-con-

sistent; we have tried to select those values
which were the most reliable from the experi-
mental point of view. The differences which

exist are perhaps due to intensity distributions
and failure to obtain well resolved patterns in

some cases.
The II, states, for which unfortunately there

are no experimental data, are of special interest
since they are the only. states for which the cal-

culated curves do not lie between the limiting

curves. An understanding of this' behavior is to
be found in examining the solutions for small and

large X using Eqs. (8) and (9). The equation for



PERTURBED SERIES IN SPECTRA

II, shows that for small X the calculated curve
for M=X will lie below the limiting case b'

curve (n )0) and that the difference between the
two will increase rapidly with E. The equation
for bo, which is the limiting case for a II state
with uncoupling, shows that for a&3 the cal-
culated curve lies below the limiting curve but
that the difference decreases rapidly with in-
creasing E. For iV=X both limiting curves lie
for all X above the curve for M=O. The cal-
culated curves start out for small E below the
first limiting curve and then approach the
second limiting curve from below. For the 4dxII

state the extreme levels cross over at about
K= 10. For 0. slightly greater than 20, the
extreme levels would cross over first for small E
and a second time for very large X.

Curves of a similar nature could be drawn for
the magnetic levels of the three states of a p-
complex using Eq. (6). The II state correlated to
the b l state would show a crossing over of the
levels for suitable 0. and E in a manner very
similar to that shown in the cases described above.

The writer wishes to express his sincere thanks
to Professor Kemble and Professor Van Vleck for
valuable suggestions and criticisms on this work.
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On Perturbed Series, Especially in C III, B I and 0 IV

N. G. WHITELAw AND J. E. MAcK, Department of Physics, University of 8'isconsin

(Received March 6, 1935)

Consideration of possible extra-configurational perturbations in atomic spectral series
shows that often some series are preferable to others for the determination of series limits.
In particular: In C III, several 2snd 'D terms are recalculated, but Edldn's series limit value is
verified in spite of perturbations; in 8 I, the term values are increased by 90 cm or 0.011 volt,
so that 8 I 2s'2p 'Pg —8 II 2s' 'S0 =66,930 cm ' =8.257 volts; and in 0 IV, the old Ss 'Sy term
is replaced by a new one at 85,440 cm ', ?4P 'P and?6f 'F are repudiated, and?7f 'Il and?Sf 'Jl
are verified.

A LTHOUGH the term values in most of the
spectra of the lightest elements have re-

cently been determined with a high degree of
accuracy and completeness by Edlen, ' there are a
few instances in which series limits may be
slightly altered and term assignments recon-
sidered after a study of the inHuence of extra-
configuratienal perturbing terms. ' ' The pur-
pose of this note is to point out the general
preferability of some series over others in the
determination of series limits, and to make minor
alterations in three of Edlen's. spectra.

An irregular relationship' between the term
values and the corresponding quantum defects
for a spectral series generally is an indication of
the presence of a perturbing series, of which

'B. Edlcn, Nova Acta Reg. Soc. Scient. Upsaliensis,
Ser. IV IX, No. 6 (i933).' A. G. Shenstone and H. N. Russell, Phys. Rev. 39, 415
(&932).' N. G. Whitelaw, Phys, Rev. 44, 544 (1933).

usually only one or two terms appreciably affect
the series in question. The extra-configurational
series members have the same Laporte parity
and (in the IS coupling case, which is all that
need be considered in Edlen's spectra) the same
multiplicity and I value as the series under
consideration. Irregularity arises when the two
series overlap or nearly overlap, in which case the
members of the one series share their properties
with neighboring members of the other with a
consequent ambiguity as to configuration. Thus
the members of a series may show an energy
trend leading toward a false series limit, even
though the term or terms mainly responsible for
the complication may remain undiscovered. Al-

though perturbing terms can be pointed out for
almost all of Edlen's spectral series, we shall list
here only those cases in which an analysis ap-
pears to lead to definite improvements in term
values,


