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The Thomas-Fermi Method for Metals
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(Received February 9, 1935)

The Thomas-Fermi method is applied to metals, by
replacing each atom'by a sphere, assuming the potential to
be spherically symmetrical within it, and solving the
Thomas-Fermmi equation subject to the boundary condition
that the electronic charge within the sphere shall balance
the nuclear charge, rendering it electrically neutral. Calcu-
lations are presented giving potential field, charge density,
and kinetic, potential, and total energy of the metal, as
function of lattice spacing. The virial theorem is verified for
the energy. The total energy show's no minimum, the pres-

sure being always positive. Calculations are also made using
the Dirac method of correcting for exchange, for three
atoms, Li, Na and Cu. The exchange low'ers the energy,
but still not quite enough to produce a minimum of energy
and an equilibrium at zero pressure. The result should be
useful as a first approximation in self-consistent field ap-
proximations for the structure of metals, and could be
adapted to give approximate treatment for matter under
very high pressure, as in stars.

HE application of the Thomas-Fermi equa-
tion to metals has been mentioned in an

earlier paper, ' in which some of the results to be
described in the present paper were sketched.
The method rests on the same fact which makes
possible the Wigner-Seitz calculation 9 the po-
tential acting on an electron in the neighborhood
of one of the nuclei of the metal is very nearly
spherically symmetrical, the nucleus being the
center, so that the same method of solving differ-
ential equations, as for example the Thomas-
Fermi method or the Schrodinger equation,
which is applicable in an isolated atom, can be
used in the metal, simply by using different
boundary conditions. More precisely, we sur-
round each nucleus in the metal by a cell, its
boundaries being the planes bisecting perpen-
dicularly the lines joining the nucleus to its
nearest or next nearest neighbors. Each such cell
contains just enough electrons to neutralize the
nuclear charge, so that, being of a high order of
symmetry, its electric field at external points is
very small, falling oR' very rapidly with the
distance, and can be neglected. Within a cell,
then, the potential arises only from the charges
within that cell. Since these charges are dis-
tributed almost spherically, their resultant field
is almost spherical, so that it is a self-consistent
hypothesis to assume that, to a first approxima-
tion, the potential, and consequently the re-
sultant charge distribution, are both exactly
spherically symmetrical ~ To this approximation,

' J. C. Slater, Rev. Mod. Phys. 6, 209 (1934).'E. Wigner and F. Seitz, Phys. Rev. 43, 804 {3933);
46, 509 (1934).

we can replace the polyhedral cell by a spherical
one of the same volume. Our method, then, is to
solve the Thomas-Fermi equation within this
spherical cell, subject to the two boundary
conditions that the potential approach Zejr at
the nucleus, and that the total electronic charge
contained within the sphere (of radius R, which
varies as the crystal is compressed or expanded)
is equal to —Z|,'.

The Thomas-Fermi' method as applied to
isolated atoms is well known, but some of its
applications to other p'roblems have resulted in
misunderstandings. For that reason it will pay
to sketch briefly its application to the present
case. This has been done to some extent in the
paper quoted above. * There is also a treatment
of the whole Thomas-Fermi problem, though
without taking up the present application to
metals, given by Brillouin. ' Because of the
existence of these discussions, to which the
reader is particularly referred, the present treat-
ment will be brief. '

First we consider the original Thomas-Fermi
method, which neglects effects of exchange. We

3 L. H. Thomas, Proc. Camb. Phil. Soc. 23, 542 (1927);
E. Fermi, Zeits. f. Physik 48, 73 (1928); E.A. Milne, Proc.
Camb. Phil. Soc. 23, 794 (1927); J. Frenkel, Zeits. f.
Physik 51, 232 (1928); P. A. M. Dirac, Proc. Camb. Phil.
Soc. 26, 376 (1930);E.B.Baker, Phys. Rev. 36, 630 (1930);
E. Guth and R. Peierls, Phys. Rev. 31, 217 (1931); V.
Bush and S. H. Caldwell, Phys. Rev. 38, 1898 (1931);W.
Lenz, Zeits. f. Physik 7'7, 713 (1932): H. Jensen, Zeits. f.
Physik 'V7', 722 (1932); H. Jensen, Zeits. f. Physik 93, 232
(1934); L. Brillouin, L'Atome de Thomas-Fermi, Actualites
scientifiques e. industrielles, Hermann, Paris, No. 160, 1934.
The last named reference has a more complete bibliography
than is given here.

* Reference 1, p. 223.
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replace the energy of interaction between elec-
trons by an average potential depending only on
position, so that the total potential energy of an
electron, including the interactions with the
nuclei as well as with other electrons, is a function
of position, —eV. If the energy of an electron
in such a field is —eE, its momentum p is given
by the equation p'/2m —eV= —eE, so that P is
real, and the motion can occur classically, only
in those regions where —e(E —V) is positive.
We now apply the Fermi statistics to the elec-
trons, but otherwise treat them classically. For
the absolute zero of temperature, these statistics
take the form of a statement that the number
of electrons per unit volume in a six-dimensional
phase space is 2/h~ (1/h' for electrons of each
spin) at all points corresponding to an energy
less than an arbitrary value —eZo, zero at points
corresponding to energy greater than —eEp. At
a given point of coordinate space, those points
of momentum space within a sphere of radius I',
where P=(—2rne(EO —U))'", are occupied by
electrons, those outside the sphere unoccupied.
We can then get the charge density of electrons
in ordinary space by integrating the density in

phase space over this sphere, and multiplying by
the charge on the electron, —e. Since the density
in phase space is constant, the result is —2e/Ii'
times the volume of the sphere, or

p, = —Sm.eP'/3h' = ( 87re/3h') ( —2me(ED —V))'"—
From this equation we see that once V is
determined, different values of Eo correspond to
different density of charge; in any particular
case, Eo is to be so chosen that the integral of p,
over all space adds to the known amount of
electronic. charge present in the problem. We
now make the requirement of self-consistency:
we demand that the potential V be the electro-
static potential of the nuclei and of the electrons
themselves. By Poisson's equation, V'U= —4mp,

where p is the sum of p, given above in terms
of U, and the charge density of nuclei. Assuming
spherical symmetry, the resulting equation is:

8 ( BV) 32 e
r~

r' Br& Br) 3 h'

327r 8—(2me( V—Eo) ) '".
3 h'

We now let r =px, where y =ao(9x /128Z)'i',
ao ——h'/4m'me', or numerically, p, our new unit of
length, is equal to 0.88634ao/Z"' where ao is the
radius of the first Bohr orbit for hydrogen. We
also let U —Eo y&f——&/x, where ey, our new unit
of energy, equals Ze'/p, or (2"/3'w')"'Z"'Rhc
= 2.2590Z+'Rhc, where Rkc = 27r'me'/li', the
Rydberg energy. The quantity Ze&f = (U Eo—)r
is of the nature of an effective nuclear charge,
or the charge which .must be divided by the
distance from the nucleus to give the potential,
so that as r goes to zero, Zep, the effective
nuclear charge, approaches Ze, and p approaches
unity. In terms of these definitions, the equation
takes the form p"=p'"/x'" the Thomas-Fermi
equation. We have seen that the boundary
condition at the nucleus is that p(0) = 1. At the
boundary of the spherical cell, since the total
charge contained within the cell must be zero,
the electric field must vanish, or 8 U/Br =0, which
in terms of our new variables becomes p' =g/x.
The interpretation of this condition is simply
that the tangent to the curve of p against x, at
the distance x =X corresponding to r =R, should
pass through the origin, making a simple condi-
tion to apply graphically.

As shown in Fig. 1, the curve for p start-
ing from x=0 with a particular slope, —Bo
= —1.58808, approaches the axis asymptotically.
The tangent to this curve through the origin is
then the x axis itself, which is tangent at infinite
distance, so that for this solution there are just
enough electrons in infinite space to neutralize
the nucleus. In other words, this solution is the
one for the isolated atom, the familiar solution
of the Thomas-Fermi equation usually discussed.
The solutions we desire are those with initial
slopes smaller numerically than —Bo, and cor-
responding to spheres of finite radii. The solu-
tions of slope greater than Bo numerically will

cut the axis of abscissas. They correspond to
positive ions, as is discussed by Brillouin, and
do not concern us here.

Solutions have been carried out for a number
of slopes smaller numerically than —Bo. A series
expansion was used about x =0, and the function
was then extended by numerical integration out
to the radius X. These solutions are presented
in Fig. 1, which i.s drawn accurately to scale.
The authors will be glad to send detailed
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FIG. 1.. Thomas-Fermi function @, as function of x, for different initial slopes, The following

table gives X, the minimum radius, or point of tangency of the curve and the straight line
through the origin, as function of initial slope:

1,588
8.59

FIG. 2. Potential '—U/y as function of distance x from nucleus, Thomas-Fermi method. The
curves terminating in the dotted line AA are potentials for different lattice spacings, the values
of x at the intersections being the lattice spacings X, showing that the potential —U/y is lowered
as X decreases. The dotted line AA represents the maximum height of the potential barrier
between atoms, BB represents the average potential through the cell, and CC the maximum
total energy —Eo/p of an electron in the Fermi distribution, all as functions of X.

B 1.00 1.38 1.50 1.55 1.58 1.586 1.58803 1.58806 1.58808
X 1.19 1.69 2.20 2.80 4.23 5.85 11.3 16. 00

numerical tables to any one who may have
occasion to use them, but it seems unnecessary
to publish them in full.

From these solutions, we can find at once the
quantity V—Eo, as function of x, for a number
of values of X, or of the lattice spacing, and for
any metal. No unique method is provided for
defining the potential V and the energy ho
separately, for as usual there is an arbitrary
additive constant in the potential, and a com-

pensating one in Bo; This is a problem which

appears in more accurate treatments, as well as
in the Thomas-Fermi method. At least four

different methods of choosing the arbitrary
constant have some advantages; we shall discuss

them brieHy. First, we may choose our constants
so that the potential U in the immediate neigh-

borhood of the nucleus has a value independent
of X. This is the method adopted in the earlier

paper. *When one carries out a wave-mechanical

calculation, finding wave functions in the po-

tential field V, this results in having the x-ray

energy levels, which depend only on the part of

U near the nucleus, independent of X, whereas

* Reference 1, p. 212, Fig. 1.



with any other choice of constant the x-ray
levels will be functions of X, even when the
atoms have not approached closely enough so
that the wave functions in question would
overlap. It is thus for most purposes the most
reasonable choice physically. Mathematically
the method is easily formulated. We remember
that near the origin, if .—8 is the initial slope,
we can write p = 1 —Bx . Substituting in the
equation U Eo=—yg/x, this gives

U= v/oo+ (&o—&v)+

For the free atom, we choose Eo to be zero, 8
equal to Bo, and we have U~~o =7/& —&op+ ' ' '.
If the potentials for the atom and metal are to
agree as to the constant terms as well as to
those in 1/r, we must have Eo (8 Bo)y, —— —
determining the additive constant. In Fig. 2,
we show curves for —U/y for Na a.s function
of x, for a number of values of X, computed on
this basis. It is evident that as the atoms
approach, the potential near the nucleus remains
unchanged, while in the region between the
atoms it decreases more and more as the inter-
nuclear distance decreases. The maximum of
the potential barrier, as a function of X, is
shown by the dotted line AA. This is to be
compared with the line AA in the Fig. 9 of the
previous paper, though in that case, following
Wigner and Seitz in using Prokofieff's field, the
change in curvature of the potential with
changing X was not considered. Also we have
computed, by numerical integration, the average
value of V over the sphere, for each value of X
and have plotted this in the line BB, Fig. 2, to
be compared with line BB, Fig. 9.' These po-
tential functions as determined by the Thomas-
Fermi method should be useful in the first steps
of a calculation of the wave functions of electrons
in metals by the method of self-consistent fields,
as the corresponding functions are for isolated
atoms. In Fig. 2, we also give a curve CC,
representing the maximum energy Eo/y of-
the Fermi distribution as a function of X. In
contrast to the more exact wave-mechanical
case, we find that this energy continuously
increases as the metal is squeezed, whereas a
minimum is shown by more exact methods,
closely connected with the minimum of total
energy of the metal. As mentioned in the

previous paper, just those electrons whose ener-
gies are greater than the amount given by the
line AA, can pass the potential barrier between
atoms, and take part in conduction. The energy
AA, then, in a certain sense stands for the zero
of energy in the Sommerfeld picture of a metal,
and the difference between —eEO, or CC, and
AA, represents the maximum kinetic energy of
a conducting electron in that model. Actually,
of course, the situation is complicated by the
fact that even an electron which moves slowly
on the surface of the atom speeds up greatly as
it approaches the nucleus. This problem of
distribution of kinetic energy has been discussed
in the previous paper, ' Section 10.

The three other methods of determining the
additive constants in Eo and V, which we
mentioned above, are less useful, because they
are less plausible physically. The second method
is to let Eo be zero, for all R's. The third is to
let V be zero at the outer boundary of the sphere,
for x=X. Neither of these methods has much to
recommend it. The fourth, however, is more
plausible: it is to consider a finite sample of
metal, and let the potential be zero at infinite
distance from the uncharged sample. This is
more complicated, for it involves a discussion
of the potential barrier and electrical double
layer at the surface of the metal. With this
definition of potential, the potential energy
within the atom, the x-ray levels, and —eBO, the
top of the Fermi distribution, will all move up
or down together as the jump of potential at the
boundary changes, for any such reason as the
addition of a surface layer of foreign atoms. For
purposes of thermionic and photoelectric emis-
sion, this last definition of potential is the most
useful. But since it involves a discussion of the
surface effects, a problem outside the range of
the present paper (though, as has been shown
by Frenkel and Brillouin, ' a treatment on the
basis of Thomas-Fermi theory is possible), it is
a less practical method when dealing with the
interior of the metal, and we shall not follow it
further at the moment.

From the values of U —Eo as function of x,
we can compute the charge density, and find
how it changes as X is changed. The point of
particular interest is the way in which the
density at the edge of the sphere, midway
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between atoms, increases continuously as X
decreases, so that the number of electrons

capable of carrying current is much greater for

tightly packed than for loosely packed metals.
This conclusion seems to have no counterpart in

the actual metals, where, as Mott' has shown,

the alkalies have the largest number of effective

free electrons. The discrepancy arises un-

doubtedly from the fact that the Thomas-Fermi
method cannot be expected to account for the

periodic properties of the elements.
Knowing the potential, and the charge density,

we can find the total energy of the crystal,
kinetic and potential. The potential energy per
atom is —',J'p, Udv+-', Ze Uo, where p, is the charge

density due to electrons, U is the whole potential,
and Uo is the potential at the nucleus, whose

charge is Ze, due to the electrons. By using

partial integrations similar to those of Milne, '
the potential energy becomes

.08

.04

-.04

- 08
0 p 4

X
12

P E =(6/7)«vt 4o' '3X"4—x"j
where &0' is the slope of the p curve at the origin,
which we have denoted by —8, and px is the
value of p at the edge of the sphere. For the
kinetic energy, we note that the maximum

kinetic energy at any point is e(V Eo), snd-
that according to the Fermi statistics the mean

kinetic energy is 3/5 of this. Weighting the mean

kinetic energy at each point by the charge
density of electrons at that point and integrating
over the volume, we obtain the total kinetic

energy, which is

K.E.= —(3/7) Zey L@0'—(4/5) X'"y~""t'$

The potential, kinetic and total energy are
plotted in Fig. 3, as functions of X. At infinite

separation, where pz is zero, the potential energy
becomes —(6/7)BOZey, the kinetic energy is

(3/7)BOZey, evidently verifying 'the result of the
virial theorem that the potential energy should

be minus twice the kinetic energy. These limiting
values of potential, kinetic and total energy are
subtracted from the curves of Fig. 3, so that they
really represent changes in energy on compres-
sion. We see that the total energy increases

continuously with decreasing X, with no mini-

N. F. Mott, Proc. Phys. Soc. 46, 680 (1934); N. H.
Frank, Phys. Rev. 47', 282. (193$,'.

F&G. 3. Kinetic, potential and total energies as function
of lattice spacings X, Thomas-Fermi method. The quanti-
ties plotted, X, P and Z, are in units of (3/7)Zey, and repre-
sent differences between the corresponding energies at
spacing X and the values of the isolated atom.

mum, so that this model cannot explain the

cohesion of metals. The increase of kinetic

energy with decreasing X, because of - the

adiabatic compression of the Fermi gas, is partly
but not wholly compensated by the decrease of

potential energy, arising because the electrons

on the average are closer to the nucleus in the

compressed state.
In the general case, for arbitrary X, the kinetic

and potential energies are related through the

virial theorem, ' which for a solid in which all

forces are derived from the Coulomb law, takes
the form K.E.+1/2P. E.= 3/2pv, where p is the

pressure, v the volume. For the Thomas-Fermi
method, Fock has shown in general that this

theorem must apply, and we can easily check it
in the present case. Thus we substitute in the

expression above the values of kinetic and

potential energies already derived, and compute

pv in that way. Next we find the total energy as
a function of X, differentiate to get dZ/dX and

from that And dB/dv, which must be equal —p.

~V. Fock, Physik. Zeits. Sowjetunion 1, 747 (1932);
J. C. Slater, J. Chem. Phys. 1, 687 (1933); H. Hellmann,
Zeits. f. Physik 85, 180 (1933).
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Comparing, and going through considerable
mathematical manipulation, it can be shown
that the two expressions for pressure are equal.
By either method we have

pv = (2/15) Zeyx'~'yx'~'

Since we have used the energy per atom, the
volume in question is that associated with an
atom, or (4/3)v (pX)', so that

p =
f (2/15)ZeyX"'&px'~'}/I (4/3) v (pX)'}.

This value has a simple interpretation: it is
simply the gas pressure exerted by the electrons
on the wall of the sphere. This should be given
according to kinetic theory by p =-', (X/v) K.E.,
where X/vI is the number of electrons per unit
volume at the surface of the sphere, K.E. is
their mean kinetic energy. The number per unit
volume at any point can be found from the
density which enters into the formulation of the
Thomas-Fermi method, and in our present
notation it is

&/v = I 3Z(x4) '"}/}(4/3) ~(p x) '}

The mean kinetic energy of the electrons at any
point is —,'eyp/x. Substituting x=X, and putting
these values into the formula for p, we immedi-
ately verify the statement as to the interpreta-

tion of the pressure. Since the pressure is that
of a perfect Fermi gas, it is obvious that no
cohesive forces are found in this model. Such
forces could come only from electrostatic attrac-
tion of one atom for its neighbors, and that is
impossible with the uncharged spherical atom
which we have considered.

A considerable improvement over the Thomas-
Fermi method can be attained by introducing
the effect of exchange, as Dirac has done, and as
Brillouin' describes. The principle of the method
can best be described in terms of the Fock'
equation. These equations can be written

(—(h'/Sx'm)p' —e(V;(x)—Z;))u;(x) =0,
where u, (x) is the wave function corresponding
to the ith state of an electron, so that the whole
wave function is made of a determinant of
functions u, (xq), and —eZ; is the corresponding
one electron energy. Here the potential V; is
different for each stationary state, and is given by

V;(x) =~I Lp;(x, )xd /v(r-r'}j,

where p;(x, x') is the eA'ective charge density at
x' of all electrons but the one we are considering,
when that one is at x, and is in the ith stationary
state. Analytically, p, (x, x') =cha.rge density of
nuclei

up, *(x')ug(x') u;*(x)u;(x) —up*(x') u;(x') u;*(x)up(x)

u;*(x)u, (x)

The latter term, involving the summation, is the
charge density of other electrons, and consists of
two parts. The first, which can be rewritten
—eP uz*k( )ux&(x'), is simply the density of all
electrons including the one we are considering.
It is this density which, added to the density of
nuclei, we identified with the density p in the
Thomas-Fermi method, so that that method
corresponds to neglecting the last term above,
which can be rewritten P~e~*(u)u;x( )ux~( )/x
u„(x). Remembering the orthogonality of the u's
in the Fock method, this term, the so-called
exchange term, can be immediately shown to
represent a charge of total amount e, so that the
density p;(x, x') is that of the nuclei and X—1
electrons, if there are Xelectrons in the problem

The correction which we have neglected in the
Thomas-Fermi method, in other words, arises
from the fact that an electron exerts no forces
on itself, only on other electrons.

If now we assume a perfect gas of free elec-
trons, obeying. Fermi statistics in a field free
space, it has been shown' that we can compute
the charge density p;(x, x'), and consequently the
potential V;(x) acting on an electron of any
arbitrary momentum (corresponding to the

V. Fock, Zeits. f. Physik 61, 126 (1930). For a new dis-
cussion of these equations see L. Brillouin, Les Champs
"self-consistents" de JIartree et de Fock, Actualites scienti-
fiques et industrielles, Hermann, Paris, No. 159 (1934).

~ See P. A. M. Dirac, Proc. Camb. Phil. Soc. 26, 376
(1930), and particularly Brillouin, L'Atome de Thomus-
Fermi, quoted above.
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quantum number i). The charge of one electron
which must be removed from p to get p; proves
to be localized about the point x with spherical
symmetry. The linear dimension of the sphere
from which the charge e is removed is a function
of the density of the electron gas, if it is com-
pressed, changing proportionally to the linear
dimension of the sample of gas. The correction
to the potential on account of this removed
charge can be shown to be 4eP/k F(p/P), where
P is the maximum momentum of the electrons
in the gas, p the momentum of the electron in

question, and

F(~)=l+t:(1—n')/4n] log L(1+v)/I1 —
nlrb,

where. q=P/P. Now the Thomas-Fermi method
consists essentially of assuming that the electrons
at any point within the system can be treated as
a small part of an infinite perfect gas of free
electrons of the same maximum kinetic energy.
Hence it is a reasonable extension of this method
to assume that the correction above, which is
strictly correct only for a field-free gas where P
is independent of position, can be applied in
general by making P the appropriate function
of position. This is the essence of the method
which can be called the Thomas-Fermi-Dirac
method.

Now let us apply the correction we have just
discussed to the Thomas-Fermi method. In phase
space, we assume as before that the number of
electrons per unit volume is 2/h' within a certain
energy surface —eEO, zero outside this energy
surface. At any point of the coordinate space,
the electrons will fill a sphere in momentum
space, the - momentum of the fastest electron
being P. This fastest electron, corresponding to
g=1 in the expression above, will be in' a po-
tential field equal. to the potential of all charges,
corrected by the exchange term for q=1. If we
call the uncorrected potential Uo, and if we note
that F(1)=—'„ then the potential Vp appropriate
for this fastest electron is Up= Vp+2eP/k. The
kinetic energy of this electron is —e(Eo —Vp)

8(Eo Vo —2eP/h), and of course equals
P'/2m. Equating these, we have the quadratic
P'/2m 2e'P/f1+ —e(Eo Uo) = 0—, whose solution is
P=2e' m/h&(4e'm'/h'+2em(VO Eo))—" where
the positive sign for the square root must be
chosen to agree with the Thomas-Fermi case.
The charge density is again —SxeP'/3&', to be
expressed in terms of the revised formula for P.
As before, we apply Poisson's equation, stating
that the Laplacian of the potential Uo of all

charge should equal —4x times the density of
charge, so that

1 8 (' 8 Vo) 32m'e 2e'm 4e'm'
-+2e (V,—E)

r2 ()r E. c}r ) 3k3 h h'.

"1/2 3

As changes of variables, we introduce r=px as
before, and let Vo —Eo+2me'/h'=yP/x, where y
is as before. We also introduce d = (3/32'')"'Z "'
=0.211783Z "'. In terms of these, the equation
becomes P"=x(d+P"/x'")', which differs from
the Thomas-Fermi equation by the term d. On
closer examination, the boundary conditions
prove to be, as before, P(0) =1, and fx' =fx/X,
the latter defining the radius pX of the sphere
which contains Z electrons.

Integration of the equation above has been
carried out as for the Thomas-Fermi problem,
expanding in series for small values of x, and
integrating numerically from there out. Calcu-
lations have been made for. three different values
of d, corresponding to Li, Z =3, Na, Z = 11, and

Cu, Z = 29, as well as for d =0, the Thomas-
Ferrhi case. In each of these three cases, a
number of initial slopes were chosen, and curves
computed for each of them. For each value of d,
there is a particular value of the initial slope,
—Bo, for which the P curve is tangent to the x
axis. For the Thomas-Fermi case, this tangency
is for infinite x, but for the general case it comes
at a finite value of x. Brillouin has tried to
connect these solutions with the neutral atoms,
assuming that the charge density was given by
the relations we have used out to the point of

tangency, at which point the nuclear charge is

just neutralized by the electrons, and assuming

the charge density and field to be zero from
there out. This does not seem a particularly
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satisfactory suggestion, for it involves a discon-
tinuity of charge density at the sphere. The
charge density is proportional to P"/x, and as
we see this attains its minimum value, d, when

P is zero, and can never fall to zero. We prefer
to consider, as Dirac did in his original paper
on the subject, that the Thomas-Fermi-Dirac
method is not applicable to neutral atoms with-
out modification. We should interpret the solu-
tion of initial slope —Bo, which becomes tangent
to the axis at distance Xo, simply as the solution
of the metallic problem in which the radius of
the cell equals Xo. For any radius larger than Xo,
the method does not provide a solution. It is
fortunate, however, that Xo is much larger than
the interatomic distance, except for the lightest
atoms, so that this limitation is not of practical
importance. Unfortunately for large radii the
numerical integration is very sensitive to small
errors, as well as to small changes in the initial
slope, so that even approximately accurate
values of Xo have not been obtained, except for
the case of Li. Here Xo is in the neighborhood
of 6, only slightly larger than the normal value
of x in the metal. For heavier atoms Xp is much
larger than 6, but its value cannot be accurately
stated. The values of 80 as function of d, how-
ever, can be found within narrow limits, and the
curve is plotted in Fig. 4. It is practically a
straight line, and should be useful for starting
integrations for other atoms. For values of 8
less numerically than Bo, the boundary condition
itx'=ibex/X can be satisfied for a value of X
smaller than Xo, so that these values correspond
to. states of the metal more compressed than the
limiting case Xo. In Fig. 5 these curves of P
against x are given, for Cu, for a number of
values of 8, again accurately to scale.

From lt, we can calculate the charge density,
and by the equation already given find Vo —Eo
and UI —Eo. A convenient choice of Eo is made
as follows. Since we cannot solve the problem
of the isolated atom, we choose the case of
maximum radius, X=XO, as a standard, and
demand that Uo in the neighborhood of the
nucleus have the same value for any X that it
has for X=Xo. Fof X=Xp, at the edge of the
sphere, we have

P = (x/7) ( Uo —Zo+ 2nze'/Ii') =0.
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FiG. 4. Initial slopes Bo, in Thomas-Fermi-Dirac
method; for solutions where P curves are tangent to x axis,
as function of d; parameter depending on atomic number.
The four points plotted are as follows:

atom
Thomas-Fermi

Cu
Na
Li

29
11
3

0
0.022437
0.042818
0.101815

B.
1.58808
1.6225
1.6536
1.7427

Let us determine 20 by assuming that in this
case VO=O at the edge of the sphere, giving
Zo ——2me'/h'=7d'. Now near the nucleus for
X=Xo, we ha ve P = 1 Box+, where —Bp is
given in Fig. 4. Thus we have U0=7/x —Bp7
Next, for an arbitrary X; we have Uo —Eo
+2e'm/Ii' =7/x B7 . To make —this agree
with the limiting case, we must have Zo ——2me'/h'

+ (B Bo)7. Making. t—his choice of Eo, the
potential is definitely determined, and in Fig. 6
we plot curves of Uo, V~ and Eo, as functions of
X, similar to the Thomas-Fermi curves of Fig. 2.
Qualitatively the curves resemble those of Fig. 2,
and it is seen that Vo closely resembles the V of
Fig. 2. The potential energy —e Up of an electron,
however, is decidedly lower on accoun t of
exchange than with the original Thomas-Fermi
method, and as a result the exchange leads to a
tighter binding.

To find the total energy, and the potential
and kinetic energies, with the Thomas-Fermi-
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FIt-. 6. Uncorrected potential —Vo/y (full lines), and
potential acting on an electron —VI jy (dotted lines), for
Thomas-Fermi-Dirac method, for several lattice spacings.
Line AA represents the maximum potential barrier of the
potential acting on an electron. CC represents the maximum
total energy of an electron, —Bo/y.
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FIG. 5. Thomas-Fermi-Dirac function P as function of x, for
Cu, Z =29. Table of X as function of B.

2 p.Vade+a "
i
"( 8«P'/h')(4eP/h) P(P—/P)dPd'

where the integration with respect to p is from
0 to I'. Carrying out the integration over p, the
result is

-', I p. Uode 4«'/h4 —P4dv.

Dirac method, we proceed much as in the
Thomas-Fermi method. The problem is compli-
cated, however, by the fact that the electron of
momentum p moves in a potential V„= Vp

+4eP/h F(p/P), which is a function of p. At a
point of space where Vo has a particular value,
the density of electronic charge connected with
electrons with momentum between p and p+dp
is equal to —(8vrep'/h') d p if p is less than P, zero
if p is greater than I', where I' is the root of the
quadratic written above. For the potential
energy of interaction between electrons, instead
of the simple expression —',j'p, Vdv of the Thomas-
Fermi method, we must multiply the charge
density for each value of p by the corresponding
value of V„, and integrate over p, as well as
over v. In this way we obtain

The total potential energy is the sum of these
terms, and —', ZeVoo, where Voo is the value of the
potential due to the electrons, at the nucleus.
In contrast to the Thomas-Fermi method, no
method has been found for carrying out all the
integrations explicitly in terms of the values of
known quantities at x = 0 and x =X. Instead,
most of the integration must be performed
numerically.

The kinetic energy of an electron of momentum

p is p'/2m, as with the Thomas-Fermi case, and
the mean kinetic energy at a given point of
space is -', P'/2m. To get the total kinetic energy,
we multiply this by the number of electrons
per unit volume, and integrate over a11 space.
As with the potential energy, the integrals have
not all been evaluated, and some had to be
computed by numerical integration, so that it is
not worth while to give the details of the inte-
gration. In Fig. 7 we give the total energy as
function of X for Cu. In comparison with the
Thomas-Fermi method, the effect of including
exchange is to lower the total energy decidedly.
It is still not lowered enough, however, to give a
minimum, but the energy is practically constant
within the error of the calculation in the neigh-
borhood of the observed distance of separation. '
It is to be noted, however, that Wigner and
Seitz' have found that a considerable part of
the cohesive energy of sodium comes from the

8 In the earlier paper (reference 1, p. 234) it was stated
that approximate calculations appeared to give a minimum
in the curve. This is not verified in more accurate compu-
tations.



J. C. SLATER AND H. M. KRUTTER

.694

.702
2 io X

FIG. 7. Total energy, in units of —Zey, as function of X, for
Cu, Z =29, Thomas-Fermi-Dirac method.

correlation energy between electrons of opposite
spin, a feature which the Fock and Thomas-
Fermi-Dirac methods neglect, so that we could
not expect to get nearly as low an energy as is
observed.

The virial theorem, as far as the writers are
aware, has not been discussed in general for the
Thomas-Fermi-Dirac model, and since we have
not obtained analytical forms for the kinetic
and potential energies, it has not been possible
to verify it analytically in the present case.
However, we have computed pv both from the
virial method and from the slope of the total
energy curve, and the two values agree within
the error of the numerical calculation, so that
we infer that the theorem holds in the present
case. The pressure is quite different in physical
interpretation from what it was in the Thomas-
Fermi method. There, as we have pointed out,
it is the perfect gas pressure of the electrons
striking the boundary of the sphere. Here, 'a

larger density of free electrons is allowed at the
surface of the sphere than in the Thomas-Fermi
case, so that their pressure as a perfect gas would
be greater than before. The exchange, however,
gives a negative term in the potential and the
total energy, which becomes greater numerically
as the metal is compressed. Thus it gives rise to
an attraction, and negative pressure, which just
result in zero pressure. If our model were
sufficiently good to give the cohesive effect, this
attraction would slightly outweigh the repulsive
effect of the gas pressure.

From the foregoing discussion we see that
neither the Thomas-Fermi nor the Thomas-
Fermi-Dirac method as applied to metals gives
results of sufficient accuracy to use for investi-
gating the energy in the neighborhood of equi-
librium. On the other hand, the potential field,
momentum distribution, and various other fea-
tures promise to be of decided value as first
approximations in more accurate treatments of
the metals. One further field in which the method
might be advantageous is in investigating the
limiting behavior of matter under high pressure,
as it is found particularly in astrophysics.
Stellar material, either at low temperature and
very high density as in the dense stars, or at
high temperature and more normal density, as
in hot stars, could be approximated as in the
present paper, and a much better approximation
to the equation of the state could be found than
has been so far obtained.


