
AP RIL 1, 1935 PH YSI CAL REVI EW VOLUM E 47

Some Studies Concerning Rotating Axes and Polyatomic Molecules
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The theory of slTlall vibrations when the potential energy
is invariant under the rotation-displacement group is de-
veloped. The results are compared with the Brester-Wigner
theory of the normal coordinates, and it is shown that the
use of these coordinates implies the use of a particular
(normal) system of rotating axes whose construction is
given. It is shown that when the motion of a normal mole-

cule is referred to these axes, those terms of the Hamil-
tonian which are linear in the angular momenta will be

especially small and of the same order of magnitude as the
quadratic terms (Casimir's condition). When the amplitude
of one or more of the normal vibrations becomes large, this
is no longer true of the normal axes; this will always be the
case when one of the normal frequencies is small compared
to the others, as has been noted by other writers. The nor-
mal axes are not the principal axes of inertia of the instan-
taneous configuration of the system, and certain conclusions
recently published by the author are wrong for that reason.

1. INTRQDUcTIQN

N the theory of polyatomic molecules, free use
- - is made of the possibility of referring the
positions of the individual atoms to rotating
axes. It has become conventional to suppose that
these axes satisfy two conditions, but, so far as
I am aware, no investigation has shown that
these two conditions are compatible, nor has any
construction been given for finding the axes
which satisfy them. The present paper will give
a construction for finding these axes for normal
molecules; it is doubtful if such axes exist for
anomalous molecules.

The first of the two conditions was formulated

by Casimir' and depends on the fact that the
Hamiltonian will always be a quadratic function
of the components of the total angular mo-

mentum along the moving axes. This function
will always have terms of the zeroth, first and
second degrees in these components. If the
molecule is quasi-rigid, and the quantum con-
ditions are taken into account, the division into
terms of zeroth, first and second orders for the
purpose of a perturbation calculation will ordi-
narily coincide with the division into degrees
just mentioned. Casimir showed that it was
plausible to suppose that a particular coordinate
system could be found such that the terms of
the first degree were exceptionally small and of
the same order of magnitude as the quadratic
terms.

The second condition on the coordinate axes

has entered the theory in a somewhat casual
manner. It is automatically imposed by the
ordinary use of those normal coordinates intro-
duced by Wigner' and Brester, ' and can be
avoided only by extraordinary care. The normal
coordinates may be defined as linear functions
of the cartesian coordinates in a particular set of
rotating axes. Conversely, the coordinates in this
set of axes are linear functions of the normal
coordinates, the coefficients of which have been
tabulated by Brester. If another set of rotating
axes is used, the cartesian coordinates will not
in general be linear functions of the normal
coordinates, or if this should accidentally be the
case, the coefficients will not be those tabulated
by Brester. Another set of considerations enters
to obscure this rather simple relation: the normal
coordinates are supposed to have infinitesimal
values in those cases where they are actually
used. Then Taylor's theorem is invoked to make
it plausible to suppose that the functions men-

tioned will be linear in every case. This does not
alter the fact that their coefficients will have
Brester's values only in rare cases. Furthermore,
it is a troublesome fact that the functions
(direction cosines) involved in the transformation
from one set of cartesian axes to another will

have branch points; it is therefore not clear that
the use of Taylor's theorem is justified. To
summarize: it may be said that the use of the
normal coordinates practically implies the use of
one definite set of rotating axes. The question

H. B. G. Casimir, The Rotation of a Rigid Body in
Quantum 3IIechani cs, Chap. V. Dissertation, Leyden
(1931).

' E. Wigner, Gottinger Nachrichten, p. 133 (1930).' C. J. Brester, Kristallsymmetrie und Restrahlen.
Dissertation, Utrecht (1923).
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arises: is Casimir's condition fulfilled by this set?
This will be shown to be the case provided only
that none of the normal frequencies is unusually
small, or what amounts to the same thing, that
none of the normal vibrations has an unusually
large amplitude.

A survey of the literature discloses no previous
investigation of this problem, but seems to
indicate that different authors have held di-
vergent opinions as to the probable outcome of
such an investigation. Many of these opinions
are not clearly expressed but must be deduced
from the analytic procedure adopted. In a
recent paper, I have studied the use of the
principal axes of inertia as the rotating axes. '
I was led to this by the erroneous belief that it
was this system that is associated to the normal
coordinates, and that Casimir's condition would
be fulfilled provided only that the molecule is
quasi-rigid. After publication, it was noticed
that this belief was wrong, and that therefore the
usual methods of calculation need modification
when used with this system of axes. Professors
Casimir and Van Vleck have both considered
these modifications and shown that one of my
conclusions was wrong. The latter has recently
published an account' of his calculations which
contains an excellent explanation of the matter.
Apparently no one noticed that the axes are not
those associated to the normal coordinates, but
a comment from Professor W. V. Houston led
directly to a recognition of this fact.

origin) be x,. If the unit vectors along fixed
axes are e; (i =x, y, s) then

xa =P iei&ia.

Suppose that a moving system of axes has been
defined in some way which need not be specified
further at the moment than to say that its
origin is at the point X=+;e;X; and that unit
vectors along its axes are z.;. It is convenient to
suppose at the outset that the origin X is at the
center of mass of the molecule and that both
fixed and moving systems are right-handed.
Then the Eq. (1) may also be written

or

x.—X=+;s;y;.

&aa —+i= Ei&'iyia~ (2)

where C;q=e;

are the direction cosines of the moving axes and
the y;, are the components of the vectors x —X
along the moving axes.

The specification of the instantaneous position
of the moving axes requires six numbers, which
may be taken to be the three X; and the Eulerian
angles of a;. There being 3N of the quantities
x;, it follows that at most 3N —6 of the y;, are
independent and that they may be expressed as
functions of 3N —6 generalized coordinates q), .
The y;, will thus satisfy six equations identically
in the q)„ three of these will be

P.m.y;.=0, (3)
2. THE GENERAL TRANSFORMATION TO

ROTATING AXES

%hen the motion of a system of particles is
referred to a moving set of cartesian axes, the
latter may be defined in several ways: (1) As an
explicit function of the time only; (2) as an
explicit function of the instantaneous positions
of the particles only; (3) in more general ways.
The first method of definition is treated fully in
the standard texts on dynamics, but is quite
irrelevant to the molecular problem. In this
section it is proposed to give an account of the
second.

Let the mass of the ath atom (ii, =1, 2 X) be
m, and its coordinate vector (from a fixed

4 C. Eckart, Phys. Rev. 46, 383 (1934).
~ J. H. Van Vleck, Phys. Rev. 47, 487 (1935).

and the others will be left in the undetermined
form

These last equations constitute the definition of
the moving system.

The vectors e; are functions of the Eulerian
angles only, and through these, of the time.
As they vary, they remain of unit length and
mutually perpendicular; from this it follows
that

ds;/dt=Qxs;,

where 0 is the angular velocity of the moving
axes. It is a linear function of the time-derivatives
of the Eulerian angles but depends on the angles
themselves in a somewhat complicated way,
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described in all standard texts. From Eq. (5) it
follows that

d(x —X)/dt = Q;(II x r, ;y;.+s;j;.),
and hence that the angular momentum about
the center of mass is

M=,Q,P;Q;m. (s;y;.) x (0x s;y;,+s;j;.). (6)

It is important to note at the outset that when
Q=O, M is not zero but equal to

~=K m (s*(ya 9 y* Vw )+' ' ' I. (7)

A can be defined by the same formula when
040 and is then the angular momentum of the
atoms relative to the moving axes. It is necessary
to distinguish this from the components of the
total angular momentum in the moving system,
which are M; and defined by M =g;s;M;. Similar
equations define the components of A and 0 in
the moving system; in terms of these, Eq. (6)
may be written

where
M; = Q;A;;0;+A;,

A aa = Kama(yza'+y za'),

A ay = Pamayzayya& etc.

are the components of the moment of inertia
tensor in the moving system. Eq. (7) may also
be written

gati

= ZxqxÃiy
where

&~*=Z.m.Lr"(~y-/~m)

(9)

From this it follows that the momentum con-
jugate to g), is

P~ = 2' ~x,q, +K*A'ft'.

It is to be noted that p&, 80 when qua=0; the

y-(~y"/~q. )j, «c—(1o)

The kinetic energy, T (after ignoring the
energy of the center of mass) is given by

2T= P.m. Ld(x. —X)/dt]'

= Q;Q;A;;Q, Q;+2+;P),qgB&„Q;

+Z~Z, ~~,q~q„

where Cz„=P;P„m.(8y„ /Bq&) (By,,/Bqa).

general analogy between the Coriolis forces and
a magnetic field becomes apparent in these
equations. To find the Hamiltonian kinetic
energy it is necessary to solve Eqs. (8), (9) and
(11) for 0; and qa in terms of M; and pq. The
solution will be given only for the case C),„=8) „,
which is sufficiently general to illustrate the im-
portant points:

where

Q, = Q;n;;M; PgpxP—g;,

q~ = P„v~,p, ZA—;M;,

A, ;—P&.AA~;=(n ')';,

pki —Zi2~XiniA

VXjl '4a+EzÃ7Paz'

From this the Hamiltonian kinetic energy is
obtained as

It will at once occur to the reader that a sure
way of satisfying Casimir's condition is to
require Pq,

——0 for all qq, which amounts to
requiring B~;——0; These are 3X—6 differential
equations for the, as yet undefined, y;,. How-
ever, it is probable that these equations possess
more than six integrals independent of g~, and
it has been seen that only this number of
identities in the y; is permissible. The probability
of this event becomes apparent on noting that
the condition is equivalent to A;=0, and the
possibility of securing this for all g& and j& by a
definition depending only on the positions of the
particles is not reasonable. It is, however, always
possible to require that Bq; =0 for one definite set
of values of g),. This no longer restricts the
definition of the y; to an impossible extent.
It is then reasonable to suppose that those terms
of the kinetic energy which are linear in 3EI; will

be especially small for those values of q~ near
the chosen set. If this is also the region in which

the motion of the system takes place, a first
step in the direction of fulfilling Casimir's con-

dition will have been taken. This matter will be
considered in greater detail at the end of the
next section.

2T= Q,Q;n, ;M,M; 2+gg~pgPg—;M;

+ExZ.v~,P~P' (12)
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3. THE THEORY OF SMALL VIBRATIONS WHEN

THE POTENTIAL ENERGY IS INVARIANT

UNDER THE ROTATION- DISPLACE-

MENT GROUP

The usual theory of small vibrations considers
only two cases (1) All coordinates vary only
by infinitesimal amounts; (2) those coordinates
which vary by finite amounts are ignorable.
Neither case is realized by the polyatomic
molecule; the Eulerian angles vary by finite
amounts and are not ignorable, since the kinetic
energy depends on the components of the total
angular momentum in the moving system, which
are not integrals of the motion. The potential
energy is independent of these angles, however,
so the most general case is not yet at hand.
It is none the less necessary to build the theory
from first principles, and little reliance may be
placed on analogies with the results proven in
the standard texts.

The invariance of the potential energy U under
the rotation-displacement group results in

whenever

where

U(s,,+bs,,) = U(s;,)+Apz(cot, lgx)',

bye =g;P.if)„.bs,.
(13)

(14)

are linearly independent functions. The quan-
tities A and cvq are positive constants not equal
to zero, but whose values are as yet quite

' See, e.g. , E. T. Whittaker, A nalytica/ Mechanics,
Chap. VII; 3rd ed. , Cambridge (1927).

where R,; is an arbitrary rotation matrix and P;
the components of an arbitrary vector. According
to the general postulate of the theory of small
vibrations, U is supposed to have a minimum for
some configuration x; =z;, ; because of the in-

variance, it will have this same minimum value
for a six-dimensional continuum of other con-
figurations, and any one of these might be chosen
for the following considerations. It is well to
make the choice somewhat carefully, and to
require s; to be a configuration whose center of
mass is at the origin, and whose principal axes
are parallel to the fixed coordinate axes.

Since U is supposed not to have a singularity
at s;. it may be expanded in the form

arbitrary. The coefficients g&,, are also arbitrary
to a certain extent: to see this, note that Eq. (13)
remains quite unchanged if the quantities (coqbgz)

are subjected to an orthogonal substitution.
This may be utilized later to normalize the
definition of the bg), . The g),;, are not entirely
without restriction, however; the most important
arises from the invariance of U: the most general
infinitesimal rotation-displacement is given by

8s„=|l),+80„s„—tl0,s„„etc., (15)

where 8f and 50 are six arbitrary infinitesimals.
If these values of bs are substituted into Eq. (14)
the 8g must vanish, since otherwise U(a+as)
0 U(s). This results in the equations

These will be linearly independent unless all N
of the points g, lie in a straight line, i.e. , unless the
equilibrium configuration of the molecule is
linear. This case will be excluded from further
consideration. It follows that there are at most
3N —6 of the 8g)„ it will also be supposed that
this maximum is reached. There will thus be
many solutions of Eq. (14), all of the form

~sia Q x fig'zsxi a

The difference between any two of these will
have the form of the right side of Eq. (15), 6$
and bQ now representing linear functions of the
8g, determined by the two solutions in question.
It is thus seen that the s&; are arbitrary to a
greater extent than the g),;,.

To remove this additional arbitrariness, it is
necessary to impose six linear equations on the
s),;, for every value of ) .These may be taken to be

P.m.sg;.=0,

2;EzI;;z», ;z=O,

where the 7;;, are 9N numbers restricted only
by the requirement that a certain determinant
shall not vanish. This determinant has the
matrix

&iz =ga( eliza&za &i za&za),

These equations are all invariant under a change
of normalization, and this may now be carried
out so that

P,Q,m.sg;,z„;,= A 8),„,
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y ja Sja+ QXQXSXja (20)

For Eq. (3) is fulfilled because of the choice of
the s;, and Eq. (17). The definition of the axes
is obtained by eliminating the g from Eq. (20')
and is

provided that the co~ are given certain values
determined by the form of the potential energy
function and called the normal frequencies. The
constant A in Eq. (19) must have the same value
as in Eq. (13), but is otherwise arbitrary. If it is
given the dimensions of a moment of inertia,
the bg will be dimensionless and s'), ;, will have the
dimensions of a length.

It will now be shown that it is always possible
to define a system of rotating axes such that

Ya (y7 a) Q am, y „,y zap etC. ,

and the approximate set is defined by

gama(yiasja+y jasia) = 0' (24)

In this case, the Eqs. (22) are somewhat sim-
plified because Eqs. (24) are equivalent to A&„j
=0. The Z-determinant is (A, —A„)(A„—A.)
X(A.—A ), so that no approximate set exists
when two or more of the principal moments of
inertia are equal at equilibrium.

It is also possible to carry the considerations
of the end of the preceding section to a con-
clusion: let it be required to find a linear set of
axes for which B),;——0 when g), ——0. This can be
done by choosing the V;j so that Eq. (18)
reduces to 8),;&'& =0, which is explicitly

g jZa Fjja(yja sja)

The quantities determining the kinetic energy
are readily computed and have the form

Ajj Aitiij+ZXQXAiij+ZXZziiigzAizijs

Kama(&jason ja sjasiia) = 0

This requires that

~saba = 0y ~zya = ~yea =~a~zaq

(25)

A'=AP'+Z, q,A, *,

Cg„——A b),„.
The coefficients of these equations are functions
of s;, and .~&;, only; all of the A's are symmetric
ini and j, while Bz„,———B„z;.

It is now possible to consider the relation
between the coordinate systems just defined
(they will be called linear systems, since their
defining equations are linear) and more general
systems, defined by Eqs. (4). It is supposed that
these latter are satisfied by y; =s;, ; then for
small values of y; —s;, they are approximately
the same as Eqs. (21) with

Fi7a = CO us't ~ X (8 7z/By ja) z= z. (23)

In general there is thus a linear system which
differs from a given system only by quantities
of the second order in (y;,—s; ). This approxi-
mate set of axes is uniquely determined by the
original definition, and other linear systems
differ from it by quantities of the first order.
Occasionally, however, no such approximate
linear system exists: this is true whenever the
Z-determinant vanishes.

These matters may be illustrated by the
principal axes, for which

The Z-determinant is now simply A,A„A„and
cannot vanish since the linear molecules have
been excluded. Eq. (21) becomes

Kama(siay ja &jayia) =0,

or, because of Eq. (2)

where

P~(Fj,'cj,j Fj,;cj,') =0, —

Fj,;——Q.m. (xi,.—Xi)s;..
(26)

These results can be given a geometric inter-
pretation: defining the three vectors F;=g j,ej,Fi;,
Eq. (26) becomes

F; s;=F; e;. (27)

and the symmetric matrix f,; can be determined
from

F,"F;= Qj fg fj;

The vectors F; can be determined before the
rotating axes are known; Eq. (27) states that
these are defined so that the projection of F, on
the y axis is equal to the projection of F„on the
x axis, etc. The analytical procedure for finding
them is not much more complicated than that
for finding the principal axes: Eq. (27) is equiva-
lent to

F'=Zjf'zs, f'z=fj'
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It is thus the square root of the Gram matrix of
the vectors F. Its elements will. always be real,
since the characteristic values of the Gram
matrix can never be negative. If none of these
are zero, the F will not be coplanar, and the
solution of Eq. (27) will be simply

s'=Z~f' [F )
where the [F,) are the vectors reciprocal to the
F;. For the important special case of molecules
having a plane configuration, one of the vectors
F will vanish identically. It can be shown that in

this case two of the vectors a are in the plane of
the non-vanishing F and the third perpendicular
to it.

This system of axes will be called the normal
system, and its associated q& the normal coordi-
nates; this does not conAict with established
custom, since it will be shown in Section 5 that
these are the coordinates studied by Brester and
Wigner.

4. CAsIMIR s CoNDITIoN

It will now be shown that the normal axes
satisfy Casimir's condition except in the case of
molecules which are not really to be considered
as rigid. In doing so, free use will be made of a
proposition which is strictly true only in classical
mechanics, and whose extension to quantum
mechanics involves assumptions which have not
been adequately studied. This is the proposition
that, when the energy of the system is small

only those values of y;, need be considered which

differ from s;, by small amounts. If the arbitrary
constant A be chosen to have a value of the
order of magnitude of the A;, this is equivalent
to considering only values of g& which are much
less than unity.

The Eqs. (8) and (11) may be written, in the
case of the normal axes,

M;=AiQ;+Q;T)q) Ag;;Q;

+QjQxQ pqxqpAxyij Qj+ QxQy qkqpÃpA

p~ =A q~+ Z.Z;q,A„Q;.

The A's and 8's are all independent of the q), and
the Eulerian angles and all have the order of
magnitude of A. The solution of these equations

may be written

6= (p~ —2'Z.qP~. 'Q')/A

Q, = (M; —i1 )/A++;(Qgqgag;;+ )(3I; 4—),

~i' =

&ZAN),

(p& q, —p,q~)A„/A

Here A must not be confused with the previous
A;, from which it differs by terms of the order of
pq', the dots in the second equation indicate
quantities of the order of magnitude q'/A or
smaller, and the constants u), ;; have the magni-
tude 1/A and can easily be calculated explicitly.
The expression for the kinetic energy is

2T= Qxpg'/A++, (cV;—A )'/A;

+QxQ;Q;qua)„;(M; —A )(3/I; —i1 )+
It is now necessary to investigate the order of

magnitude of the terms entering into this ex-
pression. It may be supposed that

qi,- (A./A(o&, )i pg (SAo)),)&.

Furthermore, 3'; 5 and it is easily seen that

p~q, -&(~~/~, ) '. (29)

If all the normal frequencies are of the same
order of magnitude, it follows that A k. The
quantity e (5/A a&z) & may be taken as the
perturbation parameter, and the three sums of
Eq. (28) are of the order ka&, e'ki0 and e'5~,
respectively. Casimir s condition is thus fulfilled.

It may happen that one of the normal fre-
quencies is much smaller than the others, in
which case Eq. (29) indicates that some of the
terms in A will have an undesirably large
value. This situation has come to be known as
the "phenomenon of slip. " In this case also, the
amplitude of variation of the corresponding
normal coordinate will no longer be small, and
the molecule can no longer be called quasi-rigid.
It may thus be said .that the normal system
satisfies Casimir's condition for all quasi-rigid
molecules, this being really a definition of quasi-
rigidity. It is doubtful whether it will ever be
necessary to consider any other linear system of
axes in connection with the molecular problem,
for when the normal axes are not suited for its
discussion, it is not clear that any other linear
system will be better adapted to the purpose.
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5. THE SYMMETRY OF THE NORMAL COORDINATES

The discussion of the normal coordinates given
by Brester and Wigner' ' divers from that given
here in certain formal respects, and it must be
shown that the two lead to identical definitions.
In the quadratic form of Eq. (13), the &oz have
here been supposed not to be zero, and as a
consequence, there are only 3N —6 of the bg's.
Brester and Wigner, on the other hand, require
the form to depend on 3N bg's, and consequently
must admit the value zero as possible for co),.
This is ahvays permissible, but there is then an
arbitrariness in the six additional 6q's which
corresponds exactly to the arbitrariness in the
s),;, described in Section 3. T'his additional
arbitrariness is not considered further by them,
but is removed by the device of requiring the
additional gz; to satisfy' the same Eq. (16)
which are satisfied by the others. There being
now 3X of the Eq. (14), the s&„, are completely
determined except for normalization; this may
be carried out so that Eq. (19) are valid for all
3N values of X. The number of these equations
is thus increased from (3X—6) (3%—5)/2 to
3N(3%+1)/2; the new equations, insofar as
they do not merely determine constant factors,
prove to be precisely the Eqs. (17) and (25).
The former has here been made common to all
linear systems, the latter expresses the charac-
teristic property of the normal system. It is
interesting to note that the six additional bg's
obtained in this way are essentially the 8$'s and
80's of Eq. (15).

The elegant device of the null-frequencies thus
leads directly to the normal system, without the
necessity of considering the other linear systems.
Its only disadvantage is that it does not make
it clearly evident that a rotating system of
axes has been defined, and that the symmetry of
the g~ depends as much on the choice of the axes
as on the symmetry of the equilibrium con-
figuration. This can be most clearly seen from
the present point of view: the relation between
the g's and the cartesian coordinates (either x;,
or y; ) will depend on the I";;, as well as on the

s,, If the former are chosen in a very un-
symmetric manner, no amount of symmetry of
the latter will avail to make the q's symmetric
functions of the cartesian coordinates. It is
thus not permissible to define a system of
rotating axes in an unsymmetric manner, then
approximate them by a linear system, and
suppose the resulting g), to be the normal co-
ordinates.

This has frequently been done in the literature,
and it is not always easy to determine whether a
serious error has resulted or not. Fortunately
there are certain quantities which are invariant
under a change of the Y;;: the normal fre-
quencies are such quantities. Hence conclusions
concerning the degeneracy of these, obtained
from a consideration of the normal system, will
be equally valid in any linear system. There
must also be some way to show that the de-
termination of their activity in emission and in
the Raman effect is invariant. If it should ever
prove to be really necessary to use the general
linear systems, it will be useful to precede it by
the development of the theory of these in-
variants. For the present it appears sufficient to
use only the normal system.

Confining the attention to this, certain possi-
bilities for the further application of symmetry
considerations become apparent. Since A must
have the character of a vector product (it must
behave like M;.), it follows that its components
and also the B~„; and B~; must have certain
determinate symmetry properties. These may be
discussed in the same way as the properties of
the dipole and quadrupole moments, and it is
often possible to show that they must vanish.
In other cases, they are related by linear equa-
tions, and in still others, the matrix elements of
A. which enter into the secular equation may
be shown to vanish. A very interesting ele-
mentary treatment of these matters has been
given by Teller. ~

Professor Wigner has kindly read the manu-
script of this paper.

~ E. Teller, Hand- und Jahrbuch d. chemischen Physik
9, 125 (1934).


