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Two other M odd Z odd nuclei 27Co"" and
uSc4' " have I=7/2 and g(I)-factors 0.77 and
1.0, respectively. These g(I) values which the
respective writers give only as estimates are of
the same order of magnitude as those of 55Cs"',

+ K. R. More, Phys. Rev. 46, 470 (/934). See also H.
Kopfermann and E. Rasmussen, Naturwiss. 22, 219 (1934).

"H. Kopfermann and E. Rasmussen, Zeits. f. Physik 92,
82 (1934).See also H. Schuler and Th. Schmidt, Naturwiss.
22, 758 (1934).

57La'" and 51Sb"'
The apparent regularity in mechanical and

magnetic moments pointed out above suggests
that the nuclei Cs, La, Sb and possibly
Co" and Sc" have some structural feature in
common.

In conclusion the authors wish to thank Pro-
fessor E. F. Burton, Director of the McLennan
Laboratory, for his interest in this investigation
and for the facilities placed at our disposal.
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It is demonstrated that in a system of

unsimilar

particles,
the permissible wave functions are either symmetrical or
antisymmetrical with respect to interchanges of the par-
ticles, if the following principles are assumed to be valid:
(1) The interchange of two like particles produces no
change in any measurable property of the system. In par-

ticular, if p is to be a permissible wave f'unction, 1' p must
be unaltered by such an interchange. (2) All the wave
functions obtained from a given permissible wave function
by permuting the similar particles are also permissible
wave functions for the same eigenvalue.

T has often been remarked that the principle
- - of antisymmetry of the wave function for
electrons appears in quantum mechanics as
something simply superimposed on the theory to
take into account the Pauli exclusion principle.
Also in the treatment of photons a corresponding

principle of symmetry must be superimposed to
obtain the Bose-Einstein statistics, which one
must assume photons to obey in order to obtain
the Planck radiation law. These and other facts
have led to the empirical principle that for any
given type of particle only symmetrical states
occur or else only antisymmetrical states. It is

the purpose of this paper' to show that this
empirical principle follows logically from other
more fundamental principles, vis. :

(1) The interchange of tvoo tike partictes in a
dynamical sysfern mil/ produce no change in any
measurable property of the system.

* Now at the Massachusetts Institute of Technology.
'E. E. Witmer and J. P. Vinti, Phys. Rev. 43, 780

(1933).

(2) &tl the mathematical quantities obtained
from a given permissible mathematical quantity
appearing in the theory, by permuting the similar
particles, are also permissiMe. We have in mind
especially the quantity lt.

These two principles together we shall call the
principle of the identity of similar particles. They
appear to be necessary from the physical point
of view; in other words they are physical axioms.
It has often been assumed that wave functions
neither symmetrical nor antisymmetrical would
distinguish between like particles but explicit
proofs are lacking. We shall show that the sym-
metry or the antisymmetry follows from the prin-
ciples stated above.

Let there be N particles of the type considered,
besides other particles. The coordinates (x;, y;,
s, , o;) including spin o.;, if present, of the ith
particle we shall indicate by x;. The wave
function of the system may be indicated as
follows:

4'(+li &2& ' ' '&N
y b) ~
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Here the. b symbolizes the coordinates of all the
other particles; we shall henceforth omit it. Let
us now permute the particles by permuting the
positions of their corresponding coordinates in

the wave function. The permutation operator
we shall call P, where P stands for

x =x;; i j=12
so that

Pig( x\~ x2y ' xg) = P[P(x» x)~ . xg)]

(2)

= P(xg', x2', x~') = Pp(xg, xg, x~). (3)

Here x stands for the coordinates of the ith
particle after the permutation.

Pg(x~, x2, ~ ~ ~ x~) is now a new function of the
coordinates (x~, x2, x~). The permutation
which simply interchanges the particles a. and P,
we shall denote by P p.

Now
~
P(x~, x~, .xy)

~

' is in concept a
measurable physical quantity, since it is a
probability density. Hence the first principle
above requires

+1) +2) ' ' '+N +2~ +1 ' ' '+N

X])X2p'''XN ~

Here we have interchanged merely the particles
1 and 2, so that

f(xl y x2 y
' 'xx) P12$( ix) x2) ' ' 'xN) ~

Now all permutations can be expressed as a
product of transpositions, i.e. , interchanges of
two particles. Therefore we shall restate the
principle of the identity of like particles as
applied to the probability density in the fol-

lowing manner. If P~, P~, P„.. represent the
totaIity of permissible eigenfunctions of states of
the system of Ã particles, then P &(Pg &) must

equal Pg&, where PI.„ is any of the permissible

eigenfunctions. This principle will be used in

the sequel to carry out proofs by the method of
reductio ad absurdum.

We need a preliminary theorem. If

Let us suppose that in Eq. (4) some of the
interchanges give rise to plus signs and others
to minus signs. Let us divide interchanges into
two classes, the first class (A) containing those
associated with plus signs and the second class
(B) those associated with minus signs. Now
there is some particle 0. in class A which also
occurs in class B. To prove this, pick any
particle rl, at random from class A. If it does not
occur in class B, then all the interchanges (e, 1),
(m, 2) (n, , m 1)—, (e, n+1), ~ ~ ~ (n, X) are in
class A. But then every one of the particles 1, 2,
~ N occurs in interchanges of class A, so that
if class B has any members, there must be at
least one particle n common to both classes.
Accordingly, let P e give a plus sign in Eq. (4)
and P ~ a minus sign.

Now (5)

or Peak =P-vP-eP'-~4 (6)

Eq. (5) gives Cp~
——C pC„C &=C ~C &'=C ~.

From Cp~
——C ~ it follows by letting a, P, y take

on all values from 1 to N that the C's are all

equal, so that the signs must all be plus or else
all minus.

Thus if we can show that P eP = &f, the wave
function must be either symmetrical or anti-
symmetrical. Suppose we let

P= pe'& (p, q real).

If P is any permutation, P&=Ppef'~&

p'= 4 4'=P(4'4') = (P4)(P4) = (Pp)'

Thus Pp= &p= pe™,m=1 or 2,

Thus by Eq. (5) Pe~/= —P, but by Eq. (6)
Pe,f=+P. We are thus led to a contradiction,
so that either class A or class B must be empty.
The signs must therefore all be alike.

An alternative, ' more direct proof, is as
follows. We may write P eP=C pP, where C,e—&1

(4) so that PP —pei [Py+m a ] —ei sf

the sign must be positive for all interchanges or
else negative for all interchanges.

'This proof was called to our attention by Dr. G. H.
Shortley (private communication).
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where e =Pq —g+me, a real function of the
coordinates. Thus PP = e"*~&P is a necessary and
sufficient condition that P(PP) =it/.

Now let P be P p, a simple transposition. Then
g $8, ap+ i/a, crp, where ii, ~p ———', (ii +P prt) and
ga, ap —

2 (YJ Pa/7/) ~
so that P~prt, p rt,——~ti, and

Pep'ga, ap 'ga, ~p. Then, easilyy 6 —2q~ ctp+nz7f'.

Thus if P„pp differs from q only by a constant,
e is a constant. Application of P p to the equation,

P P sic/

then shows at once that e"= ~1, and we should
have proved our theorem. However, there is no
reason for assuming g, p to be a constant, so
that we are forced to attack the problem in
another way.

Wigner, Hund and Heisenberg' showed that
the eigenfunctions of a set of N similar particles
fall into a number of non-combining sets with
different symmetry properties. One of these sets
5 is symmetrical with respect to interchanges,
another A is antisymmetrical. When N~3 there
are also sets C neither symmetrical nor anti-
symmetrical. The sets C have equivalence de-
generacy which cannot be removed by any
perturbation symmetrical in the like particles.
Now if P is a permissible eigenfunction, then
P pP must also be an eigenfunction corresponding
to the same value of energy (since P ~H=II,
where II is the energy operator). From the
linearity of the wave equation any linear combi-
nation ciP+c2P pP must also be an eigenfunction
corresponding to the same energy as P. In case
P pP is simply a constant times P, this linear
combination reduces essentially to P. Otherwise
ciP+c2P pP is an independent eigenfunction, and
we have degeneracy. This degeneracy is the
above-mentioned equivalence degeneracy non-
removable by any perturbation symmetrical in
the like particles. The function ciP+c~P,~Q must
thus be considered equally as permissible as f

For in the case of removable degeneracy one
can always apply some perturbation which will

pick out certain of the eigenfunctions as pre-
ferred; which set is singled out by this procedure
depends, of course, on the type of perturbation
(e.g. , an electric field applied to the hydrogen

'E. Wigner, Zeits. f. Physik 40, 492 (1927); 40, 883
(1927); 43, 624 (1927); F. Hund, Zeits. f. Physik 43, 778
(1927); W. Heisenberg, Zeits. f. Physik 41, 239 (1927).

atom selects as preferred eigenfunctions different
ones than those selected by a magnetic Beld
applied to a hydrogen atom). In the case of
non-removable degeneracy on the other hand
there is no perturbation symmetrical in the like
particles which will select any of the eigen-
functions as preferred. We must therefore treat
them all impartially and consider cgP+c2P pP as
permissible as f

One might, of course, simply lay down the
postulate that if P is a permissible eigenfunction,
then the eigenfunction P,~f is also permissible,
and hence, from the linearity of the wave
equation, any linear combination c&P+c2P pf
To permit P and reject P,pf would be to treat
the similar particles n and P differently, so that
this postulate (No. 2 above) is physically ac-
ceptable even without the degeneracy argument.

We have then as permissible eigenfunctions

4", p=4'+P 4padn4", p=P Pp4, —

p being symmetrical with respect to P ~ and
P.. .p antisymmetrical. If 8 is an arbitrary con-
stant, the eigenfunctions

must likewise be permissible. In general, however,

P p(Cia, ) NCiCi. (9)

This is demonstrated in the following manner.

PapC 1 @2) PepC 2 C 1

= —4p, p cos ('y, —7 —8), (12)

where P, , ~
——p, e'&~ and P„p= p,e'&. , the p's

and y's being real. Now cos (y, —y, —h) does not
in general vanish, so that (9) follows.

We have thus shown that if the result of P p

operating on a, permissible eigenfunction P is not
a constant times P, that there must be other
permissible eigenfunctions for which the proba-

and P p(c'Ai) =(P pC' i)(P pC'&) =C'gc'2,

so that

Pap(c'lc 1) c lc 1 c 24 2 C lc 1

2(e " fs, apnea, ap+'O' Ps, apnea, ap) g (~ ~)
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bility density is not symmetric. This result
violates our hypothesis that the probability
density must be symmetric for any permissible
eigenfunction. We must therefore have

where c is a constant. Application of I'
/3 to this

equation shows that @=~i; the preliminary
theorem then shows that the signs are the same
for all interchanges.

We have therefore demonstrated that the
wave functions must be either symmetrical or
antisymmetrical if the two principles stated
above are assumed to be valid.

This idea can be generalized. Using Dirac's
notation, the P we have been using is

(ai' . a»'IH') —= (a'IH')

where II is the energy. Let

(P~' P»'IH') = (O'IH ).—

geo

(p'IH')=h»" e &'~~I "&&»'~~'+»'~2'+"'&dq'(g'IHI).

' P. A. M. Dirac, Princip/es of Quantum 3Achanics, p.
106.

If we apply the permutation P p to this equation,
we see that (p'IH') will be symmetrical or anti-
symmetrical according as (g'

I
H') is symmetrical

or antisymmetrical. It is assumed that the
aPP11catlon of I rrP to

g-(2«l &) (ug' ey'+@2' e2'+" u'3~ &C'3@-)

is to be made in such a way that p and pp are
interchanged at the same time that g and. gp are
interchanged. Thus the transformation function
is symmetrical with respect to an interchange of
particles and leads to the result that (p'IH') is
antisymmetrical for electrons and protons.

This can be generalized still further. We can
require on the basis of the principles stated at
the beginning of this article that the probability
associated with two sets of observables $ and g
shall be invariant with respect to interchanges
of like particles. In Dirac's symbolism

I
($'I 0') I'

shall be invariant with respect to interchanges of
similar particles. . This will lead to the result that
($'

I
q') must be either symmetrical or anti-

symmetrical, provided that the idea of permuting
particles applies to the quantity in question.

One of us (J. P. V.) wishes to acknowledge
interesting discussions with Professor P. M
Morse and Dr. G. H. Shortley in regard to some
of the points in this paper.
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A method is given whereby a direct study of ion distribu-
tion during the initial stages of spark discharges may be
made by means of a Wilson cloud chamber and a potential
impulse of less than 10 ~ sec. duration. Photographs are
shown for ion distribution between a point and plane with
the point both negative and positive. The mechanisms re-
sponsible for the initiation in these cases has not been dis-

covered. It was found that a maximum field of 10' to 106
volts/cm was a necessary condition for ionization. With
the point negative this could cause suScient auto-electronic
emission to start the discharge. With the point positive it is
shown that it is improbable that free electrons in the gas
are necessary for initiation of ionization.

HE methods ordinarily used in the investi-
gation of the initial stages of spark dis-

charge give little direct information concerning
the ion distribution in the gap space before
suf6cient luminosity for visual or photographic
observations has developed. A knowledge of this

ion distribution is essential for an understanding
of the process involved in the starting of a spark
discharge. This paper is the report of an attempt
which has been made to determine it in a direct
manner.

The method with preliminary results was


