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TABLE IV.

Li+
Na+
K+
Rb+
Cs+

Ne

228
82

109
81
58

85
67

Kr

385
314

Xe

237
306

K+ in Ne 109 Rb+ in Ne 81
Na+ in A 67 Na+ in Kr 314

Difference 42 —233

Cs+ in Ne 58
Na+ in Xe 306

The potentials do not even drop off uniformly in
one direction as might be anticipated. The
difficulties of avoiding secondary electrons be-
comes increasingly great with ions of higher
speeds, and this interference of secondaries may
possibly explain the results of Beeck and
Mouzon. It is to be noted that the ionization
potentials they observed are in most cases up in
the range of 300 to 400 volts. Oliphant" and

"Oliphant, Proc. Roy. Soc. A12'7, 373 (1930).

Correlation similar to that found in other cases
does not appear here.

others have shown that the emission of secondary
electrons when positive ions strike metal surfaces
increases strongly with increasing energy. Nord-
meyer" has also discussed in detail the strong
likelihood of certain disagreements between his
results and Beeck's being due to secondary
electrons.

Finally, it may be pointed out that the
investigation was carried out on the ionization at
energies from 5 volts up. Although the behavior
of the ion detector is difficult to analyze when
such slow ions are used in the beam, it was
concluded that no ionization occurred at energies
below those given in the table of results.

The writer is particularly indebted to Professor
L. B. Loeb and Professor E. O. Lawrence who
suggested the application of the space-charge
method to this problem, and to the helpful
direction of Professor Loch. Doctor C. H.
Kunsman, Chief of the Fertilizer Investigations
of the U. S. Bureau of Chemistry and Soils, very
kindly furnished the catalysts used as ion sources.
The writer is also indebted to Doctor O. Beeck
for numerous discussions of the problem.
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The Rotational Energy of Polyatomic Molecules
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It is shown that the quantized energy of a polyatomic molecule is approximately separable
into the internal electronic and vibrational energy plus the rotational energy with the latter
determined by solving the conventional problem of the rigid asymmetrical top. Because of
the large oscillating terms in the Harniltonian function due to interaction between vibration
and 'rotation, this conclusion is not as obvious as it sounds, and seemed, if anything, to be
contradicted by Eckart's recent investigation on the choice of a reference frame. The dis-
crepancy, however, disappears when a second order perturbation calculation is made with
Eckart's coordinates.

T has commonly been supposed in the litera-
-- ture that the rotational energy of a poly-
atomic molecule is very approximately the same
as that of a rigid body with three unequal
moments of inertia Il, I2, I3. In other words, it
is assumed that the total energy can be obtained
by computing first the internal electronic and

the vibrational energy, and then adding an
eigenvalue of the "asymmetrical top" problem,
whose Hamiltonian function is

H,og= Q,=g, ~, g(Pg i,)'/2I;, —

where Pl, P~, P3 are the components of total
angular momentum relative to the three principal
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axes. In order to cover the most general case,
we have here assumed that the mean angular
momentum connected with the nuclear vibra-
tions does not necessarily vanish, but instead
may have components g&, g&, f.„relative to the
principal axes. In this event one must subtract
the vibrational from the total angular momentum
to obtain the purely rotational angular mo-
mentum, whose squares enter in (1). The
terms arise only if there is degeneracy, i.e. , if
several normal vibrations coincide in frequency.
The possibility of such terms was first suggested
by Kramers and Pauli, ' and they have recently
been employed by Te'11er and Tisza' and by
Dennison and Johnston' in analyzing the spectra
of symmetrical molecules. The case g;/0 corre-
sponds not to the ordinary or true asymmetrical
top, but rather to a gyroscopic one with Hywheels
mounted thereon. We wish to stress that our
primary interest is in. the coefficients of I'P, I'2',
Pkk in (1), not in the f' terms, and we hope that
the reader will not be unduly distracted by
their inclusion.

The legitimacy of using (1) has recently been
questioned by Eckart. ' Although the first re-
action of one s physical intuition is in favor of
(1), closer examination (see below) shows that
the interaction of rotation and vibration yields
oscillatory terms in the Hamiltonian function
which are of a larger order of magnitude than
those due to rotation alone, so that conceivably
the rotation-vibration coupling might make the
energy structure different from that given by (1).
In fact by devising a very ingeneous coordinate
scheme, Eckart derives a Hamiltonian function
which suggests that the coefficient of P,2 is more
nearly equal to I,/2(I, +~

—I,+k)' than to the
conventional value 1/2I, . The same anomalous
coefhcients of I'P, I'~', I'3' also appear in a
rotational wave equation given by Hirschfelder
and Wigner. ' As the main result of the present
paper, we shall prove that the anomalies are

' Kramers and Pauli, Zeits. f. Physik 13, 343 (1923).
'Teller and Tisza, Zeits. f. Physik 'Va, 791 (1932); also

especially the article by Teller in Hand- end Jehrbnch der
Chemischen Ehysik, band 9, p. 151 ff.

3 D. M. Dennison and M. Johnston, Phys. Rev. 4'7, 93
(1935).

4 C. Eckart, Phys'. Rev. 45, 383 (1934).' J.O. Hirschfelder and E.VAgner, Proc. Nat. Acad. Sci.,
Feb. 1935. I am indebted to these writers for sending me
the manuscript in advance of publication.

illusory, and disappear when the perturbation
calculations with either the Eckart or H—W
Hamiltonian function are pushed through to the
proper approximation. Thus the final outcome
is to restore the conventional form (1).

A simp/e two dim-ensional exampft, '. Before we
proceed to the general proof for the actual, three-
dimensional case, the nature and solution of the
paradox will be clearer if we erst treat by way of
illustration a hypothetical two-dimensional sys-
tem, consisting of a set of n particles subject to
forces exerted by each other and by a fixed
attracting center. These forces are to be of such
character that all particles can have equilibrium
positions. ~ The general motion can be approxi-
mately described as harmonic vibrations about
equilibrium superposed on a rigid rotation of the
equilibrium configuration about the center of
attraction. If rk, pq be the polar coordinates of a
typical particle, the Lagrangian function is

2Zmk(rk +rk 0'k ) l (rig ' 'my 0k pb
k=1

6 I must by all means mention that in his dissertation,
Groningen 1931,p. 103 fF., H. B.G. Casimir derives Eq. {1)
for a model consisting of a single heavy particle oscillating
about an equilibrium position on a. rotating rigid frame
whose mass is not negligible. This model is doubtless a
sufficiently close approximation to the behavior of a real
molecule to make it reasonably clear that (1) is the correct
result. Further, in a letter to Professor Eckart, of which the
writer learned after the present calculation was made,
Casimir sketches a method whereby (1) can be derived
with Eckart's coordinates and without the restriction to the
"special model, " Casimir's procedure differs from mine in
using a contact transformation rather than second order
perturbation theory. For instance, an alteration in the
definition of the canonical momenta corresponding to the
transformation

P~P exp L(—2vri/h)Z;x;P;B;/2D; j
in the wave function eliminates the troublesome linear terms
from Eckart's Hamiltonian function in the case f;=0.
The meaning of the notation is explained after our Eq. (17).

The difference between Casimir's method and mine is.
mainly superficial. The utilization of the contact transfor-
mation is the more elegant procedure, while perturbation
theory is more explicit in showing how orders of magnitude
enter in removal of the Eckart paradox, and seems to be
easier to apply to unsymmetrical coordinate systems, as in
our two-dimensional example.

& In the interest of simplicity we assume that the mean
electronic angular momentum is zero, or, more generally,
we do not indude the interaction between rotation and the
instantaneous electronic motion. Standard methods are
available for handling this interaction (cf., for instance,
Kronig, J3und Spectre and Molecllur Structlre, Chaps. I, II)
and so it need not be considered here.
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with the understanding that the potential energy
U has a sharp minimum at the equilibrium
configuration

~A: =~I, Pa —Pi = PI (2)

1
+ (I' Z—pa)'+—l; (3)

2rglr12

where

p„=mir'i, p„=mirai, pa=mire'(ii+ii) (4)

mlr1 &Pl+ Embark ( Yk+ 0 i) (5)

Here and elsewhere, to simplify printing, we
write p~ for p~, , and it is to be understood that
all sums over k whose limits are unspecified are
to extend from k = 2 to k =n, with exclusion of
k = 1.The total angular momentum of the system
is P, and is a constant of the motion since P is
canonically conjugate to a cyclic coordinate p&.

Our calculation can be regarded equally well as
a classical or quantum-mechanical one. In the
quantum version, expressions such as PI„&A:, P,
y~, etc. , are, of course, to be regarded as matrices,
and the average values denoted by bars are the
diagonal matrix elements.

Let us imagine that we have found a solution
of the dynamical problem (3) such that all the
coordinates, including q~, are periodic functions
of the time (i.e. , in quantum mechanics are
matrices of the simple Heisenberg type, with
time factors ei '"~"'"'&'). Such a solution represents
a motion devoid of mass rotation, since by
hypothesis p& contains no linear term in t. I et
l be the value of the expression (5) for this
solution. The quantity & can be termed the
vibrational angular momentum, since it exists
because instantaneously r I, / rA, . If we could
replace ri2 by rko, the expression (5) would
vanish for the type of solution under considera-
tion, since it has j~ ——j~ ——0. Such a replacement

At the same time that we pass to the Hamiltonian
form, it will be convenient to introduce in place
'of y2, . , q a set of relative angular coordinates
yi ——pi, —yi (0=2, f) w. hose apse line is the
radius vector to the first particle. One readily'
finds that

is not in general allowable, because marl, 'j~ is
not necessarily the same as m~rI, 'jI,.

We now use perturbation theory to treat the
general rotational case where j~&0 and so P /g.
This is done by replacing P by g+) and making
the perturbation calculation as a series develop-
ment in the parameter ). Actually, P can only
have the quantized values mh/2' in wave
mechanics, and so is not an arbitrary number,
but this difficulty may be circumvented by
solving a hypothetical perturbation problem in
which X is arbitrary, and then substituting the
proper quantized value of ) at the end. ' This
procedure is allowable since it is only when the
last degree of freedom is introduced that P has
any physical significance, and P plays only a
parametric role for the reduced problem of n —1

degrees of freedom obtained by ignoring rp&.

The unperturbed Hamiltonian function is thus
obtained by taking I'=f in (3) and represents
irrotational motion. The perturbing potential is

[li(f.—QP,)+-',X'j/m, r, ', (6)

as this is the difference between the values of
(3) with I'=/+X an'd of (3) with X=1 The.
eRect of the first term of (6) vanishes in the
lowest approximation, since by (4) and (5) with'
P=f

' In particular, the unperturbed motion ) =0 need not
be a quantized one as far as P is concerned, since g need
not be an eigenvalue of P, although of course it is in the
commonest case f=0.

' In using (5) one can take P =g since the unperturbed
motion has ) =0.

and since by hypothesis the mean value of pj
taken over the unperturbed motion is zero. The
coefficient of lii in (6), or what is the same, of
P' in (3), does not have the value 1/2I which is
characteristic of the rigid rotator. This is the
Eckart paradox when specialized to our two-
dimensional system. There is, however, the
difference that in our two-dimensional example,
the anomalous coefficient 1/2miri' cannot possi-
bly, on symmetry grounds, be the right coefficient
of X' in the final expression for the energy, since
the first particle surely cannot be preferred
above all others. On the other hand, the anoma-
lous coe%cient yielded

'

by Eckart's three-
dimensional coordinate system is svmmetrical in
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all particles, and so presents a much more
recondite problem.

The answer to the paradox is that even though
the linear term of (6) in ) does vanish on the
average, its root mean square is of a larger order
of magnitude than the part of (6) which is
quadratic in X. Hence, as mentioned to the
writer by Professor Eckart, it is necessary to
make a perturbation calculation which includes
the second rather than just the first order effect
of the linear term. For brevity, call the two
parts of (6) a), and PX2, respectively. One way of
seeing that the root mean square of 0.) is larger
than PX' is by actual performance of the per-
turbation calculation, as it will turn out that the
second order effect of aX is comparable in
magnitude with the first order effect of P) '.
Another way is by explicit dimensional exami-
nation, which shows that the orders of the
unperturbed vibrational energy, of the r.m. s. of
nX and of PX' are, respectively, hv, hvx, and hvx',
where v is a typical vibrational frequency, and x
is of the order of magnitude I-(y& —y"')'/4vr']'.
As long as we are dealing with small vibrations,
x is clearly a small quantity. For an actual
molecular system it can be shown of the order of
the fourth root of the ratio of electronic to
nuclear mass. "

One must be careful to distinguish between
two things, vis. , the coefficient of X'=(P —P)' in
the original perturbing potential (6), and the
coefficient of X' in the finally computed energy
constant TV. The two are, of course, not neces-
sarily the same, and their difference is the cause
of the Eckart paradox.

We now proceed to the requisite perturbation
calculation, which we shall make in quantum-
mechanical form. By standard formulas, the
perturbed energy is

W=WO+(h2/mprp')F(f Qpg, I —Qpg)—
+(X'/2mgrg"). (8)

Here, in accord with previous remarks, we have
included the second and first order effects of nX

and Phn, respectively. We find it convenient to
use~in many places the abbreviation,

u(n; n') w(n'; n)
F(~ ~) =Z'&- ~-& ', ', (9)

hu(n; n')

'0 Born and Oppenheimer, Ann. d. Physik 84, 457 (1927).

In writing (8), (10) and (11) we have replaced
rl, by rI,', which, unlike r& itself, is a c-number
independent of vibrational structure. This ap-
proximation is a great simplification, and is
allowable because we have already reached the
second order stage, making the corresponding
error third order. A corresponding approximation
was not permissible in earlier stages of the
calculation; in fact we saw that it was the
difference between rk and rI,' which made g/0.
By using (10) we find

F(f Epa' I ——Z p")

=m&r~"I 'F( —ppq, —pmqrq"j'), (12)

inasmuch as r~ is a constant which can be taken
outside the summation in (9). It has been
allowable to omit g as an argument of I' since g
is also a constant or c-number, and so does not
contribute to a sum such as (9) in which diagonal
members n'=n are excluded. The advantage of
manipulating results into the form (12) is that
now the sum in (9) can readily be evaluated
with the aid of the quantum conditions

pay' —vip'= (h/2") ~~', (13)

which are valid since p2, y„, p2, p„can be
regarded as a set of multiply periodic canonical
coordinates for the unperturbed problem ob-
tained by taking P=i in (3). Furthermore,
because the matrix elements all relate to the
Heisenberg system of representation, the time
factor is e' '"&"t"'&' and consequently

j(n; n') =2~iv(n; e') y(n; n') (14)

Eqs. (14) and (9) show that the diagonal ele-
ments of (13) can be written as

F(pa,'i') F(ii; pa) =&a—', —(15)

inasmuch as v(n';e)= —v(N;e'). (There is no

wherein u(n;n') designates a typical matrix
element of a quantity u, with n and n' symbol-
izing the totality of vibrational quantum num-
bers for the initial and final states, respectively.
In virtue of (7) and (5), with P = I,' we have

P—P~=m~r~" (I —Pm~r~" j~)/I, (10)

where
I=m&r~" +Pm~r~".
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trouble from the fact that the matrix multiplica-
tion involved in (13) has a sum inclusive of the
term I'=n, whereas n'=e is excluded in (9):
Namely, the two left-hand members of (13)
cancel insofar as this term is concerned, since
obviously p~(e; n)y~(e; n) =pg(m; n)pq(e; I)
meaning that effectively n'=n can be excluded
from (13).) Since our problem involves no vector
potentials or magnetic forces, we can without
loss of generality suppose the coordinate matrices
for the unperturbed problem all to be real, and
the momentum matrices, which are linear func-
tions of the first time derivatives of these
coordinates (cf. Eqs. 4—5), to all be pure imagi-
naries. Then F(pq, j ~) =F(j ~', p~), and combi-
nation of this relation with (15) yields

2F(p~; —ii) = &a' (16)

"Cf., for instance, M. Born, Uorlesungen uber Atom-
mechunik, p. 291, Eq. {24).

"The complete Hamiltonian function corresponding to
{3) is given in Eq. (26) of Eckart's paper, and so is not
reproduced here. Our expressions I';, N;, y;, D, , 8; are
respectively the same as M;, N;+»+-„, co;+&,+2, 1/2B;, 1/C;

Eqs. (16) show that the expression (12) has
the value 2m~r, "g—mqrko /I and so after put-
ting X=P f (8) —reduces by (11) to W= Wo

+ ', (P f')'/I-, the—two-dimensional equivalent of
(1).

In this demonstration we have used ostensibly
a quantum-mechanical calculation, but classical
theory could have been employed equally well

instead. It is well known that there is a general
agreement of classical and quantum results for
harmonically oscillating systems. With the classi-
cal treatment, the quantum conditions (13)
would be replaced by corresponding expressions
involving Poisson brackets. One would then use
Fourier series containing action and angle vari-
ables instead of Heisenberg matrices, and in

place of (8) one would employ the classical
second order perturbation formula, " which in-
volves derivatives with respect to the action
variables. The quantum proof is fully as easy as
the classical, since the difference quotients in the
former are quite as readily handled as the
derivatives in the latter.

Calculation mitb Eckart's coordinates. The pro-
cedure for the three-dimensional case is very
similar to that for the preceding example. In
terms of Eckart's coordinates, " the formula for

D; = (R',+g+R';+2)/2M(R', +&
—R';+2) ',

(»)
E;=2R;~&R,+2/M(R';+& —R'„+2)', (i =1, 2, 3)

in terms of the principal radii of gyration E&, R&,

R3 of the molecule. The corresponding principal
moments of inertia are

I,= 3E(R';+g+R', +2). (19)

Here and elsewhere, the total mass of the
system is denoted by M, and i+3 is the same
as i Since. (17) is a second-order expression, no
harm will be done if the E.'s are calculated for
the equilibrium position, so that the C's, E's, I's
and R's can all now be regarded as constants
independent of the vibrational structure. To
facilitate printing, we do not, however, any
longer attach zero superscripts to show explicitly
&hat they relate to the equilibrium position. As
in the previous example, it is nevertheless the
difference between 8, and R,', important in the
earlier stages of the calculation, which makes

g, /0. If we forgot the second order effect of the
terms which were linear in (P, —1'~) in the
original Hamiltonian function (Eq. (26) of
Eckart); the F terms in (17) would be wanting,
and the coefficient of (P„—l;)' would have the
anomalous value D, rather than 1/2I, as de-
manded by (1). This discrepancy is what we
have called the Eckart paradox.

The expressions N, appearing in (17) are
momenta conjugate to certain oscillatory co-
ordinates x, ,

"and from the quantum and reality

in Eckart's notation, and we do not choose the scale con-
stants so as to make the mass of each particle unity. The
signs of the

coefficients�o

N;; are in error in his Eqs. (25)
and (26) as is seen hy reference to his Eqs. {21.2) and (22),
which are the same as our (22) and (21), respectively.

"Eckart's Eq. (13) gives an explicit expression for x;
rather than x;. To find x; itself, one can integrate his Eq.
(13) with his cop~, „regarded as constant coefficients, which
is allowable for our second order perturbation calculation.
As a matter of fact, one can see that the y; are purely
oscillatory coordinates even without making this approxi-
mation, since the second of Eckart's relations (12) inte-
grates rigorously into —,'Zcp~c~~.

the second order perturbation energy analogous
to (8) with X=P—1' is

II'= 8;+P;, ;EQ;F(N;, N;)(P; g;)(—P, f.;)—
+2'&'(P' l—f)', (17)

where F still has the significance (9), and where
the D's and E's have the values



J. H. VAN VLECK

conditions it follows in the same way as did (16),
that

(20)

We shall need the following relations given by
Eckart which are the analogs for his problem of
our previous formulas (4—5)

P& = I&co& —23fR&+Inst, +2X&,,

N; = I;X;—23/IR;+gR;+2o);. (22)

"This projection is the same as the angular momentum
relative to 6xed axes which instantaneously coincide with
the principal axes of inertia, and the choice of which hence
varies continuously with time (cf.Eckart's Eq. (24)). Do not
confuse with the angular momentum in an accelerated
coordinate system which travels with the principal axes;
the latter angular momentum presumably involves oscilla-
tions of the same order of magnitude as those in. (22).

~~This result h derived from Eqs. (21.2), (22), (26) of

Here co~, ~~, ~d are linear functions of the time
derivatives of the Eulerian angles specifying
rigid rotation of the molecule. The unperturbed
problem is to be so chosen as to make the
motion devoid of mass rotation, so that the
mean values of ~I, co2, ~3 are all zero. Let gI, (2, g~

be the corresponding mean values of PI, P2, P3
which, as previously noted, need not be zero.
Strictly speaking, there are vibrational oscilla-
tions in the expression (21), as (21) gives the
components of angular momentum projected
upon the instantaneous principal axes of inertia
of the molecule„" instead of upon axes fixed in

space, and the vibrations will cause small nuta-
tions in the positions of these instantaneous axes.
The resulting oscillations in (21) are, however,
unimportant, vis , of the. order h(yq —yI, ')/2~

/g('~/~)' whereas the osciHations in (22) are
of the order h itself. The mean value of (21)
likewise is of the order h if it does not vanish,
i.e. , if there really is vibrational angular mo-

mentum. For our purposes it is thus legitimate
to regard (21) as constant over the vibration,
and equal to the angular momentum relative to
the equilibrium position. We cannot emphasize
too strongly that one cannot correspondingly
neglect the ~ibrational oscillations in (22) which
are much greater and which will prove responsi-
ble for the removal of the Eckart paradox. One
finds that in the perturbation calculation, the
first order effect of the linear terms in the P,—g,
equals" go&, (I'; I „) and so v—anishes, since by

hypothesis, the unperturbed motion has co;=0
(cf. Eq. (7) in two-dimensional example). In fact,
the whole point of using P, f,—rather than P;
as an argument is to eliminate this first order
effect. Hence in writing (17), we have included
only the second order effect of the linear terms.

When we use (21) with P;=I; and (22), and
remember that j; is a constant which does not
contribute to the sum in (9), we obtain

2D;F(N;, N;) = Ii(N;, x;), (23)

Eckart's paper, with sign correction mentioned at end of
our footnote 12.

'6 S. C. Wang, Phys. Re@. 34, 243 (19~9).
'7 H. A. Kramers and G. P. Ittmann, Zeits. f. Physik 53,

533; 58, 217; 50, 663 (1929-30).

with D, as in (18). From (18) and (19).we have

D; (E,2/4D;—) =1/2I;. Hence (23) and (20) re-
duce (17) to the desired form (1), and the proof
is thereby completed.

In the two-dimensional illustrative example,
the angular momentum P could be treated as a
c-number. In the actual, three-dimensional case,
PI, P~, P3 must be regarded instead as matrices,
since they obey the usual commutation (or
rather, non-commutation) rules for angular
momentum. We have seen, however, .that the
vibrational oscillations in (21) could be neglected,
and so their non-diagonal elements are in the
rotational rather than vibrational quantum num-

ber, and they commute with all of the X's to
our degree of approxiination. (The kinematical
interpretation is that in the perturbed motion,

Pj, P2, P3 vary slowly with time due to rigid
rotation of the molecule. ) Hence the matrices

P~, P2, P3 couM be regarded as parameters as far
as our preceding vibrational perturbation calcu-
lation embodied in Eqs. (17—23) was concerned.
However, even when the result (1) is obtained,
the secular problem connected with (1), namely
that of the asymmetrical top, must be solved.
Hence we have used the notation H' rather than
W for the left side of (17). It is convenient to use

a system of representation in which say P3 is
diagonal: the matrix elements of P&, P2, P3 can
then be deduced from the commutation rules,
and the secular problem connected with (1) for-

mulated, giving the Wang-Kramers-Ittmann" "
determinant for the asymmetrical top. We omit
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details, as they are found in Klein's" paper or
Casimir's thesis. The only point we need empha-,
size is that the rotational secular problem is to
be solved after the vibrational matrix structure
has been diagonalized. This is allowable in virtue
of the general result of perturbation theory"
that when degeneracy difficulties do not appear
in the first approximation (i.e. , for us, retention
of the first order effect of the linear terms in
P; i;) d—ue to the vanishing of average values,
it is not necessary to lift the degeneracy until
after one has pushed a perturbation calculation
for the non-degenerate or high frequency part of
the problem sufficiently far to introduce trouble
from the degeneracy.

Calcn1ation with Hirschfetder and 8'igner's coordinates.
Instead of using the Eckart scheme, one may alternatively
start the perturbation calculation from the wave equation
for polyatomic molecules given by Hirschfelder and
Wigner. Their system of reference resembles Eckart's in
that it presents the same anomalous initial coefficients D;
of (P;—g;)' defined in (18), but differs in the choice of
internal coordinates. Also it exhibits explicitly the matrix
elements of P~, P2, P3, giving us the Wang determinant as
the immediate result of the perturbation calculation,
whereas in Eckart's paper it was not necessary to choose a
scheme of representation for P~, P2, P3.

We shall here outline briefly how the Wang determinant
is extracted from the H-W wave equation, and shall for
simplicity consider only molecules in which the vibrations
do not involve angular momentum, so that the irrotational
case has P; = f; =0, and corresponds to zero values for the
H —W quantum numbers l and v. The first step is to
establish the relation

Qn y
= (pn~ /mn) +y~, Q3 —y~ 3Q2

—(zp„,/M) —(MR, —MR, )- y„M,
—(MR@—MR&') 'y M2 —2D3y„,M3+2D&y~, M2, (24)

which is the content of the Hamiltonian equation j„-,
=OH/Bp, for a molecule devoid of mass rotation. The
expression D; is defined as in (18), and

Q, = (MR 2 —MR ') 'Z (y„,p„,+y„,p„,),
M3=&(y &p ~

—p, y ~)

where y „y „y, are the Cartesian coordinates of particle
n relative to the principal axes of inertia with origin at the
center of gravity. The H —W paper gives the explicit form
of the wave equation rather than Hamiltonian function,
but the latter is obtained in the usual way by replacing

"O.Klein, Zeits. f. Physik 58, 730 (1929).An anomaly in
sign is found in the commutation relations, because the
angular momentum is projected on moving rather than
fixed axes.

"Born and Jordan, Elementare Quantenmechanik, pp.
209 ff; J. H. Van Vleck, Phys. Rev. 33, 467 (1929).

h8 ~ /2~i8y, by p„,. With the aid of the formulas

2~m„y„,y„.= MR/ 8 (»)
one finds from (24), and equations symmetrical therewith,
that

—I3 'Zm„(y, y„,—y„,j„,) =Q —2D M3.

The sums encountered in the perturbation calculation are,
except for a constant factor, all of the form F(Q; —2D;M;;
Q; —2D;M;). When one uses relations —2F(p„, ; j„,.) =8
analogous to (16) or (20), and notices that the y's, R's,
and D's may be considered as constant coefficients in the
second order perturbation calculation, one deduces that

F(Q& 2D&M& Qi 2DiMi) ='
I 21' Di jo.s (26)

The zero value when i &j is a consequence of the vanishing
of the products of inertia in (25). The role of the second
term in the right side of (26) is clearly to cancel the
anomalous coefficient D; found if F terms are omitted,
while the first term substitutes the normal value. As a
typical case, we shall indicate how one derives the matrix
element H'(v, v+2) of the Wang determinant. This
element must be the same as the matrix element of the
transformed Hamiltonian for which the non-diagonal
elements in the vibrational quantum number have been
eliminated by making a second order perturbation calcu-
lation. Hence

H'(v; v+2) =H"'(nv', nv+2)
+Z„~H&»(nv n'v+1)H(»(n'v+1; nv+2)/hv(n; n'), (27)

where H(2~(nv; nv+2), H(»(nv; n'v+1) are, except for a
constant factor h'/8m' the same as H~&'& and H&&'~+H2O&

in the H—W notatiori, which is not well adapted to our
perturbation calculation, since their subscripts have no
meaning regarding orders of magnitude. When explicit
values of the right-hand members of (27) are substituted
from the H-W paper, and the sum evaluated by means of
(26), it is found that (27) acquires the proper Wang value

(h2/32~2) LIP+) —v3 —vs~I P+)—(v y1)2
—( +1)j'II ' —I 'j

Case of two or more equal moments of inertia. This case
requires special consideration, for, although the conven-
tional formula (1) involves no singularity, the anomalous
coefficients D; found by Eckart and by Hirschfelder and
Wigner are seen by (18) to become infinite here. Hence a
perturbation calculation cannot be made with their
coordinate system as a starting point. One way of partially
sidestepping the difficulty is to let the moments of inertia
approach equality after rather than before the perturbatio~
calculation is made. The formula (1) then holds as one
approaches the limiting case of equal moments of inertia,
and so presumably holds in the limit. Another, and more
solid procedure is to choose the three Eulerian angles so
as to specify not a rotating coordinate frame coincident
with the principal axes of inertia, but rather a different
rotating frame in which the first axis coincides with the
radius vector of one particle, the second axis is in the
plane determined by this vector and the radius vector of
another particle, and the third axis is of course normal to
this plane. Such a set of axes has been used by Wigner in
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connection with formal applications of group theory to
atomic spectra. o With this new choice of Eulerian angles,
there is no catastrophe when the moments of inertia
become equal. The difficulty is rather that the anomalous
coefficients, now diferent from (18), show an undue prefer-
ence for one particle. In fact, the situation is analogous to
that upon which we commented after Eq. (7) in the two-
dimensional example, where we chose the coordinate qi to
specify the radius vector of one particle. The second order
perturbation calculation, of course, removes the dissym-
metry, and restores the conventional result (1). This
calculation might not be easy to make explicitly, due to
the clumsy, unsymmetrical nature of the coordinates, but
can only lead to (1), at least when the moments of inertia
are unequal, since we have proved by means of Eckart's
coordinates that (1) then is inevitable. With the unsym-

",E. Wigner, Zeits. f, Physik 43, 624 (1927).

metrical coordinates, there is nothing to single out the
case of equal moments of inertia, so that (1) must remain
'valid in the limit of equality. This argument furnishes the
safest way to see th'at the terms of the third degree in

Pi, P2, P3 neglected in our perturbation calculation ex-
tending to the second order, are not unduly important
when the moments of inertia nearly coincide. This result
is not obvious when the symmetrical coordinate system
is used.

We may remark incidentally, that it is only when two
or more moments of inertia coincide that the expressions
g; involved in (1) can have non-vanishing values, for
otherwise the molecule will not have sufficient symmetry
to permit the vibrational degeneracy requisite for t; /0.

The writer wishes to thank Professor Carl
Eckart for interesting discussion and correspond-
ence.
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On the Plasticity of Crystals

PoL DUwEz, * Norman Bridge I.aboratory of Physics, California Institute of Technology, Pasadena

(Received December 26, 1934)

In the following, a theory is given with the purpose of
establishing a mathematical relation between the stress
and the strain in a crystal when plastically deformed. The
existence of a "secondary structure" in crystals is adopted
as a basic hypothesis. This structure was pointed out by
Professor F. Zwicky to be a consequence of what he calls
"cooperative phenomena. " The assumption that gliding
in crystals takes place between the blocks of the secondary
structure is the starting point of the following theory. The
additional hypothesis of assuming a statistical distribution
of the diferent forces which produce gliding between the

blocks, gives us the means for going further in the calcu-
lations. The final result which is the stress strain curve of
a crystal, is an exponential law containing three constants,
i,e., the torsional modulus G, the elastic limit, {7„r,) and
the maximum applicable stress r . The form of the
hysteresis cycles is deduced from the same considerations
and moreover a formula is obtained for the areas of the
cycles. Experimental verifications were made on a single
crystal of copper, and also on ordinary microcrystalline
copper.

PART I

T is well known that when the yield point is
- - reached in a crystal, gliding takes place
between some of the crystallographic planes. If
we plastically deform a crystal through applica-
tion of a sufficiently high stress in a given direc-
tion, and then reverse the stress, the gliding is
reversed also, but we never obtain the initial
state. Plastic deformation of a crystal at low
temperatures in general leads to "cold harden-
ing. "The conception of the ideal crystal, defined
by a geometrical arrangement of particles in a

* Research Fellow of the Commission for Relief in Bel-
gium, Educational Foundation.

' F. Zwicky,' F. Zwirky,' F. Zwicky,
4 F. Zwicky,' F. Zwicky,
6 F. Zwicky,

Proc. Nat. Acad. Sci. 15, 253 (1929).
Phys. Rev. 40, 63 (1932).
Phys. Rev, 43, 270 (1933).
Helv. Phys. Acta 16, 210 (1933).
Mech. Eng. 28, 427 (1933).
Rev. Mod. Phys. 6, 193 (1934).

lattice, cannot explain the phenomenon of cold
hardening. Zwicky' ' has studied other physical
properties of crystals which are incompatible with
the idea of an ideal lattice. He comes to the con-
clusion that these properties may be understood
in terms of a "secondary structure" in crystals.
In this discussion we admit the existence of this
secondary structure, and, following Zwicky, we
denote as m-planes the crystallographic planes
characterizing the secondary lattice. Gliding


