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The Theoretical Constitution of Metallic Lithium
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On the basis of previous theoretical developments con-
cerning the nature of cohesion in metals which were applied
to sodium, a treatment of metallic lithium is presented.
As before, the system of Fock equations are solved by an
indirect procedure as a start. These solutions diR'er appre-
ciably from those for sodium in several important respects
and account for a greater percentage of the observed bind-
ing energy than in the latter case. The modification of the
exchange energy of the electrons arising from these dif-

ferences is computed. Finally, the work of Wigner on cor-
relation energies of metal electrons is applied directly to
obtain a final binding energy of 34 kg.cal. as compared
with the observed value of 38.9. The lattice constant is
found to agree with the observed one to within about three
percent. Some general remarks concerning the applicability
of the present development to solids other than metals are
made.

INTRQDUcTIoN

N previous work' a basis for an investigation
-- of the constitution of metals was laid and
applied to sodium. In this work a completely
self-consistent solution of Fock's equation for the
lattice was found and this result was then em-

ployed in finding an additional approximation to
the problem of minimizing the total energy. '
The final results of this work yielded a binding
energy of 22.3 kg. cal. per mole, to be compared
with the observed value of 26.9 kg. cal.

The solution to Fock's equation was under-
taken under the guiding principles afforded by
the free electron picture of metals, and it was
found that the results yielded 4.7 kg.cal. Since

this discrepancy 'was many times larger than the
computational errors could allow it was con-
cluded that the simple Slater determinant was
inadequate to handle the complexity of the
problem and an effort was made to find a more
general solution based upon the one-electron one.

An attempt in this direction was presented in
II of the previously mentioned papers and this
met with partial success. Upon this basis, how-

ever, signer' was able to establish a much more
rigorous method and succeeded in solving a set
of equations which were the counterpart of the
Fock equations in an extended minimal problem,
namely, that of minimizing the energy integral
by use of a function of the form

$1(+1 yi y.) 4 i(~. ; yi y ) 41(y1) ' ' ' tt'l(y )

~ i
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in which the variables x and y refer to the three
position coordinates of electrons of upward and
downward spin, respectively, P„(y&) are the one-
electron solutions of Fock's equations and
P„(x, yq y„) are functions of the variable x
and parameters y1 .y„.The last set of functions
are to be determined in such a way as to minimize

~ Wigner and Seitz, Phys. Rev. 43, 804 (1933); 40, 509
(1934) {I and II). Wigner, Phys. Rev. 40, 1002 (1934).
This work is closely connected with the following papers of
J. C. Slater, Phys. Rev. 45, 794 {1934);Rev. Mod. Phys.
0, 209 (1934).' A complete account of the equations of Hartree, Fock
and Dirac and their interconnection has been given by L.
Brillouin, Actualites Scientifiques et Industries/es, Nos. 71,
159, 160.

the energy. The final energy value obtained was
22.3 kg.cal. for the observed lattice-constant of
4.23A. The remaining discrepancy is regarded as
arising principally from a conservative computa-
tion of the gain given by (1).

After assuming an ion-core field the work on
sodium was considerably lightened by the fact
that the solutions of Hartree's equations for the
lattice were almost exactly of the form

4„=(1iv&)e'"', (2)

where r is the position vector of the particle, a

is a lattice vector in the inverse-lattice space and
V is the total volume of the crystal. This had as
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its first important consequence the fact that the
solutions of Hartree's equations were practically
identical with those of Fock' so that the best
one-electron solution was obtained with an ease
not met in any atomic pmblem involving more
than one electron. In the second pla. ce, this gave
a definite analytic form to the P (y)'s in (1)
and allowed an analytic solution of the problem
outlined in the previous paragraph. Since (2) are
the wave functions for perfectly free electrons, it
is to be expected that this simplicity will not
generally be met with even in simple metals, for
the probability distribution function of each
electron will usually be greater inside the unit
cell surrounding each ion than on its boundary.

In order to investigate the possibility of
applying the scheme employed for sodium to
more general cases, the corresponding solution
for lithium was undertaken from a similar view-
point, and these results are presented in the
following sections. This work begins with the
development of an effective ion core field which
reproduces the atomic energy values and follows
with a solution of Hartree's equations using this
field. The connection between Hartree's and
Fock's equations is not as well defined as in the
case of sodium but it is found that the energies
determined by both are practically identical. In
the present paper the work of Wigner on the cor-
relation hole is applied without additional modi-
fication.

$1. THE EFFECTIVE ION-CORE FIELD

The problem of determining a coulomb field
V(r) which when placed in an equation of the
simple Schroedinger type

(&'/2I )~4+( V(r) —&)0 =o (3)

will yield eigenvalues that are identical with the
term values of a single electron series and yet be
physically plausible, may not be expected to
possess even an approximate solution in any but
the simplest of practical cases. The correctness
of this assertion follows from consideration of the
extensive work of Hartree when viewed in the
light of Fock's equations. For the best one-
electron solution of any atomic problem is given
by the system of equations

((fi'/2Ii)h, +Q V;(x,)+A;—Z, )It;=0, (4)
i+j

in which i and j range over all electrons of the
atom, V;(x;) is the coulomb potential arising
from the ith electron wave function when
regarded as an electron charge distribution,
and A, is a linear integral "exchange" operator
of the form

A;P;(x;) =pe' f(1/~x; —x, ))(j~ p)i)P;(x;)dr;, (5)
i+j

(jl I I ) = Z4~*(x )A(x'). (Sa)

That A; is not completely negligible is shown by
the fact that in the case of a single valence
electron, Hartree's energy parameters E; do
not agree exactly with the term values of the
one-electron states. Because of the form of the
exchange operator it is not to be expected that
it can be replaced by a central field term, but it
may be hoped that in the case of one-electron
outside closed shells, its effect on the terms E;
may be roughly approximated by such a field.
In the case of Na this was found to be the case,
for the Prokofjew field employed in reference 1
gave very good results from the standpoint of
energy levels, all of the values agreeing with the
observed ones to within one percent.

If this were true for Na, it might be expected
that similar results would be true for Li so an
attempt was made to find such a field. Prokofjew'
employed the Wentzel-Kramers-8rillouin ap-
proximation in his work, but I found that the
field obtained by this method is not a very def-
initely determined one since all terms in a
given series cannot be fitted with equal accuracy
in the manner prescribed by Prokofjew. As a
result the following device was used.

For a coulomb field of the form Ze'/r, the
W.K.B. approximation gives energy values that
are determined by an equation of the Balmer
type, namely Z=hcZ'R/n' in which R is the
Rydberg constant in wave numbers per cm, n
is an integer, and E the energy in ergs. Since only
that portion of r for which

Zem $2(1+1)2

E— + (6)
2pf

3 Prokofjew, Zeits. f. Physik 58, 255 (1929).

in which (j ~ p ~
i) is the ijth matrix component of

the density matrix
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TABLE I. Values of R'r/R at r

Energy
Term (Ryd. units)

rR'/R
(calc.) Original V Final V

is real is of importance in using the W.K.B.
approximation, where l is the modern angular
momentum quantum number and p, the reduced
electron mass, the effective field was taken to be
of the form e'/r from ~ to the value r„given by
the smallest allowable root of (6) for the series of
smallest 1 in which the terms are hydrogen-like.
The value of 3.24 Bohr units was taken to be a
safe estimate of this quantity, r, and will be
employed in all of the following work. The prob-
lem reduces itself to that of determining a U(r)
within this radius which shall join the function
e'/r continuously and with continuous first
derivative at this point, be of the form 3e'/r
near the nucleus, and reproduce the energy
spectrum of the s, p and d series. Other series will
automatically be given because of the choice of
e'/r outside of 3.2 a4,.i

Now the form of the wave functions for regions
beyond r may be found for each of the observed
energy values because the boundary condition
at infinity entirely determines the form of the
function in any region excluding the sphere of
radius r Hence . the ratio P'(r„)/P(r ) may be
determined by use of an asymptotic series, for
example. This was done for five of the lowest
energy values of the Li spectrum and the results
for R'r/R at r„, where R=rg, are shown in
Table I. U(r) is to be chosen so that the functions

TABLE II. Values of r U, and r U».

0.00
0.04
0.08
0.12
0.20
0.28
0.36
0.44
0.52
0.68

rV,

6.000
5.512
5 ~ 294
5.078
4.652
4.232
3.810
3.408
3.118
2.748

rVxr

6.000
5.481
5.236
4.998
4.540
4.102
3.672
3.274
2.994
2.660

0.84
1.00
1.16
1.32
1.64
1.96
2.28
2.60
2.92
3.24

rv,
2.528
2.384
2.284
2.214
2.122
2.066
2.0l34
2.012
2.004
2.000

2.490
2.392
2.322
2.262
2.172
2.100
2.038
2.012
2.004
2.000

r, to improve the p ratios. The correction
adopted was of the form

—0.4(1.2 —r)' —0.05(0.8 —r)(2.5 —r)' 0 r~1.2,

—0.05 (0.8 —r) (2.5 —r) ' 1.2 ~r~ 2.5.

This brought about the agreement shown in the
last column of Table I and yields the second
column of Table II.

The full significance of the procedure employed
here is probably best shown by Fig. 1 in which
curves A correspond to the ratio R'r/R at
r =3.24 plotted against the energy parameter
for the system of functions in which the proper
boundary condition is satisfied at infinity and the
field e'/r is emp—loyed. This system is a highly
singular one, of course, since R(r, E) will have
an infinite number of roots in the range between
—1 and 0 on the Rydberg scale of units. Only
two branches of this curve are shown. Curves 8&
and B&z represent plots of the same ratio derived

2s
3$
4s
2P
3d

0.3963
0.1484
0.07723
0.2605
0.1111

—0.1331—1.646—2.255
0.2422
1.92

—0.06931—1.538—2.126
2.192
1.91

—0.122—1.642—2.2570
0.2428
1.92

I I I I I I I I

derived using it satisfy the proper boundary con-
ditions at the origin and have the same ratio of
rR'/R at r„ for the given energies. An initial
field Vz was selected on the basis of reasonable-
ness and its solution yielded the ratio shown in
the fourth column of Table I. Z„=rVz is given
in Table II in which Rydberg units are employed.
From knowledge of the change of wave functions,
it was concluded, that U was to be made more
negative in the neighborhood of the nucleus to
bring the s ratios into agreement and more
positive in the neighborhood of the boundary,

-1.0
I

0.5
I I I

0.6 OA-
I

-0.2

FIG. 1. Plot showing the ratio rR'/R for r =3.24 as a
function of energy. The curve A corresponds to solutions
satisfying the proper boundary conditions at infinity,
while curves 8, and B«correspond to solutions which
satisfy the proper condition at the origin for the initial and
final fields, respectively. The abscissas are in'Rydberg units
and the ordinates in Bohr units.
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for the system of functions which satisfy the
proper conditions at the origin and for which Vz

and VIz have been employed. The points at which
either j3I and 3zz cross the system A yield the
eigenvalues of the corresponding fields. Our
endeavor has been to make these points be
identical with the observed term values and the
degree of success is illustrated by the fact that
on the scale of this plot the curve B&z completely
overlaps the curve C drawn through the inter-
cepts of A and the observed term values.

Similar considerations for the Prokofjew field
for Na show that the corresponding B curve is
not nearly so good a fit of the corresponding
curve C and that it would be difficult to find a
better field. 4

f2. SOLUTION OF HARTREE S EQUATIONS

The procedure to be employed in solving
Hartree's equations for the lattice will be very
similar to that used in the case of Na. On the
basis of an approximate Hamiltonian H; which
is the same for each electron, and possesses the
proper symmetry properties for the lattice set
of "starting functions" are determined by
numerical integration of the Schroedinger equa-
tion arising from H; . Using these solutions, a
Hamiltonian H;~ may be written down which
contains the interaction terms of the ith electron
with each ion in the lattice and the Hartree field
of interaction between the ith electron and all
others, assu, ming that their charge distribution is
determined by the solutions of H,'. This field will

be the same for all electrons since it is the
potential arising from all electrons minus that
arising from the electron under consideration
and the ratio of the latter to the form will

generally be of the order 1/N, where N is the
total number of electrons, that is a very large
number. Regarding II;~—EI;0 as a perturbation
on H,', we may apply the perturbation scheme
of Schroedinger or of Brillouin-Wigner' and if

4 As yet unpublished work of Dr. E. Gorin has shown
that there is no satisfactory field for K, but that each series
may be approximated to within several percent by means
of separate fields. I wish to thank Dr. Gorin for the
privilege of making this statement.

~ Brillouin, J. de physique 1 (III), 373 (1932). Wigner,
Bull. Hung. Acad. (to appear shortly). Brillouin first
presented the perturbation scheme and Wigner later
showed that various stages of approximation yield mean
values of the Hamiltonian operator.

this perturbation does not appreciably alter the
wave functions the solution will be self-consistent
in the Hartree sense. Since the perturbation is
symmetric (i.e. , possesses the same symmetry
group as the unperturbed problem) we know at
once that no states in the lowest band will enter
in the new functions and but one from each of
the higher bands, namely that which belongs to
the same representation as the unperturbed
function.

The Hamiltonian H is taken to be of the
form

52 52
——6;++*U p„————6;+U*,

2p, oIpy 2p,
(7)

in which V p~ represents the potential arising
from the ion situated at the position o.7~+P72
+Tra where a, p, y are integers, rq, 72, r, are
the primitive translations of the group, and g*
indicates that the sum is to be carried out in
such a way that V„p~ is regarded as being zero
outside of the rhombic dodecahedron surround-
ing the n, P, y-th ion. In other words the
potential at a given point is to be taken as that
arising from the ion in the polyhedron within
which the point is situated, so that it will gener-
ally be a function with discontinuous derivative.
That (7) is a good starting operator arises from
the fact that it regards the ion-ion interaction as
just balancing the interaction of the given elec-
tron with all other electrons and ions outside of
the polyhedron, in which the electron is, and the
interaction of outer electrons with the ion in this
polyhedron which would be true if the other elec-
trons formed a constant charge distribution out-
side of the polyhedron containing the given elec-
tron. The results for Na show that this is a rough
description of aft'airs for all simple metals.

Using IIO and the fact that all wave functions
are to be of the form g„e'"' in which g„ is in-
variant under the translation-group and ~ is
a lattice vector in the inverse-lattice space, the
Schroedinger equation for q„may be written

where B„'=Z.—(A'/2p)~' may be regarded as
being the energy of p„. If the operator
—(5'/IJ)4 7 be viewed as a perturbation then
as in reference 1 we have, using the Schroedinger
perturbation theory
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Ifn~(@'/1)~ &sof'

O' J'gga qqo
g„=go+i

P & E),—Ep

(9)

(9a)

P 3

0.396

-0.5

-0.6

where X runs over all solutions of the unper-
turbed problem. If we consider any q to be
expressed by a sum g* over each of the poly-
hedrons, it was previously shown that the poly-
hedron may be replaced by a sphere of equal
volume for purposes of determining energies.
The lowest gp is then that function for which the
boundary condition P'=q' =0 is satisfied at the
surface of the sphere, while the only q&'s which
need be considered are those p functions which
satisfy the relation q& =0 at the boundary of the
sphere. For the observed lattice constant of Li,
namely, 3.46A, the radius r, of the equivalent
sphere is 3.21a&. The energy-r, curves are shown
in Fig. 2.

If we employ the Hartree system of units for
which the Bohr radius is the unit of length,
eo/az is the unit of energy and both A and the
electron mass are 1, the values of the integrals
Jgi,Bgo/'Bx = ni, are given in Table III for the

-O.T

1 I 1

0 ~ 2 0 4 5 6 7 1 ~ rs

1 1 . t

2 4 rg

FrGs. 2a and 2b show the energy-r, curves for s and P
function, respectively. The ordinates are in Rydberg units
and the abscissas in Bohr units.

TABLE I II. Values of integrals fqp8rfp/ax =~)i,.

3.21 3,33 3.62 3.88

E—Ep

0.64
0.2402

2.27
0.2718

4.84
0.2045

0,60 0.50 0.43
0.2214 0.1720 0.1407

2.10
0.2565

4.55
0.1822

1.79
0.2317

3.93
0.1568

1.54
0.2142

3.47
0.1513

TABLE IV. Values of p.
3.21 3.33 3.62
0.266 0.245 0.194

3.88
0.168

of Brillouin-signer the second approximation
for the energy has a form much the same as (9),

three lowest-energy p functions going with four
values of r, . The values of E),—Ep are listed simul-
taneously in terms of Hartree's energy unit. The
Roman numerals refer to each of the three sets
of p functions of Fig. 2. Using these integrals and
the same system of units, the sum in (9) reduces
to the form Po'/2 for which P takes the values
given in Table IV. In the perturbation scheme

with the exception that E„' replaces Ep in the
denominator of each term in the sum, so that
one obtains an implicit equation for B„'. Since
E„' is a function of K', we may obtain a power
series for E„' from this by means of a successive
approximation method in which the solution
obtained by placing E„'=Zp in the denominator
is regarded as the first-order solution. The next
approximation is obtained by placing this in the
denominator and expanding the fraction in
terms of K', etc. This series is of the form

8» =SO—2X1K +~)L2K —~X3K,

in which Xi is just p of the Schroedinger approxi-
. mation and

2nz'

(Zi, —Eo) 'i
2Ag 20!g

ho=ho p +) io p
~ (K—&o)' ~ (K—&o)'

The values of ) ~ and X3 for the values of r, pre-
viously listed are given in Table V. The value
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TAsr. E V. Values of ) &, X3 and k.

3.21
3,33
3.62
3.88

0.0829
0.0747
0.0482
0.0423

0.0745
0.0509
0.0319
0.0251

0.5978
0.5754
0.5301
0.4946

0 ~ = k corresponding to the uppermost electrons
of. the filled band of levels is given by
k = (97r/4) /r, and from the last column of
Table V it is seen that the term in k' is practically
negligible. The term in k4 corresponds to part of
the fourth order approximation of the Schroe-
dinger scheme so that its order of magnitude
is an indication of the error made in employing
the second order approximation of either per-
turbation scheme. The mean energy per electron
of the function P„=g„e'"' will be E.=Z '+-'a'
in Hartree units or

3 3 1
Eg —E0+ (1 Xf)k + X2k' ——X k' (10)

10 28 24

TABr.E VI. (1—p) and the ratio of 80+3k'/10 to EI, for the
Bri LLouin- S'i gner scheme.

The corresponding energy for perfectly free
electrons in a potential trough of depth Eo is
Zo+3k2/10. The ratio of (10) to this, excluding
Bo in both cases, is given in Table VI along with
the ratio 1 —p for the Schroedinger perturbation
scheme. As expected from the minimum-value
viewpoint, the Brillouin-signer scheme yields a
higher energy than the Schroedinger scheme in
the same approximation although they differ
by only about a percent. In the last column of
Table VI, the equivalent Fermi energy of the
former scheme is listed in terms of kg.cal. per
mole.

In the second appendix of II, reference 1, it
was shown that the electrostatic energy of a
body-centered lattice of positive charges e sur-
rounded by a uniform distribution of negative
charge such that there are e units per s poly-
hedron, was practically the same as the energy

of a uniformly charged sphere with a point
charge e at its center, so that the classical energy
per electron of the lattice, when the actual dis-
tribution is present, will be that of the actual
charge distribution in the s sphere. As a result
of this, we shall assume that the proper Hartree
field to employ in writing down II;~ of the first
paragraph of this section, is just H +P*U., s~,

age
where V, , p~ is the Hartree potential arising
from the electron charge distribution within the
nPyth s polyhedron. V, , p~ will be a slowly
varying positive function of position within a
given polyhedron just as in the case of so-
dium, so that +*V,, p, will be slowly varying

aPy

throughout the lattice. Hence the integrals
J'P„*(P*U., p„)Pq will be small in all cases

Wv

except when ~ =) because of orthogonality, and
the eigenfunctions of II;~ will be practically
identical with those of II;. This is clearly seen
if +*V., p~ is regarded as a perturbation on

rPV

II as in reference 1, II.
Thus the eigenfunctions of II are the solu-

tions of Hartree's equations for the lattice and
we may now proceed with an investigation of
Fock's equations.

$3. THE SQLUTIGN QF FocK s EQUATIoNs
FOR THE LA/TICE

For the case of perfectly free electron~, Fock's
Eqs. (4) are reducible to the Schroedinger form
since exponential functions are eigenfunctions
of the operator A, so that Fock's and Hartree's
equations are identical. In the present case this
will not be precisely true, but we may easily de-
termine the order of magnitude of the difference
in the mean energies of the total Hamiltonian
of the crystal obtained from an anti-symmetric
combination of each set of solutions.

We have found tlIat the eigenfunctions of IX,O

were approximately of the form

It „=p"( fo(r &„)+i» r» f~(r p,))e'"', (11)

3.21
3.33
3.62
3.88

0.734
0.755
0.806
0.832

Brillo�ui-
nWigne

0.744
0.763
0.810
0.835

Difference

0.010
0.008
0.004
0.003

Energy
(kg. ca,l.)

48.8
46.5
42.0
37,8

where r,s„ is the radial distance in the npyth
s polyhedron, fo is an s function normalized
within an s polyhedron, and f& is r p„ times a

' L. Bri'llouin, J. de physique 5, 413 (1934}.
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sum of the radial part of p functions. More ex- will not affect any conclusions concerning
plicitly, if we normalize the radial p functions relative orders of magnitude of effects. Under
f),(r) so that this assumption (11) reduces to

f),'r'dr = 3/4yr, or
~0

where

It.= p*(1yiT'r.»)/ eo—:,

~Pv

V'=5(E V) ')/r. '.

(12)

(13)

(13a)

~ r ' r' ~'r'dr sin Ododq =If.",
The normalizing constant for (12) is then 1/A

where 8p is the volume of an s-sphere, (11) is of
the form A ' =N(1+ a' T'),

y), = (A, '/p) yI „(8/Bx„)yIpdr/(E), Ep)—
e

= ~~/%) —&o),

so that f,=Z T,f,/r. e,

P„=e'"' P'(fp+i ):.r~e, P 7).f),/r, s,)
aPv

with

(1la)

(11b)

(11c)

N being the total number of electrons in the
metal. In the following work, integrations over
the entire crystal may be replaced by integra-
tions over the s-sphere if the factor X in (13a)
is neglected.

The term containing the operator A„ in Fock's
equations for f„)m ya, as is well known, be re-
placed by the summation

Table VII gives the y's corresponding to the

TABLE VII. Ualues of p corresponding to the Ol's of Table III.
-Z' g.(~)It.(~) (14)

3.21

0.375
0.120
0.042

3.33

0.369
0.123
0.040

3.62

0.344
0.130
0.040

3.88

0.313
0.140
0.044

n's of Table III. In order to proceed further with
the present discussion we shall assume that fo
and f„are constants. Aside from the fact that
both of these functions are slowly varying, this

where v is summed over all values except A: and

g.(~) =
l
J'4.*(~)It.b)d"]/l~ —~ I, (»)

where y and x each refer to three coordinate vari-
ables and d7-„ is the corresponding volume ele-
ment. For the functions (12), if we let

4„=&*(1+iTv r v )/eo'*,
~Ps

any term of (14) may be written

()+ey x)e" f[[ + )*ye)y(1 —ey y)/~~y
—x~~']e'&' "& Z

Or if we make the transformation s =y —x this is identically

+ [)' e)ye xf[ +[)"*ezy) [e)y' z)ee'-'&')
~

e&]e).. (16)

to within terms of the second order in Yv and T~. The integral in (16) is a constant, however, and
may be added directly to the energy parameter. Hence to within terms of the second order in the
foregoing quantities, Hartree's and Fock's equations are identical for functions of the type (12).
The energy terms of this order of magnitude which arise in the so-called "exchange integrals, " will

be found to be negligibly small.

)4. THE ENERGY RESULTING FROM THE SOLUTIONS OF FOCK S EQUATIONS

We may now proceed with a computation of the mean value of the proper Hamiltonian for the
metal based upon the previous one-electron solutions. This Hamiltonian will be of the form
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A' 1 e' 1 e'
FF = P —6;+—P' —+—P' +Q U...

2p 2'' t';; 2~ t'f

using the notation of )1 where U; is the potential of the ith electron in the field of the nth nucleus.
The simple form of the third term arises from the fact that the nuclei are separated enough so that
the closed shells do not overlap. It was shown in II, reference 1, that the mean values of the first
and last two operators combine with the coulomb integrals of the second in such a manner that the
result is simply the sum of the energy parameters of (8) plus N times the self-potential of the charge
distribution within an s-sphere. From (9), this distribution, is simply the mean value over occupied
states of

e(f,'+(~ r)'fP(r))(1 —g'y'+~'y"), (18)

where y =gyz'. The last factor is simply the normalizing constant. This mean value is

(19)

which is illustrated in Fig. 3 for r, =3,21. If we designate by p the part of this which deviates from
the constant mean va. lue e/80, that is, let (19) be replaced by e/80+ x, the self-energy, may be written

. 6 e' (3 e' e'r')——+ ~(- — )rdr,
10 r, E2 2r, 2r, 'J

(20)

in which the self-energy of y has been neglected. The integral in (20) has been evaluated for four
values of the lattice constant and in each case the results were 0.001e'/a~ (0.6 kg. cal.).

It now remains to compute the total exchange energy of the electrons. In the previous work this
was done by determining the so-called Fermi-hole which is a function describing the probability that
another electron will be at a distance r from a given electron and then evaluating the decrease in
interaction energy of electrons resulting from this correlation. This decrease is just the exchange

2e/v, —

Q/Vo

I,. l

1 2 3
FyG. 3. Plot of mean charge distribution within a given

s-sphere. The abscissas are in Bohr units,
F&G. 4. Relative scale plot of the radial function f1~ The

abscissas are in Bohr units.
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energy and in the Fock approximation arises only for electrons of parallel spin. Explicitly, the energy
1s

e.*(x;)e,*(")e.(")O,(»)
dr)drm,

2 " ixl —xi
(21)

in which v and p are to be summed over all occupied states of parallel spin. The factor ~ enters in
order that interactions are not counted doubly. If the order of summation and integration is inter-
changed the mean value of the summed numerator, when regarded as a function of x& —x2 is just the
Fermi-hole.

In the case of the approximate eigenfunctions e'"' this function depended only upon
~

x& —x&
~

so
that the "exchange potential"

P„*(xg)P,*(x2)P„(x2)P, (xg) / ~
xg —xn

~
dr„„

of a given electron did not depend upon its position in the lattice. This statement is clearly identical
with the previous one that the operator A, in (4) is constant for exponential functions.

In the case of lithium, the functions f„are of the form (11) so that the shape of the Fermi-hole
and the exchange energy will differ from that of sodium. Any direct calculation of this change is
made very difficult in comparison with the calculations of the coulomb energy because of the fact
that the integral in (21) may not be split into integrals over single s-polyhedrons in any simple
manner. For purposes of simplifying this computation, we shall assume a modified form of the
function (11), namely, that in which both fo and f& are taken to be constants. The first function is
very nearly constant, just as in the case of sodium, so that the error arising from this source will not
be appreciable. The second has the form shown in Fig. 4, and though not constant, it varies smoothly
and is small in comparison with fo An estim. ate of the error made in adopting this last assumption
will be obtained from the magnitude of the energy terms arising from f& for it will be clear that these
cannot undergo any great change if the actual f& is replaced by a constant.

We start, then, with functions

0,= ( ' 's/~o') (1 i~o' 2—*'r.f (r-)), (22)

for which the normalizing constant is

~ P,
~

'd 7. =N(1+ v'y) = Ey, '. (22a)

The numerator of (21) is

+i(P*(p v) r~ f~(r~ ))(Q—*(p—v) r2pf(r~p))+d'OP*(v r~ )(p r~ )fP(r~ ) (23)

+& Z (p re)( r)f'(» ')j'
in which terms involving the components of p and ~ to higher than the second power have been
dropped. That this is allowable will be seen from the results below by comparing the order of mag-
nitude of the effects arising from the term in the first power with those from the second.

If we now set res ——r& +p —r s where & is to be regarded as being defined over the entire range of
the crystal, and r ~ is the lattice vector connecting the nth and Pth polyhedron, we obtain upon
integrating over r& with f& =s—= (15'/4~re') l
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e'&"- & &/l/8, 'N'v„'v„') ve, +/d, &zr'J (y ")'M ".y)d' +v+ (v ")'v

+&os 2 3 (p v) —ri (p, —v) ~ ($ —r p)dri+2N8ov &y+Pos P* p ri v'(5 —r p)dri
a a

+Dos'Q* f v ri pi ($—r p)dri+Poz'Q* pi ($—r p)v ($—r p)dri . (24)
CX a

The. integrals J'* are defined in such a way as to take the continuous nature of f into account. That
is, in integrating r j over the range contained in a single polyhedron the discontinuous range associated
with functions of r2 must be kept clearly in mind. This may be done without difficulty if each integral
J'* is regarded as being a sum of integral such that each one corresponds to a range of ri for which

ri+$ lies within a fixed polyhedron. It is clear that the integrals of ri over diferent polyhedra are
equal, so that we may restrict the discussion to just one and drop the N in the denominator of (24).

The results of this integration will be a continuous function of g and the variables ~ and p. If we

average over the latter two the result will be simply the Fermi-hole for a given electron.
It is not convenient to carry out the integration over r& for all orientations of P because of the

complexity of the integrand and we shall restrict the discussion to the case in which $ lies in the

(100) direction. This will not alter the results arising from the constant term in the parenthesis of

(24), since this gives rise to a spherically symmetric function of $, which was just the Fermi-hole in

the case of sodium. Since there are fully forty-eight equivalent directions for a crystal having body-
centered symmetry, the function arising from the remaining terms will be nearly spherically sym-
metric so that this restriction is not of major significance.

If we expand the normalizing constant 1/y„'y„' to second order terms in y and v and combine this
with the parenthesis an important reduction is effected and the result is

~" ""(&/&) &+/w~J (~—) (( ")& +—* fr ~ «'(k —.)&.

+s2J( v riv (~&
—r )dri+s2 p ($ —r ) v ($ —r )dri

In performing the integration over r&, we shall
replace the s-polyhedron by the equivalent
sphere of radius r, in the usual manner. Because
of this, the vector $ if fixed in direction will always
lie within the cylinder generated by moving this
sphere in the given direction. Since spheres do
not form space-filling solids, we must adopt
some reasonable arrangement of these within
this cylinder corresponding to the different
polyhedra. There are several reasonable con-
figurations, but that which we shall adopt will

be chosen in such a manner as to compensate in

part the assumption that $ lies in the (100) direc-
tion. Ke shall use the arrangement of Fig. 5 in
which the spheres are placed tangentially on the
axis of the cylinder. This is to be compared with
Fig. Sb in which the actual polyhedron bound-
aries are shown on the corresponding scale for a
plane normal to the (001) axis. There are several

points to be noted in this comparison. First, the
distance between sphere-centers does not cor-
respond to the distance between polyhedj. on-

centers, and this partly compensates the fact
that neighboring polyhedra are farthest apart
in the (100) direction. Second, since $ lies in the
(100) direction each of the integrands will be

5 (100)~
Figs. Sa and Sb. A comparison of the relative positions

of s-spheres and polyhedrons for a cut in the (100) direction
of the crystal, orthogonal to the (010) direction.
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the same function of (&
—7 e) for polyhedra

lying in the same vertical plane. Because of this,
we shall take the integrand to be axially sym-
metric in the region of the cylinder outside of
two neighboring spheres and assume that a node
plane passes through the point of tangency. The
volume outside of spheres is not equal to that
contained in spheres, the ratio being 1:2, but
this is not of great consequence. There are then
three important regions of integration to be
considered:

—0.458e'/r —1 05''e' ~.r '+1 40ye'/r, '.

2 49'—e'/. r 5

The energy arising from each of these terms is

given in Table VIII along with the sum. The

TABLE VIII. Energies arising from each term in the expres-
sion for the exchange energy.

3,21
3.33
3.62.
3.88

—88.5—85.3—78.4
7302

—1.2—1.0—0.7—05

0.1
0.1
0.0
0.0

—0.3—0.3—0.2—0.1

Sum

—899—86.5—79.3—73.8

I

0 2 )lrs
FIG. 6. The large curve is the Fermi-hole function for

free electrons and the small curve represents the relative
scale correction to this. Abscissas are in units of r, .

I. The region of r1 for which r1+ p is in the same sphere
ap when r1 ——0.

II. The region for which r1+& lies in an adjacent sphere.
III. The region for which r1+& lies outside of spheres.

Only in the case for which &=nr, with n an
integer is the contribution from I I and III
zero. The correction to the Fermi-hole resulting
from this integration is shown in Fig. 6 along
with the Fermi-hole for free electrons. The
exchange energy as a function of r, is

energies are in kg.cal. As might have been ex-
pected, the energy arising from the linear term
in v of the parenthesis of (25) is larger than that
arising from the quadratic terms by a factor of
about 5. On the whole, however, the exchange
energy is not greatly affected in spite of the
presence of this linear term and we may conclude
that fI in (11)causes a change in the shape of the
Fermi-hole of such a type as to leave the energy
almost unaltered.

We may now sum up the results of this inves-
tigation of the solution of Fock's equations with
Table IX in which the mean value of the proper

TABLE IX. Mean valnes of the proper IIamiltonian.

rs 3.21 3.33 3.62
Energy (kg. cal.) 13.9 14.5 14.0

3.88
12.6

Hamiltonian when taken with an antisymmetric
combination of the solutions is listed. The
minimum value of the energy occurs for r, =3.38
corresponding to a lattice constant of 3.65A.

)5. CONCERNING ADDITIONAL CORRELATIONS

As was pointed out in reference 1, II, the
principal weakness of the Slater-Fock approx-
imation lies in the fact that it does not give rise
to correlations between electrons of antiparallel
spin, that is, there is no analog of the Fermi-
hole for electrons of antiparallel spin. That such
a hole is of major importance from the stand-
point of binding energy was a viewpoint adopted
from the start and it was concluded that prac-
tically all of the discrepancy between the ob-
served binding energy and that given by the
solution to Fock's equations arises from this
source. The process of introducing more general
correlations is simply one of selecting a more
general complete wave function than the Slater
determinant, as discussed in the introduction,
for the case in which the solutions to Fock's
equations were practically of the form e'"', it
was found possible to present another approx-
imation which forms a natural sequel to the Fock
approximation.

Strictly speaking, these results are valid only
in the case of exponential eigenfunctions, but at
the present time they will be taken over directly
for the case of Li. The results on exchange
energies indicate that the error introduced will

probably not lie outside the computational error



CO NST I TU T I 0 N OF METALLI C LITHIUM 4ii

of the work of Wigner so that until some future
time when the entire work of correlation energies
is gone over from a more rigorous standpoint,
this will be considered adequate.

Using the work of Wigner directly, we obtain
the results of Table X in which the upper row

TABLE X.
~s 3.21 3.33 3.62 3.88:Obs.

Corr. energy (kg. cal.) 19.8 19.2 18.4 17.9
Total 33 7 33 7 32 4 30 5 38 9

gives the correlation energies and the lower the
Final binding energies as functions of r, ~ The final
lattice constant is found to be 3.53A corre-
sponding to r, = 3.27 for which the binding energy
is 33.8 kg.cal. The observed lattice constant of
3.46A corresponds to r, =3.21. The sources of
these experimental values are the same as those
used for sodium.

The fact that the results of the present work
are in better accord with experimental results
as far as the lattice constant is concerned, I
believe to rest upon the increased accuracy of the
computation for lattice constants other than the
observed one. In the case of sodium most atten-
tion was paid to the computations for this value
of r, . For example, this was particularly true in
the determination of the Fermi-energy. I hope
that time permits a renewed investigation of this
point in the near future.

(6. GENERAL REMARKS CONCERNING THE SOLU-

TIoNs oF FocK s EQUATIQNs FQR SQLIDs

There are several features of the preceding
development that will be valid for crystals other
than the monovalent metals lithium and sodium
if slightly altered. It may be of interest to point
these out at this time.

In the first place; the Hamiltonian (17) con-
tains the explicit assumption that the full effect
of closed shells and ions on the valence electrons
may be included in the resultant field arising
from the superposition of central fields which
satisfy the conditions described in fl1. This
assumption is generally too stringent, for as
discussed in the same section, these conditions
may be satisfied only in the simplest cases. If the
closed-shell electrons are not greatly affected by
the precise form of the valence-electron func-
tions, as Hartree's work shows to be the case for

very many atoms, this ion-core field may be
replaced by one of the Hartree type in which
the classical potential of the core charge is
employed. Then when Fock's equations have
been solved for this field, the interaction energy
of valence and core electrons may be treated as
an additive constant to the binding energy. Such
a procedure would be highly practicable in those
cases in which the Hartree fields are known and
probably represents the best approach to the
theoretical solution of most solids for some time
to come.

Next, in dealing with ion-ion interaction, it
was assumed in the present case that the over-
lapping of closed shells was su%.ciently small
so that the interaction was purely classical and,
as a consequence, the same as that arising from
point centers. This is clearly the simplest possible
case. The next degree of complexity of interaction
is that in which overlapping occurs to such an
extent that the interchange forces between
neighboring ions are small but not negligible; that
is, the magnitude of the interchange interaction
energies is not negligible but the core eigen-
functions will not be altered enough to change
the Hartree field arising from them. For most
of the solids formed of atoms in the short periods
of the periodic chart as well as the alkali and
alkaline earth metals this will be the case, and
the exchange interaction energy may be com-
puted on the basis of the usual Heitler-London
approximation for which a good deal of work has
already been done. ' In those cases in which the
closed-shell electrons are considerably affected by
ion-ion interaction, as may occur with certainty
in the long series in which "unstable" closed
shells are present in the free atom, the closed-
shell electrons must be treated on an equal
footing with the valence electrons. It is just in
these cases that the clear-cut concept of valency
breaks down from the chemist's viewpoint as
well as that of the atomic spectroscopist. It is
needless to say that although the formal pro-
cedure of solution may be well defined in such

7 Heitler and London, Zeits. f. Physik 44, 455 (1927);
A. Unsold, Zeits. f. Physik 43, 563 (1927); L. Pauling,
Zeits. f. Krist. 67, 377 (1928); N. Bruck, Zeits. f. Physik
51, 707 (1928); M. Born and J. Mayer, Zeits. f. Physik 75,
1 (1932); J. Mayer and L. Helmholtz, Zeits. f. Physik 75,
19 (1932l; W. Bleick and J. Mayer, J. Chem, Phys, 2, 2$?
(1934),
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cases, the practical difficulty will be as great as
it is in the case of Hartree's work. It is at this
point that questions of ferromagnetism arise and
quantitative treatment of this topic will probably
be approached only after surmounting the dif-
ficulties outlined here, for the works of Heisen-
berg, and Bloch' give convincing indications that
the source of ferromagnetism lies in strong ion-
ion interaction rather than in the mere presence
of free electrons of the type met with in lithium
and sod&um.

Next, in proceeding with the solution of Fock's
equations for all electrons not in "fixed" closed
shells we have assumed at start that the one-
electron wave functions are of such a form that
they extend throughout the entire crystal, or
more exactly, that

~ P ~

' possesses the symmetry
of the lattice in the space-group sense. This had
as an extremely important consequence, from
the practical computational standpoint, the fact
that Fock's equation for each wave function is
practically identical with all others because the
effect on a given electron of an electron in the
same state is negligible in comparison with the
effect of all other electrons. As discussed in )2,
the ratio of effects is 1:N, N being the total
number of unit cells in the crystal. This rests
directly upon the presence of translational sym-
metry, characteristic of the solid state in general,
and is a primary point in which the Fock approx-
imation for solids is simpler than for complex
atoms or molecules. The importance of this lies
not only in the fact that we need deal with but

'See Van Vleck, The Theory of E&.'lectric and Magnetic
SNsceptibilities, Oxford Press, Chapter XII.

one equation of the form (4) in which g;y; V;(x;)
and A; are practically the same for all electrons,
but that the different solutions are automatically
orthogonal without introducing normalization
parameters, or rather that these parameters may
be taken to be zero.

As a final point, the neglect of magnetic inter-
action of electrons may be open to discussion.
The general computational theory of atomic
spectra shows that these forces are usually large
only for tightly bound electrons that play an
important role in the production of x-ray spectra
and may be neglected for valence electrons. This
neglect is unquestionably safe in the case of
light atoms as the work of Hylleraas on He,
Guillemin and Zener, Slater, and %ilson on
lithium, and James and Coolidge on H2 shows'
to be the case.

In the present work it has been assumed that
the so-called Brillouin discontinuities in the
energy surface are not important, This was
found to be true in sodium' and will probably be
true in other alkali metals. In cases in which there
are two or more valence electrons per atom, this
neglect will not be permissible since electrons will

occupy states outside of the first zone. At the
present time the author is carrying on an inves-
tigation of these discontinuities from the stand-
point of the representations of space-groups
which it is hoped may clear up some uncertain
points in connection with their existence.

'E. A. Hylleraas, Zeits. f. Physik 57, 815 (1929); V.
Guillemin and C. Zener, Zeits. f. Physik 61, 199 (1930);
J. C. Slater, Phys. Rev. 36, 57 (1930); E. B. Wilson, J.
Chem. Phys. 1, 210 (1933); H. M. James and A. S. Cool-
idge, J. Chem. Phys. 1, 825 (1933).


