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In the case of sodium, Kapitza has not ob-
tained sufficient data for determining the con-
stant B, since the change in resistance for the
lower fields was too small to measure. However,
he does give Ap/p for 300,000 gauss. Now B for
sodium will be smaller than for lithium, and if
we assume B=2.0, we obtain R=0.0042, while
the observed value is 0.0021. In fact, if we study
the effect of varying B, we find that for B=2.5,
R=0.0049; while for B=1, R=0.0018. It is
evident, then, that for lithium and sodium, the
value of the Hall constant predicted by the
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theory of Sommerfeld and Frank is certainly
of the correct order of magnitude and that there
is a possibility of close agreement when complete
data are obtained. In the case of potassium and
caesium, since no values are available for the
change of conductivity in a magnetic field, the
results of the above theory cannot be found.

In conclusion it is a pleasure to acknowledge
our indebtedness to Professor P. I. Wold for
many valuable suggestions, and for the facilities
put at our disposal.
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The sum rules applicable to intermediate coupling are
discussed in §1; in §2 proofs are given for two which are
essentially new: the J-file sum rule which states that for
any coupling, in a transition array in which the jumping
electron is not equivalent to any electron in the ion in either
the initial or final configuration, the sum of the strengths of
the lines originating in (or terminating on) a common level
of quantum number J is proportional to 2J+1; and the
J-group-file sum rule which says that for any transition
array of this type in which the valence electron jumps from
s to p or p to s, the individual J-groups may be split up

§1. Sum RuULEs IN INTERMEDIATE COUPLING

HE sum rules which are applicable to a

transition array in intermediate coupling

will be made most clear if we prove them first

for a particular array such as p%s— p?p (shown in

Table I in LS coupling), and extend the proofs
to more general arrays later.

All the sum rules apply to quantities of the type
S(aJ, o’ J'), which we call the strength of the line
from the level aJ to the level o’ J’, and which is de-
fined as the sum Zy, 3| (@JM|P|a' T M')|? of
the absolute squares of the components of elec-
tric moment.  Under conditions of natural
excitation the intensity of radiation of this line is
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in one direction into invariant files. The dispersion meas-

urements of Ladenburg and Levy on the neon transition
array 2p°3p—2p53s furnish in §3 an interesting experi-
mental verification of these rules. The predictions of the
usual first-order quantum-mechanical theory regarding
the line strengths in this neon array are investigated
in §4. It is concluded that this approximation does not
enable the eigenfunctions to be determined with sufficient
accuracy from the observed energy levels for quantitative
intensity predictions.

given by
I(aJ—a'J)

=N(aJ): 6414%'S(aJ, o' J")/3c3(2T+1),
where N(aJ) is the number of atoms in the level

aJ. The line strengths are usually expressed in
the form?!

S(at, ' J)=Q2T+1)|(aJ:Pid' T) |25, T, (1

where

EJ, J+1)={J+1)2TJ+3); E, H)=J(J+1);
E(J, J-1)=J2J-1).

The quantities (aJ iPia’J’) transform like the
elements of the matrix of an observable in going

1See Born and Jordan, Elementare Quantemmechanik,
p. 159, Eq. (10), or Giittinger and Pauli, Zeits. f. Physik
67, 754 (1931), Eq. (23).
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TABLE 1. The transition array p*p—p*s in LS coupling
as an illustration of the sum rules. The individual columns
and rows of this array are each J files; the fourth column
(containing the entries 32, 16, 80, 16, 144) is the J file
referring to the level p2 (3P) s2Py,; the third row (con-
taining the entries 32, 16) is the J file referring to
p? P) p2Pyss. The rectangles set off by solid lines, of
which there are eight in which transitions are allowed by
the selection rules, are each J groups. The rectangle at
the top center of the array (containing the entries 32, 16,
40, 8, 48) is the J group labeled by J=14 for p?p and
J=34 for ps. The broken lines break each J group up
into two or three J-group files; the first file of the J group
just mentioned contains the entries 32, 16; the second,
40, 8; the third the single entry 48.

O (1 3 3, ] 3, /
S () ¢3P) (3P) (‘D) (3P) ('D)
SN 2Ss 2Pyp *PypPyp *Pap 203 Py 2D
5)ep 48 | P 48)
e 46§-/65 gz 48)3
)P 1 *32 /6 | : (48)
Pz i i-8 - 40! 48) &
‘D ; +40 -8 (48) =
(D)ep P i 48 48)
(48):(48): (48)|(48) (48)) (48)
's)2p 96 . i (96)
o %6 |reoi | I P
2D 1+80; +6 | P Jee g
(°P)*s 3 1*16 =32 | -48! 96) Q&
4p2 L 40 28" 432 96) ¢
) i ivg0 Y5121 |48 96 O
) {¢P oo i *96 186.4/(96)
Phep P | 864 i-96|9e)
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) 144 i ! (/44)
CPip =432, [1008  |[(44)Q
$H Y008,  [*432  |m#x
(20 i 96 H344|(144)
0fep L Y344 1 Q6|4e) -
(144):(14.2)(144)(/44) (/44) -
p) 4 192 | (1920
pArZ: +92 [192)
(/192)(192) -
(144) (/24) (144) (288)288)(288)432) (432)
(3-/443 [3-2881 [2-432]

from one coupling to another for a free atom.
Hence the matrix of the quantities S*(aJ, o’J"),
defined as the square roots of the strengths §
taken + or — according to thesignof (aJ i P ia’'J’),
transforms like the matrix of an observable since
states of different J values do not become mixed
up. These quantities S*(aJ, o/J’) are the most
convenient to transform to intermediate coup-
ling.

Table I gives, for LS coupling, the values of
the line strengths .S, and as superscripts the signs
of S%, for the transition array p2is=p*p (the line
strengths are symmetric in the initial and final
states).?

2 Calculated by the method given in Johnson, Proc.
Nat. Acad. Sci. 19, 916 (1933) and Shortley, Proc. Nat.

SHORTLEY

In a transition array, the set of all lines origi-
nating in levels of one given J value and termi-
nating on levels of a second given J value was
called by Harrison and Johnson® a J-group.
In Table I all boxes set off by solid lines are
J-groups. The J-group sum rule which they
proved states that the strengths of the J-groups* are
independent of coupling. This follows immedi-
ately from the principle of spectroscopic stability
for any transition array whatsoever.

In a transition array, the set of lines connect-
ing a single given level of one configuration with
all levels of the other configuration we shall call
the J-file referring to that level. The different
rows of Table I are J-files referring to the levels
of p*p, and the columns are J-files referring to
the levels of ps. Now in LS coupling for a transi-
tion array in which the jumping electron is not
equivalent to any in either ion, it follows from
the known formulas for the relative strengths of
the lines that the strengths of the different J-files
referring to the levels of the same configuration
are proportional to the values of 2741 for those
levels. Thus the strengths of the rows and col-
umns, shown at the right and bottom of Table
I, are separately proportional to 2J4+1. The
same sum rule is known to hold for this same

_class of transition arrays in jj coupling. Hence

it was immediately obvious from spectroscopic
stability that the sum of the strengths of all
the J-files of the array which refer to a given
J value and a given configuration should be
invariant and hence proportional to (2J-+1)
times the number of such files, in any coupling.
These sums are shown in square brackets in
Table I.

However Kronig,® in considering on the basis
of the old quantum theory the old vector model
in which configuration assignments were only
made for the valence electron, states that the
“intensities” of the separate J-files should be
invariant. This statement seems not to have been
repeated elsewhere nor to have been investigated
quantum mechanically. Now if we examine the

Acad. Sci. 20, 591 (1934), for a particular choice of phases

of the eigenstates.

3 Harrison and Johnson, Phys. Rev. 38, 757 (1931).

4 By the strength of a set of lines we mean the sum of the
strengths of the lines in the set.

% See, e.g., Pauling and Goudsmit, Line Spectra, p. 141.

¢ Kronig, Zeits. f. Physik 33, 268 (1925).
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matrix of S*for p*p — p%s (whose elements are the
square roots of the strengths of Table I taken
with the indicated signs) we note that any two
rows or any two columns of S* headed by the
same J value are orthogonal. This is sufficient
to establish the invariance of the strengths of the
separate files in this case, for if in any matrix
the sum of the squares of the elements is the
same for each row (or column) and the rows
(columns) are orthogonal, these properties are
independent” of unitary transformations of the
states labeling the rows and of the states labeling
the columns.

In fact, as we shall show in §2, in any case in
which the strengths of the files are known to be
proportional to 2J+1 in LS coupling, they
individually have the same values in all inter-
mediate coupling. This theorem, which we shall
call the J-file sum rule states that for any coupling,
in a transition array in which the jumping elec-
tron 1s not equivalent to any electron in the ion in
either the initial or final configuration, the strengths
of the J-files referring to the levels of the initial
(final) configuration are proportional to the values
of 2741 for those levels. In addition, for the
particular two-electron arrays ninl'’=nl?, the
strengths of the J-files referring to »/* (but not
those referring to nin’l’) are proportional to
2J+1.

In the particular cases of the arrays as=ap,
in which the valence electron jumps from s to p
or p to s and is not equivalent to any electron in

the ion, we can further break the individual.

allowed J-groups up into invariant files referring
to the levels of the configuration as. These we
shall call J-group files. In such a transition array
in any coupling the strength of a J-group file
anywhere in the array is equal to the strength of a
J-file referring to the J-value of the configuration
ap which labels the J-group. In Table I the J-group
files are set off by broken and solid lines; their
strengths (shown in parentheses) are equal to
the strengths of the rows as given at the right
of the table and are invariant since the different
files in ‘a J-group are obviously orthogonal.
This J-group-file sum rule was recognized by
Harrison and Johnson to hold in the particular

7 This is proved in Eq. (9) of Harrison and Johnson
(reference 3).
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case of two-electron transitions Is=lp. We
shall sketch a general proof in §2.

A further illustration of these three sum rules
is furnished by the strengths in Table Ila, b of
pip=pss or pp=ps in jj and LS coupling.

§2. Proor oF THE J-FILE AND J-GROUP-FILE
Sum RuULEs

In order to prove the invariance of the indi-
vidual J-files it will be simplest to consider the
scheme in which each electron is characterized
by quantum numbers nlmm,. Then if the valence
electron is not equivalent to any in the jon in
either the initial or final configuration, the matrix
component of electric moment P vanishes unless
all quantum numbers referring to the ion are the
same in the initial and final states, in which case
it equals the one-electron matrix component

(nlmym,| P|n'lVm/my)

if the valence electron initially has quantum
numbers nlmyn, and finally quantum numbers
w'l'mim, .

Now from the dependence of this matrix com-
ponent on m; and m;, as given by Born and
Jordan! it follows that

> (nlmms| P\ n'Vm/m)
""1’”"8/
-('Vmi/m | P|nlm) " 'm,")
=8(my, m,")o(ms, my")| (nkiPin'lV)|2E(Q, 1.~ (2)8

Hence in this scheme the sum of the absolute
squares of the matrix elements of P having a
common original state is independent of that
state, and the files of matrix elements from two
original states have vanishing scalar product.
A simple extension of the proof cited in reference
7 shows these properties to be invariant under
unitary transformations, so that in any scheme
labeled by JM, the lines having the initial state
aJM have the strength sum |(nliPin'l')|?
E(l, I'); hence the J-file referring to the initial
level @/ has the strength

QJ+1) | (P 1) |2 EQ V). (3)
Symmetrically, the J-file referring to the final
level BJ’ has the strength

QT +1) | (n'ViPinl) |2 EW, 1). 4)

$ (n, LPin’, 1 —1) = —e(4l2—1)=} Oer(n, DR, 1—1)dr.
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These equations show that rows and columns of
a transition array labeled by the same J value
have relative strengths E(I, I')/=(, I). This
ratio E(p, s)/E(s, p)=1/3 is seen to obtain in
Tables I and II.

The applicability of the J-file sum rule to the
files referring to #l? in the array nl=niln'l'
arises from the fact that the strengths of the
allowed lines in this array are just twice those of
the corresponding lines of #nln''l=niln'l',* and
that none of the lines in the #l? files are forbidden.

This completes the proof of the J-file sum rule.

The J-group-file sum rule states that for the
transition array as=ap in any coupling char-
acterized by J values, the sum of the strengths of
all lines in the J-group J=J' having a common
level of the configuration as equals (2J'+1)
[(piPis)|2 E(p, s). The quantum numbers
which characterize the levels in jj coupling are
a set I referring to the ion, nsj or n'pj’ for the
valence electron, and the resultant J value. In
jj coupling two files in the same J-group are
obviously orthogonal since they refer to different
ionic quantum numbers I. The strength of a
J-group file is 2,;/S(Z, nsj, J; I, w'pj’, J') where
j=1/2 and 7 =1/2, 3/2. This sum may without
difficulty be evaluated directly from formulas
given by Giittinger and Pauli' for the three
special cases J'=J+1, J, and J—1, and shown
to have the value stated in the theorem.

§3. APPLICATION TO THE NEON RED-YELLOW
LiNEs

The neon transition array 2p%3p—2p53s,
which, with the old intensity measurements of
Dorgelo, has been used to infer that the J-file
sum rule should not hold in intermediate coup-
ling, will, with the new dispersion measurements
of Ladenburg and Levy,” furnish us with in-
stead a very interesting experimental verification.

The relative line strengths calculated from
the Einstein 4 values of L. and L. by the rela-
tion S(p, s)=3h*(2J,+1) A(p, s5)/64n** are
given in Table IIc.! The ratios of the sums

9 Shortley, Phys. Rev. 40, 185 (1932), §8.

10 Ladenburg and Levy, Zeits. f. Physik 88, 461 (1934).

1t The notation of Bacher and Goudsmit is used for the
levels of p°p. The three bracketed values in this table are
very rough estimates, from the measurements of Dorgelo,
of the strengths of lines which were not measured by
L. and L. The designation v.s. means ‘very small.’

SHORTLEY

which should be invariant to their values in Ila
and IIb are shown in parentheses. To the first
order of the perturbation theory, which is ex-
pected to be rather good in this particular case,
these ratios should all be equal.

Now the relative strengths of lines having a
given final level were obtained by L. and L. by
measurements of anomalous dispersion to an ac-
curacy of perhaps 10 percent, while the strengths
in different rows of the diagram were only re-
lated by direct measurements of much less
accuracy of relative intensity of lines having the
same initial level. This suggests that we try
relating the strengths in the different rows by
requiring the J-file sum rule to hold exactly with
respect to the rows; this amounts to discarding
the direct intensity measurements and using
only the dispersion measurements. Such a pro-
cedure seems further justified by the fact that
the ratios for the three J-group files in each row
are of approximately the same size but that
these ratios differ much between rows; there is a
real discrepancy in the first row for which we
have no explanation. The test of this procedure
will come from an examination of the sums of
the columns in the modified array, for one would
not in general expect an improvement in these
sums upon multiplication of the rows by ar-
bitrary factors.

Table I1d shows the array modified so that the
sums of the rows have exactly the theoretical
relative values, and it is seen that there is a
great improvement in the ratios of the sums of
the columns to their theoretical values. In fact,
this agreement becomes almost as good as one
could expect from the accuracy of the data.

§4. DirReEcT QUANTUM-MECHANICAL
CALCULATIONS

While considering neon 2p%3p—2p53s, it seems
of interest to see what the first-order perturba-
tion theory has to say about the detailed line-
strength pattern when we use only the ordinary
electrostatic and spin-orbit interaction terms
and evaluate the coupling constants (radial
integrals) from the observed energy values. In
order to do this, we first calculate the transforma-
tions from LS coupling to the actual coupling
for p5s and p®p, and then transform the matrix
of §* from LS coupling to the actual coupling.
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TABLE 11. Line strengths in the transition array 2¢°3p—2p°3s. In a and b, the sums in parentheses are predicted to be
independent of coupling. The ratios of the actual sums in c and d to these predicted sums
are shown in parentheses in ¢ and d.

a: jj Coupling b: LS Coupling
0 0 -~ -~ ~ -~ 0 ([N N (1)
N N A N R AN le 35 35 ly 3m 3c 35 Im 3 3
NIRRT So °Po P, 'Pi D, 7S, °P. D: "D: D5
-5 25 [*25 25 7013 3 2.5  -%-16%4*375 *25[*70 |3
%18 (30) (50) (70)@ P (30) o) (70| Q
-10|*10 +20 +50 3 3 <10 7.5 *125-10|7125 375 3
| o | T T Go | so | |® Pl ao |7 Goy | o | |3
~io +25 -5 [f25-25 S 14 |10 + +50 3
el “to (30) (50) § Pi| "o (30) (50) N
+20 -10 3 3 -10 +162/5*3) 3
//zyeO (30) @ PO (éaO) /3 8
(10 (10) (30) (30) (30) (30) (50)(50) (50) (70) (10) (/0) (30) (30) (30) (30) (50) (50) (50) (70)
¢: Ladenburg & Levy d: L.&L. Modified
100 60 9, 7, 4, /I, 82 52 3. &3
3! 6.5 ~29 5.4 16.9|8.9 18.913.2]53./ % 77 ~3.4 6.5 202|/07 225 15.763.3|0
2 (1.06) (.82) |(76) (1.26) .98) [90)|R
3p/lvs. 87139011163 103]/3.4 58235 ~ v.s. 9.6 43 [./11/7.9 1l.3 |I47 63 258 8
B RE-T< N N (02) | | 85| |® | tee) | . e | o4) | |=
Ip/ /2.8 v.5.|18.619.0 v.5.13.01306296 7.4 3 9.6 v.5. |13.9 141 vs. 22227 220 655 S
" r.28) (1.35) (1.35) ) (.96) (1.01) (1.00) Q
35/ 8.6 /145 9.0(1.0] I 7.8 13.2 8.1 1.9] )
P, < S
° (1.10) 3 (1.00) 3
(128 .87 1.26 I22 .02 .04 1.06 1.09 .88 .76)~ (.96 .96 /2 1.03 .08 I.I5 96 /02 5% 90)

e: Calculation A

f: Calculation B

57 25 24 195 (169 /6.6 16.5|70.0 6.1 28 22 189|213 13.8 14.9|70.0
(2 98|62 .1 /5.5 8.2|240 00 260 (2 98|26 24 /65 6.5/152 /.4 325,
98 .2 |00 /8.0 19 ./ |9./ 33475 88 .2 |/I37 160 I .2|/135 34916

8.1 94 /o2 &3 75 89 1. 2.4

Neon 2p%3s fits Houston’s formulas almost
perfectly, giving for the eigenstates in the actual
coupling

Y(1P1/)=0.964¢(1P1) +0.266y(*P)
Y(3PY)=0.266¢(1Py) —0.964¢(*Py).

The agreement with the observed energy levels
and Zeeman effect is so good that the error in
these transformation coefficients is probably
not more than 0.001.1

The situation with respect to 21553;_0 is un-
fortunately not so attractive. We use the electro-
static interactions in LS coupling as given in

12 This enables us to predict the relative intensity of the
two resonance lines of neon as (\P,'—1Sy) /(3Py'—1S,) =13.2
with an estimated error of about 0.1.

§4 of reference 9. The spin-orbit interaction is
obtained from Johnson's® matrix for pp by
writing — (s, for a; and {3, for az, where the {'s
are the (essentially positive) integrals expressing
the spin-orbit interaction of one electron in a
central field. Inglis and Ginsburg found a fairly
good agreement with the observed energy levels
by use of the constants given under A in Table

TasLe III.
Calc. A Calc. B Calc. A Calc. B
F, —339.1 —334.9 | 12G;, 537 482.8
F, 157.7 166.6 | 3 402.8 385.6
6G, 4503 4604.5 | ¢2p 40.0 —8.4

13 Johnson, ‘Phys. Rev. 38, 1628 (1931). Note that
a1+a: should be written in place of a1—a; in the matrix
for J=0, as pointed out by Inglis and Ginsburg.
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TaBLE IV.
Energy (cm™) g value
obs. A B obs. A B

253D, 0.0 0.0 — 28.7 1.329 1.333 1.333
323D, 167.2 127.7 149.2 1.137 1.147 1.146
521D, 658.8 728.6 667.8 1.229 1.142 1.106
8,3P, 1201.5 1171.2 1170.1 1.301 1.377 1.415
1,35, —1399.2 —1271.4 —1358.1 1,984 1.994 1.993
4,3D, 464.6 378.2 3945 .669 .574 .561
7,1P, 1115.1 10853 1144.1 1999 1.095 1.105
9, 3P, 1381.4 1369.7 1386.3 1.340 1.340 1.339
60 3Py 1260.4 12760 1325.0

100 1S, 3313.7 3298.3 3313.2

II1." These constants lead to the energy levels
and g values listed under A in Table IV. The
matrix which expresses these levels in the LS-
coupling scheme is easily obtained; the Russell-
Saunders level which occurs in largest proportion
in each of these levels is listed in Table IV.1®

The signs in the matrix of S*in Table IIb were
obtained for states having the same phases as in
the energy matrix we have used for p°p and in
(5). When we transform this matrix to the actual
coupling of calculation A we obtain the line
strengths of Table Ile, which show the general
characteristics of the departures of the observed
values from those in Russell-Saunders coupling,
but disagree markedly in detail.

1 Inglis and Ginsburg, Phys. Rev. 43, 194 (1933). We
find that the calculated energies given by Inglis and
Ginsburg are not correct for the parameters they list.
This statement is easily checked by an evaluation of the
trace of say the J=2 matrix. The sum of the observed
energies of the three levels of J=2 is 2027.5 cm™, the sum
of their calculated energies 2058.5. Now the trace of the
energy matrix is, in their notation, a+v—35(ai+as)
=2027.5—in agreement with the observed trace but not
with their calculated trace as it should be. This discrepancy
is entirely accounted for by an error of about 30 cm™ in
their value 1201.5 for the level 8.. Similarly, we find their
calculations for the levels of J=1 and 0 to be all in error
by amounts ranging from 6 to 56 cm™. These discrepancies
account for the difference between the energies and g values
in Table IV (A) and those given by Inglis and Ginsburg.

15 These proportions run from 609, for 7, (7, is 60%,
1Py, 299, 3Py, 119, 3D;, 0% 3S;—in calculation B these
proportions become 61%, 30%, 9% and 0%) to 100%, for
23; on the average the levels contain 859, of the Russell-
Saunders level indicated. In Tables Ilc, d, e, {, these levels
occupy the same columns as the corresponding Russell-
Saunders levels in Table IIb.

SHORTLEY

In order to see whether this disagreement is
of the right order of magnitude to be accounted
for by the fact that with our approximate formu-
las we could not fit the observed energy levels
perfectly, we have in calculation B used a set of
constants chosen so as to give approximately the
best least-squares fit of the calculated to the
observed energies.’® These constants give the
energies listed in Table IV (B), which, while
they fit better on the average, are not a great
improvement over those of calculation A. The
small shifts between A and B change the differ-
ences between energy levels of the same J value
considerably, and this and the change in the
constants change the eigenfunctions sufficiently
to give the line strengths of Table IIf instead of
Ile. The marked differences between these tables
shows that we cannot expect, without further
refinements in the theory, to get accurate quanti-
tative intensity predictions in this case. The same
observation with respect to g values has been
made by Inglis and Ginsburg.

I wish here to express to Professors Harrison
and Van Vleck and Dr. Kimball my appreciation
for valuable discussions and suggestions con-
cerning this work, and to thank Professor
Ladenburg for calling my attention to his neon
dispersion data before publication.

16 This we may do in the following way. The energy
levels \;-- -\ are the roots of four polynomials whose
coefficients ¢, - - -¢ioare functions of six parameters F; - -« Fy.
We know 9dcy/d F; and dX\;/dck. (We have not succeeded in
finding a reference to the formula for the rate of change of
a root of a polynomial with respect to a coefficient, so we
state the general formula here: If the nth degree equation
A4 Znleni =0 has roots A;- - -\, then

n
a)\l/aCj = —)\15/ 1H2 ()\1—)\1‘),

where \; is any one of the roots.) From these we obtain
INi/dF;. Now, knowing an approximate set (Fi--:Fs;
M+ ++A1o’) of parameters and energy levels, we write
Ni°—N\;'= Z;(dN;’/0F;)8F;, where the \;° are the observed
energies, and determine the six 8F; by a least-squares
calculation to fit these equations as well as possible.
Since the dependence of the roots on the parameters is
only to a first approximation linear, this process may be
repeated for greater accuracy. However in our case the
dependence was sufficiently linear that there was no
point in doing more than one calculation of this sort in
getting from A to B.



