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The extension of Wigner and Seitz's method developed by Slater is applied to metallic
lithium. Calculations corresponding to those of Slater for sodium have been made and the
results discussed. One essential difference between these metals is that the conduction electrons
in lithium are much more tightly bound than those of sodium.

INTRODUCTION

IGNER, Seitz and Slater! have developed

a method for calculating the electronic
properties of metals and have applied this
method to sodium. In this paper are presented
the results of the application of their theory to
the case of metallic lithium. Briefly, the method
may be summarized as follows: Each ion in the
metallic lattice is considered at the center of a
polyhedral cell, the cells being so formed that
the whole metal is obtained by tightly packing
them together. In the case of a body centered
lattice, which is the structure of all the alkali
metals, these cells are truncated octahedrons
formed by the intersections of planes which
perpendicularly bisect lines joining an ion with its
eight nearest and its six next nearest neighbors.
Within each of these cells the potential is
assumed to have spherical symmetry. In a
simple translation from a point on one face of
the polyhedron to the perpendicularly opposite
point on the opposite face the wave function of
an electron, according to a general theorem of
Bloch,? will have become multiplied by e?7#®-n/t
where p is the momentum which the electron
would have if it were free and where n is this
lattice translation. The problem thus reduces to
one of spherical symmetry within each cell
together with the boundary conditions that the
wave function and its gradient at a point on one
face be equal to their value at the corresponding
point of the opposite face multiplied by e?7i-n/,
Then the wave function at any point of another
cell is obtained by considering a point within

1 Wigner and Seitz, Phys. Rev. 43, 804 (1933); J. C.
Slater, Phys. Rev. 45, 794 (1934); Rev. Mod. Phys. 6,
210 (1934).

2 For a direct proof of this theorem see Sommerfeld and
Bethe, Handb. d. Physik XXIV/2, p. 370.

the primary cell such that the distance between
these two points is an integral number of lattice
translations and then applying the Bloch the-
orem.

In order to satisfy the boundary conditions at
every point on the surfaces of the polyhedrons it
would be necessary to choose a wave function
which is a linear combination of all the solutions
of the spherically symmetric Schrédinger equa-
tion. As a first approximation we fit the boundary
conditions only at the midpoints of the faces
between an ion and its eight nearest neighbors.
We then use a linear combination of eight
s, p, d and f functions which do not vanish at
all the midpoints in question and are led to a
set of linear homogeneous algebraic equations
from which the constants are to be determined.
In order that these have a nonvanishing solution
the secular determinant must equal zero and
this yields the relation between p,, p,, p. and
the one electron energies E.

I. ENERGY BANDS FOR LITHIUM

The potential field employed for lithium was
that for the free atom.? The use of such a
potential at the actual internuclear distance is
justifiable only as an approximation. In the
immediate neighborhood of the nuclei the real
potential and that for the free atom should be
very nearly identical, but at larger distances
there will be considerable difference. In fact the
normal derivative of the potential must vanish
at the boundary surface between two cells,
since on the average the net charge within each
cell is zero and hence the force on an electron at
this boundary must vanish. The true potential

#1 wish to express my thanks to Dr. F. Seitz who kindly
supplied me with this potential.
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thus lies lower than that for the free atom and
the error made by neglecting this difference in-
creases with decreasing internuclear distances.
A Dbetter approximation would be to employ
essentially the potential for the free atom
rounded off and depressed so as to join smoothly
with the potential of a neighboring cell.

The Schrodinger equation was integrated nu-
merically for a series of energy values. In this
way the radial functions s, p, d and f (for
=0, 1, 2 and 3, respectively) were obtained,
and from these Fig. 1 was constructed. The
energy is plotted as a function of half distance
between nearest neighbors, the curves shown
being those for which s=0, s'=0, p=0, p'=0,
etc., where s, p, d and f denote the values of the
radial functions at the surface of the cell and
s', p'- -+ the corresponding derivatives. The half
distance between nearest ions is experimentally
found to be 2.86 atomic units (indicated on the
diagram by the dotted vertical line) and it is
seen that the minima of the lowest s’=0 and
p'=0 curves occur at just about this point.
One very significant difference between these
curves and the corresponding ones for sodium is
that the minimum of the p’=0 curves is much
lower than for sodium. This causes this curve to
cross the lowest curve at about 2.0 atomic units
whereas for sodium this crossing does not occur
until we get to much smaller internuclear dis-
tances. It is just this difference which explains
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Fic. 1. Energy plotted against half distance between
nearest neighbors for lithium.
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the abnormal pressure coefficient of resistance of
lithium.*

By restricting ourselves to the x-y plane of
momentum space (p.=0) we can explicitly ob-
tain the allowed types of wave functions. Slater
showed that for this case the eight linear equa-
tions break up into two sets of four each so that
solutions are possible by placing the determinant
of one set equal to zero and also equating the
constants of the other set equal to zero. We call
the two possibilities Case I and II, respectively.
For Case I we have real propagations for some
directions provided that either ps’/p’s or pd'/p'd
is negative. These two cases are labeled Ia and Ib,
respectively. Similarly real propagation of type
ITa and IIb is possible providing that pd’/p'd or
fd’/f'd is negative. The regions in which the
different types of propagation enumerated above
can occur are indicated in Fig. 1. Of course, one
can find such regions by seeing what sign
s, ', p, p'-+- have for each energy and inter-
nuclear distance, but it is simpler to proceed as
follows: For very large distances the energy
bands degenerate into the energy levels of the
free atom and therefore in the neighborhood of
these levels are regions in which propagation is
not possible in any direction. In other words,
here ps’/p's, pd'/p'd and fd'/f'd are all positive.
Such a region is seen in Fig. 1 surrounding the
2s level. Now, as we cross the line s’ =0, ps’/p’s
must change sign and is now negative, allowing
type Ia. As we pass from this region across the
p'=0 curve ps’/p’s and pd’'/p'd must change
sign, so that ps’/p’s now becomes positive again
whereas pd’/p'd is now negative and only types
Ib and Ila are allowed. By similar reasoning we
can assign the other regions of Fig. 1 to the
various cases as indicated. The regions which are
not marked are those for which we have no real
propagation in any direction. However, even for
the other regions there are certain directions for
which we have no propagation. For a detailed
discussion of how these gaps come about we refer
to Slater’s paper. The following example will
serve ‘as an illustration. Consider the normal
distance of separation and a momentum vector
ending at the edge of the first zone in the 110
direction. Then an inspection of Slater’s equa-
tions tells us that the corresponding energies

4 See the preceding paper.
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Fic. 2. Energy plotted as a function of momentum in
the 110 direction.

occur at either '=0 or at sd’+ds’=0. Since we
have two energies corresponding to the same
momentum at the edge of the zone this must
mean that we have a gap in energy here. This
is clearly seen in Fig. 2 where the energy is
plotted as a function of the magnitude of
momentum in the 110 direction. The first two
zones are indicated and the gap comes at the
vertical lines which represent the boundary
between these zones. For lithium one finds that
the p’=0 condition comes for a lower energy
than the sd’+ds’=0 condition and hence p'=0
corresponds to the top of the first band whereas
sd'+ds'=0 is the bottom of the second band.
For sodium just the reverse is true.

If we plot curves of constant energy in the
p-— Py plane we obtain Fig. 3 for the first two
Brillouin zones at the normal distance of separa-
tion. The center of the first zone comes at about
E=—0.68 atomic units and the corner of the
second at about E = +0.46 atomic units, a much
wider range than is covered in sodium. The first
zone goes to the 2s level of the free atom at
infinite separation and the second goes to the 2p
level. There is a marked difference in appearance
between this figure and the corresponding one
for sodium. Near the center of the diagram the
curves are approximately circular, but they
flatten out and become parallel to the edge of
the first zone as we approach this edge. For
sodium they stay .more nearly circular (free-
electron-like) all the way out except very close
to the edge of the zone where there is the gap in
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Fia. 3. Constant energy contours in x-y plane of
momentum space.

energy spoken about above. The difference in the
shapes of the constant energy curves for lithium
and sodium is due mainly to the fact that the
gap comes in the second zone for lithium whereas
it occurs in the first zone for sodium.

Let us now examine Fig. 2 in more detail.
The dashed curve is the free electron parabola
(E=2$%/2m) and it is seen that the solid curves
are much flatter than this, indicating that the
conduction electrons in metallic lithium are none
too ““free.”” As a matter of fact, at the edge of the
Fermi distribution the ratio of the slopes of
the two curves (which measures the freedom
of the electrons) is about %, whereas for sodium
its ratio is very nearly 1. An inspection of the
shape of the constant energy curves (Fig. 3)
tells us that in any other direction the E vs. p
curves will be even flatter than in the 110
directions and hence the electrons are even less
free for these directions. Furthermore, whereas
for sodium the energy gap extends only from
—0.37 to —0.32 atomic units, for lithium it is
from —0.45 to —0.26 atomic units, a jump
almost four times as large.

Due to the periodicity of energy in momentum
space the curves of Fig. 2 can be continued

- periodically along the axis of abscissas. Then the

upper curve would have a maximum at the
center of the first zone while the lower curve has
a minimum there. This is what is usually found,
the minima occurring for bands which go to
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s-states at infinite separation and the maxima
for bands which go to p-states.

II. Tae WAVE FUNCTIONS

In Fig. 4 are plotted a number of typical
wave functions in the first band. The dots
represent nuclei along the 111 direction, this
being the direction of closest packing. The wave
normal is in the 110 direction (p,=p,, p.=0).
The dashed curves are the wave functions of
free electrons having the same p value as the
actual curve. It is seen that, whereas near the
nuclei the two do not agree at all, in the region
between ions we have wave functions which are
fairly free-electron like. This is our justification
for using the metallic correspondence, that is,
for assigning the 2s electrons rather than the
bound 1s electrons to the first zone of momentum
space. Physically, this is just what we should
expect. The bound electrons are confined to
regions of low potential around the nuclei and
hence are traveling much faster than the free
electrons. Therefore, their p-values must be
larger than those of the 2s electrons.

A comparison with the wave functions for
sodium again indicates that lithium is far less
free-electron like than sodium. This means that
the metallic correspondence is much better for
sodium than for lithium. In other words, if we
were to look at the momentum eigenfunctions
for the 2s electrons of metallic lithium we would
not find that they had simply a peak for one
value of p-in the first zone and were practically
zero everywhere else, but rather that they had
appreciable values for several cells of momentum
space.

Let us examine the wave functions more
closely. At the center of the first zone, (p=0,
A=), we have a standing wave (that is, a real
instead of a complex wave function) which is
simply an s function repeated periodically
throughout the lattice (Fig. 4a). It is interesting
to note that for a large part of the volume the
wave function is constant. (A free electron wave
function with A= » would be constant every-
where.) As we decrease the wavelength we
obtain successively the traveling waves Fig. 4b,
¢, d and e. Then at the edge of the first zone,
where the wavelength is just twice the distance

F1G. 4. Wave functions for free electrons for lithium as a

function of distance along 111 direction, first band, type Ia.
a. 2s function E = —0.68, p =0, A\=%. Real function.
b.c. Real and imaginary parts. E = —0.65, A =31.8 atomic units.
d.e. Real and imaginary parts. E = —0.55, A=17.1 atomic units.
2p function. End of first zone E = —0.45. Wavelength is
twice distance between nearest neighbors. .
The dashed curves indicate sinusoidal wave functions

having the same wavelength as the actual function.

between nearest neighbors we obtain a standing
wave, Fig. 4b. This means zero current, corre-
sponding physically to Bragg reflection of the
electron wave. One sees that whereas the lowest
level of the first band is an atomic s-state (re-
peated periodically) and the highest an atomic
p-state (repeated periodically) the intermediate
levels are linear combinations of s, p and d
functions. If one examines the nodes of the
functions one observes that some come from
the atomic states and some are due to the
modulating sine and cosine functions.

Fig. 5 shows wave functions of type Ib in
the second band, and it is seen that we again
have standing waves at the beginning and end
of the zone. 5a is formally related to 4f as the real
and imaginary parts of a wave function, 5a
resembling a sine curve and 4f a cosine curve.
As mentioned above, for sodium the reverse is
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F16. 5. Wave functions for free electrons for lithium as a
function of distance along the 111 direction, second band,

type Ib.
a. Beginning of second band. E =—0.26, \ is twice distance between
nearest neighbors.
b.c. Real and imaginary parts, E =—0.25, A =10.8.
d.e. Real and imaginary parts, E =—0.05, A =8.40.
f. Standing wave at end of second zone. E = 40.46, X is just the dis-
tance between nearest neighbors.

true, namely, the sine-like wave function (satis-
fying the condition sd’+d’s=0) comes at the
end of the first zone and the cosine-like function
(satisfying the condition p’=0) at the beginning
of the second. Now as we move away from the
edge of the zone to higher energies we obtain
the remaining curves of Fig. 5 and it is seen that
the agreement with the free electron wave func-
tions gets poorer and poorer. At the end of the
zone, where the wave is simply a d-function
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the agreement is so bad that no free electron
curve is even indicated on 5f. At first this may
seem strange since we should expect that as the
energy of an electron was increased it would
become more and more free. However, we must
remember that we have assigned that part of
momentum space about the origin to the 2s
electrons and we have said that the 1s electrons
are traveling faster than these and hence have
momentum values further out from the origin.
It is only for energies higher than those of the
bound electrons that we can expect wave func-
tions which closely resemble sinusoidal waves,
that is, momentum eigenfunctions which have an
appreciable value for only one cell lying relatively
far from the origin.

We must therefore conclude from the wave
functions as well as from the shapes of the con-
stant energy curves in momentum space and the
E vs. p diagram that the conduction electrons in
lithium are much less free than those in sodium.

A few remarks about the approximations made
should be added. The assumption of spherical
symmetry around each ion has been discussed by
Wigner, Seitz and Slater.! They show it to be a
consistent one which should be very nearly the
truth for the type of lattice involved. The worst
approximation made, however, is the fitting of
the boundary conditions at only eight points
instead of all over the polyhedral surface with
which we have surrounded each ion. It would be
very interesting to fit the boundary conditions
midway between second nearest neighbors also;
that is, at the center of every face of the poly-
hedrons. Such a refinement will undoubtedly
modify the shape of the energy contours of
Fig. 3 near the edge of the zone. For example, we
should no longer expect to find the boundary a
surface of constant energy.

I should like to express my thanks to Pro-
fessor J. C. Slater for suggesting this problem.



