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Vibrations of Symmetrical Tetratomic Molecules

JENNY E, RosENTHAL, Chemistry Department, Columbia University

(Received November 15, 1934)

The general method for obtaining the vibration fre-
quencies of any symmetrical molecule is outlined, and the
results of its application to the tetratomic case are given.
The frequencies are derived for the most general force
field consistent with geometrical symmetry and also for a
more specific case based on a simplified model. It is shown
that the assumption of the rigidity of the bonds requires

two different forces perpendicular to the lines of bond. The
coplanar tetratomic and the collinear triatomic molecules
are found to be the only ones of a number of molecules in-
vestigated so far, where an unambiguous determination of
the physical force constants is possible. In the general case,
no very definite meaning can, apparently, be attached to
terms like "magnitude of bond constant. "

but, they are usually indicated by the sym-
metry of the geometrical configuration. A fairly
detailed treatment illustrating the procedure
outlined here has been given for the symmetrical
tetrahedral pentatomic molecules. ' Some of the
results of its application to tetratomic molecules
of the type YX3 have also been previously re-
ported. ' ' A complete discussion of the vibration
frequencies and isotopic shifts of tetratomic
molecules, both of the pyramidal and coplanar
types, will now be given together with a dis-
cussion of various intramolecular forces and of
the physical meaning of the results.

Denoting, as usual, the positions of the three X
atoms by A1, A2, A3 and that of the Yatom by
A4, we let

A4A; =r; =r'+br, ", A;A; =q;; =q'+by;;;

A;A4A;=20, ;=2(Q +80;;); (f, j=1, 2, 3);
(the superscript 0 refers to the equilibrium con-
figuration). The 6r, and 5q;; are the mutual dis-
placements of the particles. s' denotes the height
of the pyramid and g = s'/q',

r02 —s02+ 1qo2 —lq02(] +3g2)

We introduce:

x+ -', u = (br2 —fra) (r'/q'); u = bqgg —bq„;

y+ ', t=(2/Q3)[-', (Sr,-+Sr,) —Sr~](r'/q');

t = —(2/g 3) L-', (bqgg+ bqga) —bq2g];

3gs+ w/4 3 = (br~+ 5r2+ 8r3) (r'/q');

u = (~qi2+ ~qua+ &q23) /0 3. (1)

x, y and z may be shown to be the displacements

' J. E. Rosenthal, Phys. Rev. 45, 538 (1934).' E. O. Salant and J. E. Rosenthal, Phys. Rev. 42, 812
(1932).

4 J. E. Rosenthal, Phys. Rev. 45, 426 (1934).

' A group-theoretical method giving qualitative but not
quantitative results has been given by E. Bright wilson,
Jr. , J. Chem. Phys. 2, 432 (1934).
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HE general procedure for obtaining the
normal vibration frequencies of a molecule

of any type of symmetry, with the minimum
amount of calculations and without the use of
group theory, may be summarized briefly in the
following manner. ' We write the expression for
the kinetic energy T in terms of the displacements
of the various atoms from their equilibrium
positions. The potential energy, U, a function of
the mutual displacements of the atoms, is written
in terms of these variables as the most general
quadratic form consistent with geometrical sym-
metry. (For small vibrations there is a linear
connection between the mutual displacements of
the atoms and their displacements from the
positions of equilibrium. ) As the next step, new
variables, linear combinations of the original
displacements, are introduced and both T and U
are transformed to them, the usual assumptions
of the conservation of the linear and angular
momenta are taken into account when the
transformation on T is performed. The normal
vibration frequencies, co, or rather X=4~'~', are
then obtained as the roots of

~

XT V~ =0. For-
n degrees of internal freedom, the expansion of
this nth order determinant will give rise to an
equation in X of the nth degree. For molecules
with some kind of symmetry, this nth degree
equation may usually be resolved into a number
of component equations of lesser degree. In this
case, it is possible, by a proper choice of variables,
to resolve the original determinant immediately
into a product of determinants of lesser order.
This proper choice of variables is, to some extent,
a matter of guess-work in each particular case,
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of the Y atom from its equilibrium position; x
and y are parallel to the plane of the X atoms
and s is perpendicular to it. With the six arbi-
trary constants permitted by the geometrical
symmetry, ' the potential energy, V, is written
as

V(x, y, s, u, t, w) =-', [A(x'+y')+Bs'+Cw'

+D(u'+t')+2E(xu+yt)+2Fsw]. (2)

If the three X atoms have the same mass:
m1 ——m2 ——m2 ——m (i.e. , if we disregard isotope
effects) and if 3E is the mass of the V atom, the
corresponding expression for the kinetic energy is

T= 'm[3()((-x2+ y2)/b+3)2r. '+ -'(u'+ t'+w') ] (3)

where t(= M/(DE+3m) and b= 1+6 t(g.2

The frequencies are then given by

[m2), 2(,„) („o m)1( 12A—b/)1+-3D)

+ (b/p, ) (AD —E')]'=0,
(4)

m X ( )-m)(~B/&y3C)y(BC-F')/&=0.

The subscripts attached to X indicate to what
variables, hence to what types of motion, these
frequencies correspond. With this notation it is
immediately evident that the vibrations of the
electric moment are parallel to the symmetry
axis of the molecule for the two single frequencies
represented by co(,„) and perpendicular to it for
the two double frequencies.

In the case where one of the X atoms is re-
placed by its isotope X* so that m& ——vs+Am,
while m2 ——F3——m, the kinetic energy becomes:

T= ,'m[b(1 —«) —-t(«] '[3t((1 —«)x'

+ ', (b t(«) u' -—2—)(«ux]+-2,m[b'(1 —2 « —t(«) ]—'

X }3t((1—2 «) (1 —t(«)y'+ 3t([b'(1 —2 «) 2(2«']r", —

+ 2 [b'(1 —« —t(«) —t(«2(b —1)](t2+w')

+2[t(«(1 —)1«)y(t —w) —6«(1 —2«)g)12j~r'Q 3

—2«2p2gs(t u)&3 ——,'«(b' t(«b+)1—«)tw]}; —(3')

where b'=b(1 —2«)+2« t(K. The corresponding
frequencies are given by:

' J.B.Howard and E. Bright Wilson, Jr. , J. Chem. Phys.
2, 630 (1934), confirm this result previously given in refer-
ence 3 in 1932.

The constant C used here is identical with C' of refer-
ence 4.

m2) 2 m—)«[ 12A (b/)2 «)—+3D(1—«) +2«E]
+[(1—«) b/)2 «]—(AD E')—= 0 (4')

m9, (yf, z„)—P$5$') '+ P25$9' —P35$X+P4 ——0,

where:

P1 [-,'A——b'/t(+ 3(1—«)D 2«E—]
+ [-,'(1 (2«)B/—)2+ 3C(1 —«) ];

P2= [12(1—t «)Blt +3C(1—«)][21Ab'/t

+3 (1—«)D 2«E]+—(1/)2 «) (1 ——«) (BC—F')

+ (jy/t() (1 —«) (AD —E2) —«2[(4/3)g2AB

+AC+AD E2+4g—F(A+3E)/g 3

+9CD+ 6CF];
P2 (b'/t() (——1 —«) (A D —E')[12(1 t(«) B/t(—

+3C(1—«)]+ (1/t() (1—«) (1 )),«) (BC F—')—
X [21Ab'/t(+3D(1 —K) 2«E] («2/t()

X I (AD —E') [~B(b'+b —1)+3C(b'+2t()

+4)2g F& 3]+(BC F') [22—A(b'+b 1)—
+3(1 )2«)D+—2(1 t(«)E]j;—

P4 ——(b'/t( ) (1—2« —I2«) (AD —E2) (BC F2)—
= (b'/t(') [(1—«) '(1 t(«)—

«2(1 +2)« t(«) ](AD ——E2) (Bc—F')

We may now try to correlate the very general,
arbitrary constants A, B, C, D, B and F with
certain force constants f1, f2, etc. , which would
be postulated on the basis of a simple physical
model of the molecule. We would expect that
for YX3 the potential energy for small vibrations
around an equilibrium configuration could be
expanded in the form:

V= V'+ ((t V/&g)'(i)g12+ ()g)2+ ()g22)

+(8V/Br)2(t)r(+ br2+ br2)

+-'(~' V/~")'(~r)'+ br2'+ br2')

+ 2 (Cl U/Bg ) (8g12 + ()g13 + ()g23 ) + Wq (5)

where S" represents the potential energy due to
the rigidity of the bonds, i.e. , due to restoring
forces perpendicular to the lines of bond.

' Cf. the potential energy assumed for the pentatomic
molecule by H. C. Urey and C. A. Bradley, Jr, , Phys. Rev.
38, 1969 (1931).

'A different expression for the potential energy of the
pyramidal molecule based on chemical considerations has
been given in reference 5.' D. M. Dennison, Phil. Mag. 1, 195 (1926), has con-
sidered the case: 8'=0.
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It may be shown that in the case of the pent-
atomic molecule the two forces are identical. "

The condition of stable equilibrium for the
non-vibrating molecule requires that (8 V/Bg)'
= (8 U//Br)' = 0, whenever g /0, and (8 U/Br) '
= —(8 U/Bg)'Q 3 for g=0. If we let:

(~'V/~r')'= (I+3g')fi (~'V/~i ')'=f3
(7)

(8 V/Br)' = g'f, / g 3,

we obtain two different sets of relations con-

necting A, 8, etc. , with the various f's for the

pyramid and the coplanar case. These relations

are:
Pyramid

A =3(f +-'f )/2
B=3(3gf&+f2+9g f4)
C—af1+g f2+f3+9g f4
D =-,' f1+-2f3+-', (1+6g') f4
Z =-',f,——;(1+6g2)f,
F=g(f1—f2—9g'f4) 43

Coplanar Structure

~ =3(f,+4f4+f6)/2
B=3(f2+f6)
C= 3f1+f3

F=O

(If we substitute in Eqs. (4) the constants A,
8, C, etc. , by their values as given by (8') and
let f2= f4 0, the re——sulting equations reduce to
those given by Menzies, "supporting his formulae
as against those given by Nielsen. ")

"F.Lechner, Wien. Bericht 141, 633 (1932), has con-
sidered the case where this particular force is the only one
present in addition to the force along the bond.

4
~' In the pentatomic case we have to take g (r08S;)'

C=l
for the four pyramids formed by the V atom and any three
X atoms. This sum is equal to a constant factor times

4
g (e&L;)&.

4, 5~1"A. C. Menzies, Proc. Roy. Soc. A134, 265 (1931).
'3 H. H. Nielsen, Phys. Rev. 32, '?73 (1928).

These perpendicular forces are of two kinds: there

are forces proportional to the change in angle

between any two bond lines;" in addition there

is a force proportional to the change in trihedral

angle at the top of the pyramid. In the coplanar

case the first force is in the plane of the X atoms,
while the second one is perpendicular to it.
Denoting the trihedral angle by 25 and the force
constants (multiplied by suitable factors which

simplify calculations) by f4 and f2, we obtain:

W=', I [f4(1+12g2)(1+3g') ]ro'(&&i2 +&&i3

+ b 02g') + t (1/9) (I+12g') 'f2](r'&&) 'I. (6)

Eqs. (8) contain implicitly the two relations of

linear dependence between the constants A, 8,
C, D, Band F:

A (1+6g') +38 8——(Fg 3)/g = 0,
(9)

3(2D —C) +2Z(1+6g')

—~(1+3g')/g4 3 —3& = o.

They come in because the simplified model

requires only four force constants for the pyra-
mid, as compared with the six allowed by sym-

metry considerations. For the coplanar case, the
potential energy must, for symmetry reasons, be
an even function of s, so that F=0 independently
of any special assumptions. Since in this case
f&&0, the simplified model requires just as many
constants as are allowed by symmetry consider-
ations. Hence we can ascribe a definite physical
meaning to each one of the general constants and
determine unambiguously the values of the bond
and other constants. The coplanar tetratomic
and the collinear triatomic molecules seem to be
the only ones of all the cases considered so far
(triangular triatomic, pyramidal tetratomic,
tetrahedral pentatomic configurations) where
this is possible. For the other molecules, the
determination of the physical force constants is
dependent on the validity of expressions of the
type of Eqs. (9). If experimental data (vibration
frequencies, together with isotopic shifts) should
show that the, constants A, B, C, etc. , are in-
dependent of each other, it would be necessary
to postulate additional forces in order to account
for the data. On the basis of a simple model,
there is no obvious way of introducing these
additional forces. Different assumptions could
be made and corresponding to each one we would
obtain a different value for the magnitude of the
various forces. It is therefore questionable,
whether any very definite meaning can be at-
tached in general to terms like: "magnitude of the
bond constant. " But for the molecules YX3,
where the isotopic shifts are small, it is possible
with four force constants to account for the data
within the limits of uncertainty of the anhar-
monic corrections to the vibration frequencies.

In conclusion, I want to thank Professor H. C.
Urey for his suggestions and interest in this
problem.


