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A Simplification of Prins’ Formula for Diffraction of X-Rays by a Perfect Crystal
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The intensity formula of Prins for diffraction of x-rays
by a perfect crystal has been simplified so that F(/) is a
real, single-valued, algebraic function of /, the deviation of
the glancing angle from the corrected Bragg angle. By
neglecting absorption in the crystal, Darwin’s formula is
obtained in a new form. By differentiation the maximum
ordinate of the diffraction pattern is obtained. To calculate
percent reflection (i.e., maximum ordinate of the rocking
curve of a double crystal spectrometer in the 1, —1 posi-

tion) [T"F()dl and [""F()dl are needed, and these

integrals have been evaluated analytically for Darwin’s
case of no absorption, leading to a value of 4/5 for P(0).
To include absorption F(J) has been expanded into a series
in powers of B/D and an approximate formula obtained for
P(0) in terms of the constants of the crystal. This formula
agrees with the graphically determined values of P(0) to
within a few percent.

INTRODUCTION

HE shape of the x-ray diffraction of a crystal

is of some interest, since a knowledge of the
variation of reflected intensity with glancing
angle is an essential part of the theory of the
x-ray spectrometer. Unfortunately, as shown by
v. Laue,! the shape of the diffraction pattern
cannot be observed directly with the double
crystal spectrometer. The method of Smith? for
calibrating a double-crystal spectrometer cannot
be applied to calculation of the diffraction pat-
tern, although it gives® the true shape of a
spectrum line regardless of the diffraction
pattern assumed. The method of checking any
theoretical curve remains, therefore, to make
observations upon related quantities such as half-
width, percent reflection, etc., which can be cal-
culated from the theory assumed, and hence
obtain indirect evidence for or against the theory
proposed.

In this manner Allison* and Parratt® have in-
vestigated the applicability of the Darwin-
Ewald-Prins® theory of x-ray reflection from a
perfect crystal and have observed specimens of
calcite approaching ‘‘perfection” in the sense
that the predictions of the theory are fulfilled
over certain wavelength ranges.
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In order to carry through the analysis for any
crystal, a great deal of laborious calculation
must be done and many graphical integrations
performed. It is the purpose of this paper to give
a simplification of the algebraic form of Prins’
formula, so that the .labor of computation is
greatly reduced, and to apply approximate
methods to some of the integrals involved in
order to obtain an approximate formula for
percent reflection in terms of the constants of the
crystal.

SIMPLIFICATION OF PRINS’ FORMULA

Using the notation of Parratt,’ replacing his
symbol A by the symbol D, we have for Prins’
characteristic function

F()=1,/I,
@=14/ (D+iB)/3 I

i—ig/sx ((—is/0) —[(D+iB) s}

where ! is the only variable and is the deviation
of the glancing angle from the corrected Bragg
angle (6=00,+6 sec 6, csc 6p) in units of
d sec B csc fp. F(I) is the ratio of intensity dif-
fracted at an angular deviation ! to the incident
intensity. The constants of the crystal have been
discussed in several places, 7 and we will only
note that B and B are related to u; so that for no
absorption both are equal to zero. The constants
may be calculated for any crystal; for A2.299A
on calcite in the first order B/6=0.059 and

(1)

7A. H. Compton and S. K. Allison, X-Rays in Theory
and Experiment, D. Van Nostrand and Co., 1935, page 375.
(F(2) is there given the notation I'(l).)

209



210

B/D=0.084, and are less for shorter wave-
lengths.?

In Eq. (1) the square of the absolute value of
the complex quantity must be formed, and the
ambiguity of sign is to be resolved so that
F(l)=1. Upon multiplying the two values of
F(I) together, we see that

FiD) F2(D) =1, (2)

a result to be used later. We may write Eq. (1) as
l_ y l_ y 2 __ y 21312

) 2'] 18/87F {( 15/5)’ [(D-+iB)/6]%} f 3)

(D+iB)/s |

and upon writing out the numerator and defining

a?=(D?4p*—B?) /§* (3a)
Eq. (3) becomes
F(l)=84(D*+B%) | 1—i8/3
F (P~ a?) ~2i(8/9)1+DB/5p) 1% (4)

We have
(A+iB)i=x[+{34+3(42+ B}
+i{ —34+5(42+BY)1],

where the inner = has the sign of B, so that we
may write

F(l)=6*(D*+B?)'|l—1B/8+ {F P +Q%}
where P and Q are }eal functions of I and
P+Q={(I*—a?)?+48°(1+DB/58)?/5*} 1.
Thus, finally,
F() = 8(D*+B) [ +8/8+P+Q
F {£21P}—280%/5} .

’ (5)

(6)

Eq. (6) may be simplified considerably by
defining

G(l) = 8*(D*+B?) [ 1+p?/ 8*
+{(2—a?)?+-46%(1+DB/5)?/ 8%} %],
H(l) = 6D+ B[ £ 21P —280% /57,

@)
(8)
so that making use of Eq. (2) we must have

[(GOH+HDILGH—HO)]=1. ©)

8 In Parratt, Phys. Rev. 41, 561 (1932), the fifth column
in ’/I‘able IT on page 571 should be headed “B/4" instead of
‘lﬁ 6,”
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F1G. 1. Prins’ function and Darwin’s function (which
neglects absorption) are plotted. Eq. (16) represents a
series approximation to Prins’ function which may be used
between /; and Z.

Hence H(l)={G*(!) —1}3, and it may easily be
shown that G(I)=H(I)=1 for all values of /, so
that for F(}) we want G(I)—H(), or

Fy=G)—-[G*()—17x

G(l), defined by Egs. (7) and (3a), is real,
positive, single-valued, =1 for all values of /, and
involves only the square-root of a real, positive
polynomial in /.

An alternative form of Eq. (10), adapted to
rapid calculation, may be written as

(10)

F(ly=eY,
cosh y=G(J).

(11)
(12)

Upon calculation of G(J) for any angle, F(I) may
be found at once upon reference to ordinary
tables of e~ and cosh x.

If B=B8=0, we have Darwin’s case of no
absorption, and «?= D?/§%. For no absorption also
D/s=B/B=F/Z, where F is the crystal structure
factor and Z is the number of electrons per unit
cell. Darwin’s formula may therefore be written
in the new form

FP() = (F?/Z7)[IF {IP— F*/Z*}V R,

where

(13)

where the upper sign is for [ > F/Z, the lower sign
is for 1< —F/Z, and for the region —F/Z=Il=
+F/Z FP=1 is to be used. F(I) and FP(l) are
plotted in Fig. 1, and it will be seen that the two
differ markedly only in the region for which
Darwin’s theory predicts FP(J)=1.

So far we have considered only ¢-polarization
of the incident beam, in which the electric vector
is perpendicular to the plane of incidence. To
obtain F.(}), D and B must be replaced by
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D cos 26, and B cos 26y, respectively, and for
incident unpolarized radiation we will have
F(l)=3F,()+3F.(1).

CALCULATION OF PERCENT REFLECTION

Of the various theoretical predictions based
upon the shape of F(l), the percent reflection is
perhaps the easiest to calculate and to measure.
Defined as the ratio of the maximum intensity
obtainable from the second crystal of a double
crystal spectrometer in an (#, —n) position to
the maximum intensity upon that crystal, it is

given® by
+oo +oo
( f F2()dl+ f Fﬁ(l)dl)

P(0)=— ,

( 1 :mF,(l)dl+ £ :mF,,(l)dl)

and for Darwin’s case by

P(O):( f_ :OF.,Z(l)dl) / ( f_ :wF.,(l)dl). (15)

Using Eq. (13), it is a simple matter to evalu-
ate the integrals for Darwin’s case analytically,
with the result that

(14)

oo
f F,2(l)dl=32F/15Z;

the result
“+co
f F.()dl=8F/3Z

had been obtained in 1914 by Darwin.!® Dividing,
we obtain P(0)=4/5, a result to be compared
with the value 0.798 obtained by graphical
integration of the numerator by Allison.*

For Prins’ case, which includes absorption, a
similar analytic expression could not be obtained,
and if an accurate value of P(0), half-width of
the rocking curve, or coefficient of reflection R.,
is desired, graphical integration, made easier by
the new form of F(I), must be used. However, an
approximate expression for the predicted value
of P(0) may be derived as follows:

¢ See reference 7, page 722, for a derivation of these ex-
pressions.
1 C, G. Darwin, Phil. Mag. 27, 675 (1914).
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F(}) is expanded into a power series in B/D,
which vanishes with the absorption, using the
binomial theorem and Eq. (10) or proceeding
directly from Egs. (11) and (12). The result is,
for the region —D/§<I<+D/3, (I2<a?),

I+k (I+k)?

F(l)=1—2d + 242 +-e

(a2_l2)~} l2

where for convenience we have written d=B/D,

a=D/s, k=B8D/Bé=a(B8/B)>a. Eq. (16) forms

the first three terms of an exponential series, as

might be expected from Eq. (12), and for Dat-

win’s case d=0 and k=1, and F(I) reduces to
unity for this region, as it should.

For the outer regions, a similar series is ob-
tained, lacking a term in d, accounting for the
close agreement of Prins’ function with Darwin’s
in these regions (see Fig. 1). .

By differentiation of Eq. (16) is found that the
series has minimum values equal to 0.5 for two
values of I, li=—a+2(k—a)%d?/a and l:=a
—2(k+a)%d?/a, and becomes infinite for = +a.
Thus the series may be used between these
values of I, which are approximately at +a. Eq.
(16) is plotted in Fig. 1.

To evaluate the integrals required in Eq. (14),
series (16) is used between /1 and I, and Darwin’s
formula (13) is used for the other regions. The
areas neglected are small, depending upon d?
and tend to compensate each other. In this
manner the following expression is obtained:

. 8N—2(1—642)P+8QR—4S—11Q0+ U
" 5(24+3d)N—P+20R—S—40Q

(16)

a?—

» (A7)

where

N=4a/15,
P=2kd[sin"(l/a)+sin! (—1,/a)],
Q=d*(k*+a?)/a,
R=tanh~!(ly/a)+tanh=1(—1,/a),
S=4kd? log [(k+0)/(k—a)],
U=16k%d*{3+(k%/a?)}/a;
—h/a=1-2d*k—a)?/a?,
ly/a=1-2d%*(k+a)?/a?;

and

ae=D/8; a.=(D/d) cos 20,
dy=dr=B/D; k,=kz=(8/B)a=pD/BS.
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As given in Eq. (17) o-polarization only is.con-
sidered. To correct for this the numerator and
denominator must be written as sums of two
terms, one using a., d,,and k throughout, and the
other using a., d, and k. However it probably is
not worth the trouble, as Eq. (17) gives results
to about 5 percent without making the correc-
tion.

For A2.299 on calcite, Parratt® obtains for the
calculated percent reflection P(0)=157.8 percent,
using graphical integration. Eq. (17) gives as an
approximation to this calculated value P(0)
=60.8 percent without making the correction,
and P(0)=060.5 percent when polarization is con-
sidered. Series (16) represents Prins’ function
best for fdirly soft x-rays, when F(=Za) is close
to 0.5, and this is exactly the region where agree-
ment of experiments with Prins’ function seems
best.’ Eq. (17) is therefore useful for checking
rapidly the percent reflection according to
Prins’ theory, and as a test of the perfection of a
particular crystal specimen referred to Prins’
theory a fairly long wavelength should be used,
not too close to a critical absorption limit of the
crystal.

The experimental results of Parratt® tend to
show that the percent reflection is much more
sensitive to slight imperfections of the crystal
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than is the half-width of the rocking curve, so
that the means of estimating the calculated
percent reflection outlined above should be useful
in judging the degree of perfection of a crystal
specimen.

The method of computation given in Eqs. (10)
to (12) is exact, and makes it very much easier
to compute the curves, should graphical inte-
grations be deemed necessary.

It is interesting to note that since F(I) in the
exact (Prins) form has been reduced to an
ordinary real algebraic function of J, its deriva-
tive may be set equal to zero and the maximum
ordinate calculated. It is readily found from Eq.
(10) that the maximum ordinate of the diffrac-
tion pattern occurs for ly=—BD/Bs for o-
polarization and for ly= —(BD/f8) cos? 26, for
w-polarization. The maximum ordinate is F,(lo)
=[(B*+D??*— (B*— B2 ?/(D?*+ B?), with a cor-
responding expression for F.(l;). These reduce
to unity for no absorption, as they should, and
serve to give a rapid estimate of the extent of
deviation of Prins’ function from Darwin’s ideal
case.

The author wishes to express his appreciation
of stimulating and helpful discussions with
Professor S. K. Allison concerning many of the
concepts involved in this paper.



