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The Time of Relaxation in Crystals of Rochelle Salt

R. D. ScHULwAs-SQRQKIN AND M. V. POSNov, Physica/ Technica/ Institute, Leningrad, U.S.S.R.
(Received July 3, 1934}

A semiquantitative theory of the action of mechanical and electrical forces is given, using the
concept of two relaxtion times. The theory is shown to oKer qualitative explanations of numer-
ous features of the experimental results such as the phenomenon of "creep'-' and the asym-
metrical rates of polarization and depolarization observed by Kurchatov and Staub. Experi-
ments on the dielectric constant and power loss have been made over a range from 1 to 1000
hertz, and dispersion curves have been obtained. The theory is applied to explain various
features of the results.

INTRODUCTION

URING the last few years a number of
papers have been published devoted to the

study of the anomalous properties of crystals of
Rochelle salt, the majority dealing with their
electric or mechanical properties. If we try to
systematize the results obtained, we may present
them in the following form (Table I), in which
the principal results of various authors for the
polarization (P) and deformation (x) are given.

THEORY

From the table it is dear that the deformation
and polarization vary similarly. Since Rochelle
salt is piezoelectric, it seemed to us that the
whole of the polarization in the crystal, irre-
spective of whether it was obtained by applying
electric or mechanical stresses, might be of
piezoelectric origin. Both mechanical and electric
fields produce deformation in the crystal. The
dipole, or ionic group forming part of the mole-

cule is displaced relative to its equilibrium posi-
tion during the deformation of the lattice.
Because of the absence of a center of symmetry
in the Rochelle salt crystal, this displacement
gives rise to an electric moment. Since the
processes in Rochelle salt are reversible, provided
the stresses are not too high, we may make use
of the method of thermodynamic potential to
test the above hypothesis. If we consider iso-
thermal processes, the expression for the thermo-
dynamic potential will be'

f = g&I I &Wa —&;I ~;&a—gq'~~'~.

The polarization is 2;= egxp, +g;~8~, (1)
'%. Voigt, Lehrb. d. Kristallphys. pp. 414, 563,. 816

(1928}.

while the mechanical stress is M~= —c~I,.x~
+e,~G;. In the particular case when the crystal is
cut along the axes, the polarization in an elec-
trical field. applied along the axis u is

I 1 = e14X4+ g1181,

since eii= e12= cia= e15= e16= 0 and 82= 83= 0.
The mechanical stress 3f~= 0. In order to deter-
mine the value of x4 we require only the value
of M4. &4= —c44x4+t!1481=0 since all @4~——0
except c44 whence x4——(e14/c44)81. Putting this
value of x4 in (1') we get

+1 (S14 /'44+'Vll) gl (d14 4'44+'Vll) gl '9 llgl

where e14=d14c44. This expression is true for all
crystals of the rhombic system, and it shows
that the polarization in an applied electrical field
is not only dependent on q11 but also on the
product d14'c44, whereas one measures experi-
mentally q'11= d14'c44+q11. In crystals where d14

is of the order 10 ' e.s.u. /dyne, and c44=10"
dyne/cm' the first term will be of the order 10 ',
i.e. , negligibly small compared with F11, which is
of the order of unity in most crystals.

In Rochelle salt, d14 varies between 4.10 '
e.s.u. /dyneand 2.6.10—'e.s.u. /dyne'and c44 ——1.64

~ 10"dyne/cm', ' so that the first term is of the
order 10', and is very large compared with q11.
Consequently the whole of the polarization in
crystals of Rochelle salt is dependent on the
first term. This is seen particularly clearly from
Staub's' work, although his experiments did not
show the mechanism of this displacement. For
reflections from the surface, (1,0,0), i.e. , the
plane perpendicular to the axis u, Staub did not
observe any change in intensity, and it is neces-
sary to conclude that this is a result of the fact

66
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TABLE I. Summary of previous results,

Polarization as function Form of function and numerical Deformation as function Form of function and numerical
No. of various factors value of various factors value

8=f(G}

I' =f(M}

I' =f(t)

Saturated
870' e.s.u. 850' e,s.u.

Saturated
9404 e.s.u.

Two Curie points
+22.5'4 and —15'~0

"Creep" of charge
t=3 min. 4

Increase of tp with decrease of
temperature4

x=f(8)

x=f(M}

g =f(r')

Saturated
7;5 ~ 10 4 "5~ 10 'calculated from

refs. (3) and (4)

Saturated'
4.5 10 ~ calculated from refs.

(7) and (4}

Two Curie points
+23' and —15"+25"
Slow recovery of deformation

after removal of field
t=2 min. s

Increase of t, with decrease of
temperature~

Remarks: 8—electric field, M—mechanical stress, 2'—temperature, t—time, tp and tx relgxation time.

that dj~=0 and x~=0. Further, Staub did not
observe any changes in the position of the inter-
ference spots under the action of the electric
field, but this can be accounted for by the
insufficient accuracy of measurement which,
according to the determinations of this author,
was equal to 0.3 percent, or 3&(10 ' of the
measured magnitude, while the deformation
which should give the displacement in the inter-
ference spots was of the order 10 '.

From this point of view we can give a semi-
quantitative theory of the behavior of Rochelle
salt: under the action of a constant mechanical
stress, and also under the action of a constant
electric field.

where 3II4 is the applied stress to which the dis-
placement of the dipole is proportional and r is a
"viscosity" constant. Solving this equation, we

get
(3)x4 ——(1—e "')M&/c44,

P~ e~4x4 = (1 e——'I') e~43II~/c~4—

=dg4Mg(1 —e '"). (4)

where 354/c44 is the final value of the deforma-
tion, and 0= r/c44. Since the rotation takes place
in a medium with large frictional forces, 8 is large
and the approach to this final value of x4 and
consequently of the polarization also, occurs very
slowly. If we neglect the second term in Eq. (1')
because 8, = the polarization will be given by

(1) For a constant applied mechanical stress in
2 For an applied electrical eld we can repre-

the absence of an electric field we can suppose
f d l h h l b

sent the motion of a dipole by the equation

represented by the equation" px4+ px4 sl

r*'4+ cg4x4 cV4, ——

' Staub, Helv. Phys. Acta. p. 2 (1933).' Kobeko and Kurchatov, Zeits. f. Physik 66, 192 (1930).
4 Schulwas-Sorokin, Zeits. f. Physik 73, 700 (1932);

77, 541 (1932).' Isely, Phys. Rev. 24, 569 (1924).
6 S. Bloomenthal, Physics 4, 172 (1933).
~ Mandell, Proc. Roy. Soc. A116, 623 (1927).' R. M. Davies, Nature 120, 332 (1927).' Oplatka, Helv. Phys. Acta. (1933).» B. Kurchatov and I. Kurchatov, Phys. Zeits. d. Sow.

3, 321 (1933).
"Sawyer and Tower, Phys. Rev. 35, 269 (1930).
"We can neglect the inertial forces because r and p are

large and the accelerations are consequently small.

from which

x4 ——(1 e'I') 8~/—P =d,48~(1 —e—'t') (3')

where p=1/dq4 and r= p/p= pdq4.

From Eq. (1) we get for the polarization if we

neglect g~~ in agreement with the preceding
argument

I'
~ e~4x4 d,4'c4, 8~(1———e "——'), (4')

from which we see that for an applied electrical
field also the final value of the polarization is not
attained instantaneously.
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The final magnitude of polarization obtained
with a given deformation should be the same
irrespective of whether the deformation was
produced by an electric field or a mechanical
stress. From Eqs. (4) and (4'), it follows that

3II4 —d y4C44 8y) (5)

i.e., we get the electrical equivalent of the
mechanical stress. From Eq. (5) it is possible to
determine the field necessary to produce a given
polarization, if the mechanical stress required to
produce the same polarization is known. If we
take, for example, the polarization P= 500 e.s.u. ,
this is obtained with a mechanical stress 3EI2'

=12 kg/cm' applied at an angle of 45' to the
axes b and c;IV4= ',M2—'=6 kg/cm'. Corresponding
to a load 352', d~4=10.8 10 ' e.s.u. /dyne. "
Putting this value in Eq. (5), we get

6 ~ 10'300 volt
= 102

cm

In Fig. 20 of the monograph of I. V. Kurchatov
Rochetle Electricity, the curve P=f(8) for a
crystal of 1 cm thickness at +14'C is given.
From this curve we get a polarization of 500
e.s.u. at 8&——130volt/cm. Similar calculations for
a polarization of 300 e.s.u. give Gq ——27 volt/cm
while the value required to produce this polar-
ization experimentally is 50 volt/cm. As we pass
to smaller stresses, i.e. , into the region of "small
polarizibility, " the calculated value is consider-
ably less than that actually required to produce
the given polarization.

From our point of view, the phenomenon of
saturation must be regarded as follows: an
increase in the mechanical stress and electric
field increases the deformation of the lattice, and
consequently the angle formed between the
position of the dipole for a given load, and its
position before loading. However, there is a
certain stress (field) at which the lattice is
deformed so much that its smallest dimension is
less than or equal to, the greatest dimension of
the dipole, so that the latter can no longer rotate.
When this limiting deformation of the lattice is
reached, the bonds between certain ions in the
lattice and the dipoles increase rapidly and the
coefficients c44 and P= 1/d&4 in Eqs. (2) and (2')

13 Schulwas-Sorokin, Zeits. f. Physik 73, 700, 704 (1932).

increase very considerably, producing a decrease
in 0 and v for large stresses and electric fields.
The decrease of d~4 with increasing mechanical
stress was in fact observed by us. The inHuence
of the electric field on d~4 is described later.

We are thus led to introduce two "times of
relaxation" 0 and v-. Unfortunately we are not
able to predict their theoretical values, as we
can say little definitely about the two quantities
r and p. In this respect, therefore, the theory
remains qualitative, and must be further inves-
tigated to be made completely satisfying. In
terms of these concepts we can obtain, however,
a. fairly complete interpretation of the experi-
mental results.

EXPERIMENTS WITH STATIC MECHANICAL LOADS

Experiments have previously been made' on a
crystal 12 mm long along the c axis. The
external stress was applied in a direction of 45'
to the b and c axis. Fig. 1 gives the experimental
results for the polarization as a function of the
time elapsed since the application of the load.
From these curves one can readily determine the
time of relaxation 0 for mechanical deformation
of the crystal. * Tlhe curve of 0 is given in Fig. 2

(continuous curve).
If we write e=r/c44 and substitute r=10"

e.s.u. according to Tammann and Hesse'4 and
c44=3.28 ~ 10" dynes/cm2 as measured by Man-
dell' for our experimental arrangement, we
obtain a value 0=30 sec. agreeing well in order
of magnitude with our experimental values.

A similar order of magnitude was found by
Staub for the time of restoration of intensity of
interference spots, after removal of the electric
field, when the crystal is left under the inHuence
of the internal mechanical stresses. As both the
coefficient of "internal" viscosity and the elastic
coe%cients are functions of temperature, 0 must
be also. In the range from +25'C to —15'C the
curve is hyperbolic and 0 varies inversely with
the temperature. At —15'C, r becomes very
large, so that at lower temperatures the linear
dimensions of the lattice are less than the greatest
dimension of the dipoles. The latter are then

~ The idea of explaining the phenomenon of "creep" as
the time of relaxation belongs to Professor J. Frenkel.

'4 Tammann and Hesse, Zeits. f. an. u. allg. Chemic 156,
256 (1926).
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FIG. 1. The "creep" of polarization for an applied me- FIG. 2. The relaxation times as functions of temperature.

chanical stress.

no longer involved in the deformation and as a
consequence there is a considerable decrease in
the polarization, as this is now produced only

by the ions and electrons.
In general the appearance of "creep" is

sharply defined only for small stresses. As the
stress is increased the time of relaxation de-
creases, and at stresses corresponding to satura-
tion4 the polarization occurs instantaneously. 8

is thus a function of the stress.

POLARIZATION IN STATIC ELECTRICAL FIELDS

On the basis of the theory given above we can
interpret some of the puzzling features of
previous experiments on B.ochelle salt. The
behavior of the crystal is characterized by an
"electrical time of relaxation" ~ which is a
function of the piezoelectric modulus and of the
coefficient p which may be called the "coefficient
of electrical viscosity, " but whose theoretical
value is unknown. Since d~4 is a function of the
field, ~ will also be a function of the field.

According to the measurements of I. Kur-
chatov" and of Staub' ~ is very small. Both
authors also observed an asymmetry in the
velocities of the processes of polarization and of
depolarization. This asymmetry can be explained
from the present point of view if we assume that
in the polarization process in an electrical field
the appropriate time of relaxation is 7., while the
depolarization occurring after removal of the
field depends only on the internal mechanical
stresses, the rate being determined by the
mechanical time of relaxation 0. We can, there-
fore, also understand the relation between the
rate of depolarization and the quantity of elec-
"I. Kurchatov, Phys. Zeits. d. Sow. 5, 200 (1934).

tricity stored in the crystal, which from our
point of view is proportional to the mechanical
tension in the crystal (cf. Eq. (4)) and 0 is a
function of this tension.

EXPERIMENTS WITH ALTERNATIN G FIELDS

In 1931 Errera" studied the dispersion of the
dielectric constant in Rochelle salt. The measure-
ments were made in strong fields and extended
over a frequency range of 3.4X1.0' to 10' H, .
Frayne'~ investigated the phenomenon at higher
frequencies. It was the aim of the present work
to study the behavior of Rochelle salt in weak
fields and at lower frequencies than those used

by Errera, since the large values of the relaxation
time which we obtained with static experiments
suggested that the dispersion curve would be
anomalous.

Method of study. Experimental arrangement

The capacity bridge method (Fig. 3) was used
for measuring the dielectric constant and the
power factor. The arms C~ and C2 consisted of
two almost equal, symmetrically mounted con-
densers of about 1200 cm capacity. Both con-
densers were placed in a shielded box, and in
addition were shielded from one another. The
moving plates were connected together, and to
the screen at the point A. Both condensers were
graduated so that it was possible to select a given
ratio between the arms of the bridge. The arm C3
contained a precision fixed condenser of 3600 cm
capacity. This condenser, when necessary, was
connected in parallel with a liquid variable re-
sistance from 0.3.10'0 to 300 10'Q. The arm C4

consisted of a variable air condenser with

"J.Errera, Phys. Zeits. 32, 369 (1931)."J.S. Frayne, Phys. Rev. 20, 97 (1922); 21, 348 (1923).
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FIG. 3. The capacity bridge which was used for measuring
the D.K.

capacity equal to 900 cm, and a condenser of
2550 cm capacity. This condenser was connected
in parallel with that containing the crystal. All
parts of the bridge were shielded, and the shields
earthed. A dynatron generator supplied the
alternating potential. The dynatron generator
possesses the great advantage over other gener-
ators of low frequency in that no inductance
coupling is necessary, and the frequency gener-
ated is determined by the natural period of the
circuit itself. In order to obtain a given frequency
it is only necessary to satisfy the condition:
L/CR=R„„, where R,„is the internal resistance
of the valve, I the self-inductance, C the
capacity and R the ohmic resistance of the oscil-
lating circuit. ' The necessity of obtaining very
low frequencies demanded the use of high self-
induction, and thus R had also to be large in
order to avoid using a generator of very large
dimensions. At very low frequencies the quantity
L/CR became much less than R;„and it was
therefore necessary (1) to select valves with low
internal resistance, (2) to reduce R; by increas-
ing the positive potential on the control grid.
In this way it was possible to adjust the dynatron
scheme to obtain frequencies over continual
range from 1000 to 0.5. Since the oscillating
circuit, in addition to the constant self-induction,
contained an adjustable condenser and a variable
self-inductance in the form of a multi-layer
solenoid with movable core, it was easily possible

'8 Colebrook, Exp. Wireless 1931, p. 581.

to obtain any frequency in the above-mentioned
range. The potential from the generator valves
reached an amplifier through a potential divider
which allowed the magnitude of the potential
applied to the transformer to be changed. The
transformer windings were divided into sections,
so that the voltage applied to the bridge could
be regulated. The core of the transformer was
earthed.

The measurement of the frequency in different
parts of the spectra was made in different ways:
from 1000 to 60 hertz the measurements were
made with a string frequency meter according to
the system of A. I. Belov, "by using the funda-
mental tone for the high frequencies, and the
overtones for the low frequencies. Frequencies
from 65 to 6 hertz were measured with the
frequency meter of Hartmann and Braun with
which the region from 14 to 6 hertz was measured
by overtones. Finally, the lowest frequencies
were measured with a stop watch while listening
to the clicks in a telephone, or by watching the
vibrations of the pointer of a d.c. voltmeter. On
account of the fact that the generator produced
a series of overtones in addition to the funda-
mental tone, it was necessary to filter the current
in the bridge in order to make measurements on
the fundamental tone, or to use an indicator of
the resonance type. The former method presents
considerable difficulty because of the large range
of frequencies (11 octaves), and consequently
we selected the latter. A potential divider con-
nected to an Edelmann string galvanometer was
placed in the diagonal of the bridge. With the
potential divider it was possible to regulate the
potential difference on the galvanometer, and
to increase the sensitivity of the indicator accord-
ing to the balancing of the bridge. The gal-
vanometer could be tuned to any frequency by
tightening or slackening the string. Since a
platinum wire 2.5p, thick was rapidly destroyed
by frequent tightening or loosening, a platinum
strip 2p thick, placed on edge, was used. As the
width of the strip was 40@ its strength was many
times greater" than that of the wire. The use of
this strip did not decrease the sensitivity of the
apparatus appreciably, since the loss of sensi-

"A. I. Belov, Wireless Telegraphy and Telephony,
No. 56, 535 (1929) (in Russian).

"N. V. Nickolsky suggested the use of this strip, which
he prepared, and we wish to express our gratitude to him.
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tivity, as a result of the increased mechanical
stress, was compensated by a considerable
decrease in the ohmic resistance of the string,
which was 1080. The sensitivity of the gal-
vanometer for constant potential difference
varied from 0.1 volt to 2 10 ' volt, depending
on the tension of the string. At resonance the
sensitivity was considerably greater.

EXPERIMENTAL RESULTS

x4 = [3II4/c44(1+co'8') &j sin (&vt bi)—
and x4= [Gi/P(1+(a r )'$ sin (cot 8)—
where, as previously, P= 1/di4 and 8= pdi4.

The quantities

(6)

(6')

S= 1/c44(1+a&28 )'* and D =di4/(1 jco r )' (7)

will be referred to as the "dynamic modulus of
elasticity" and the "dynamic piezo-modulus, "
respectively. If we assume, in accordance with
the above, that the origin of the polarization in
Rochelle salt is mainly piezoelectric, we get the
mechanical equivalent of the electrical field. The
amplitude of the deformation is

x4=D8g=SAN,

whence 3E4=DGi/S, i.e. , the electric field of
amplitude 8& multiplied by D/S can produce
the same eff'ect as an alternating mechanical
stress of amplitude M4. The amplitude of the
polarization in a crystal acted upon by an alter-
nating electric field of amplitude 8~ will be":

Pi Ex4 (D/S)x4 ——(D'/S) ci.

Substituting in this, the values of D and S, we get

(1+8'cu') & (1+tP(o') *'

Iy=dy4 cy4 Gy=X
g+ v2co2 g+ 7 2co2

(9)

"E=D/S is the dynamic piezo-constant,

A. The in6uence of frequency on the polarization

Following the lines of the theory given in a
previous section for the case of harmonically
varying mechanical or electrical fields, we repl. ace
the right-hand sides in Eqs. (2) and (2') by 354
sin cot or 8~ sin cot, respectively. The particular
solutions for the forced vibrations then become
for the two cases

The factor multiplying 8& in the expression for
the polarization is the apparent coefficient of
polarization, which we shall denote by p&. The
expression q~ at co= ~ becomes zero, and when
co=0 it becomes equal to that obtained for a
constant field (see Eq. (4')).

Since X is constant, the expression (1+8'co')'/
(1+r'cu') determines the way in which the
polarization depends on the frequency, if the
measurements at all frequencies are made with
a constant amplitude of the field 8&. By taking
the first derivative of this equation, and setting
it equal to zero, we find the value of or, at which

the polarization is a maximum or minimum,

ca = (8' —2 r') &/r 8.

The negative sign of the second derivative, if we
substitute the value of sr from (10) shows that
the function has a maximum. Dropping 2v-' with
respect to 8' in the numerator of Eq. (10) (as
8))r), we find

r = 1/&max

The experimental curves are given in Fig. 4.
Since the amplitude of the field 8~ is the same at
all frequencies, the course of Pi= f(cu) will also
be the same. The two curves in the upper part
of the plot refer to two crystals: the curve n
refers to a slab, whose thickness in the direction
of the axis u was 3.4 mm, while curve P is for a
crystal of thickness 34 mm. The scale on the
right refers to the thin slab, and that on the left
to the thick. Further, the curve a was taken at
8,«=26 volt/cm, and .the curve P at 8,«=3.5
volt/cm.

Ke see that both curves have a sharp maxi-
mum. For the thicker crystal ~=4.2 10 ' sec.
at 16'C, and for the thinner crystal v. =4.7 10 '
sec. at 15'C.

In order to test the agreement between the
experimental curve arid the function of Eq. (9),
the factor (1+8'co') '/(1+ r'ra') was calculated for
various frequencies for a crystal whose time of
relaxation was also v=4.2. 10 3 sec.

The form of this relation is given in Fig. 4
(dashed curve). The form of both curves is
similar. It seems to us that this similarity sup-
ports our hypothesis.

Unfortunately, we must be content for the
present with a qualitative agreement between
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FIG. 4. The apparent dielectric coefficient (upper
curves) and the power factor (lower curves) as functions
of the frequency.

d14 Cl/~1 (12)

For the weak fields with which we are deter-
mining the time of relaxation, we may suppose
that p is independent of the field. It then appears
that r= Qz/O'*. It has been actually shown by
experiment that the shift of the position of the
maximum in the dispersion curve is dependent on
the magnitude of the applied field. With an
increase of field, the maximum is displaced

the experimental and theoretical curves, since
the value of the coe%cient dI4 for such small
electric fields, and correspondingly small me-
chanical stresses, is not known. If we use this
divergence between the theoretical and experi-
mental magnitudes, we may make an estimate
of the value of d~4 (and possibly also of s44) for
these small fields, and we find that it must be of
the order of 10 ' to10 ' e.s.u. /dyne which means
that d~4= f(gj) must pass through a maximum.

3. The relation between the time of relaxation
and. the field

In Eq. (6') we saw that r, the electric time of
relaxation, is equal to pd&4, where d&4 is the piezo-
modulus, and p is the coefficient of "electric
viscosity. " The piezo-modulus in its turn is a
function of the mechanical stress. The function
d&4= f(M4) is approximately hyperbolic" and
may be written with sufhcient accuracy in the
form: dI4M4=const. If we substitute in this
expression the equivalent of M'4 from Eq. (5),
we get dI4'c44GI= C. Assuming that c44 is inde-
pendent of the field, we get

0 2 4 P 8 gg 1Z hp

FIG. 5. The displacement of the position of dispersion
maxima with the field.

towards higher frequencies. Two maxima in the
dispersion curves for one and the same crystal
at the same temperature, but with different field

strengths, are shown in Fig. 5.
We see from Table II that the value of Q'

remains constant for each crystal (column six).
The maximum deviation from the mean is 7 per-
cent for the thick crystal, and 2 percent for the
thin, when the field is varied from 2 to 7 times.

TABLE II. Values of co „and r for Rochelle salt crystals.

volt
' cm ~max

v'10'
(sec.) 7. t& GI' 10'

3.6
8.35

11.6
23.9

24
33.6
57.8

(a) crystal thickness 18 mm
1.9 157 6.4
29 232 43
34 301 33
4.9 450 2.2

|,'b) crystal thickness 2.08 mm
49 14 5 70
5 8 17 8 56
7.6 20.3 49

12.1
12.5
11.2
10.8

34
33
37

C. The in6uence of the Geld on the dielectric
constant.

The inAuence of the field on the dielectric
constant was measured by Errera. " He found
that. the dielectric constant increased propor-
tionally to the field. Our first experiments showed

that this is not right for our range of frequencies,
but here there must be a more complicated rela-

tion. Indeed, we have shown that the coefficient
of polarization as a function of the field has a
sharp maximum for weak fields, the position of



RELAXATiON Ti ME i N ROCHELLE SALT

8„
4oop-

36oo-

32pp-

28oo-

r
40

P ~~~

2opp

/6pp

8oo

iop I2p

C+

Fia. 6. The apparent dielectric coefficient as a function of the field for various frequencies.

which varies with the frequency (Fig. 6). This
maximum decreases with increasing frequency
and becomes scarcely perceptible at 500 H, . For
the field larger than about 40 volt/cm (depending
on the thickness of the crystal) (Fig. 6) the
coeKcient of polarization increases, but not
linearly with the field.

D. The relation between the time of relaxation
v and temperature.

Curves similar to those given in Fig. 4 for
16'C were taken at different temperatures. At
all temperatures between —15' and +25'C, a
maximum was obtained. These maxima for
certain temperatures are given in Fig. 7 where
we see that as the temperature is reduced the
maximum shifts towards smaller frequencies, i.e. ,
co decreases. With temperatures below —15'C
and above +25'C, no maxima were found in the
frequency interval used. (In the figure the curves
for the temperatures —25' and +25.5'C are
drawn on a greatly enlarged scale. )

The values of ~ calculated from the experi-
mental data according to Eq. (11) are plotted in

Fig. 2 (dashed curve), for the crystal the thick-
ness of which was 35 mm and the field 8=3.5
volt/cm. We see that the variation with tempera-
ture is quite similar to the variation of 0 with
temperature (Fig. 2).

This similarity for the temperature relation of
the mechanical and electrical times of relaxation,
obtained by such different methods, appears to
support still further our view of the mechanism

8000

7000

0000 ————

5000

4000

N00

e.

&255' x
X

$f Iu'

FIG. 7. The displacement of the position of dispersion
maxima at different temperatures.

of the production of polarization in Rochelle salt.
The electric time of relaxation is pd~4. The piezo-
modulus d~4 is known to be a function of the tem-
perature and at —16' and +25'C it becomes
very small. The quantity p probably depends on
the temperature also, but as yet it is difhcult to
say what will be the character of this relation.
It is thus easy to understand why the relation
between v and temperature is so complex.

E. The relation between the time of relaxation
v and the thickness of the crystal.

I. V. Kurchatov studied the effect of crystal
thickness on the magnitude of the apparent
dielectric constant, and thus of the field necessary
to produce saturation. This has been described in
his monograph Rochelle Electricity. We have
studied the effect of crystal thickness on the
speed of attaining complete .polarization. The
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used up in a period in overcoming the friction
should equal the losses.

In the bridge method the losses are determined
by measurement of the power factor. From this
quantity the losses may . be expressed as
8'= cocG'P tg y, or by substitution of the value
C= Qqq/I where Q—the area of the electrodes l-
the thickness of the crystal, and qq from Eq. (13)
we get

FIG. 8. The time of relaxation as a function of thickness
of the crystal.

relation between r (expressed in arbitrary units)
and the thickness l of the crystal in a field of 25
volt per cm is given in Fig. 8. We see that the
time of relaxation decreases as the thickness is
increased, but after a certain thickness, which
probably depends on the field strength, the time
of relaxation does not change. At present it is
difficult to explain this effect of crystal thickness.
Probably it is necessary to study the question in
connection with the effect of field strength on the
magnitude of the polarization, and on the time
of relaxation in crystals of Rochelle salt.

(cf. Eq. (6')). The energy

IF= eg4 pD'gg'a)'/2 (13)

LOSSES IN CRYSTALS OF ROCHELLE SALT

According to the hypotheses developed, above
for the process of polarization in crystals of
Rochelle salt, the energy of the electric field must
be spent in deforming the crystal. Eq. (2') can
be written in the form:

ewp&4+(e14/d14)+4 e14gl sin ~~

where we have on the right the magnitude of
the force. Multiplying both sides of this equation
by i4, i.e., by the velocity of deformation, we get
on the right side the work done by the field in
unit time, while the second term on the left
represents a symmetrical oscillation of energy,
and the first the amount of energy used up per
second.

e~4p$4$4=ey4pD gz M cos (cA —8)

IF= (QlcoD'Eg'/S) tg e.

If we refer this equation to unit volume and
equate it to the value of the energy in Eq. (13),
we get

tg e =eq4pcoS/2 =Ldq4pco/2(1+0 s) )'] (14)

since e~4=d&4/s44, and d~4p= 7. This relation
between tg p and the frequency should show a
minimum at co = 1/r, i.e. , at just that frequency
at which the dielectric coefficient is a maximum.
Our curves for tg q =f(cu) do in fact pass through
a minimum at the relaxation frequency, but on
either side of this minimum there are two sym-
metrically placed maxima, whose appearance we
have as yet been unable to explain. The value of
tg y at the relaxation frequency, calculated from
Eq. (14), after substituting the experimental
values of co and 0, was 0.002 for the thick crystal,
and 0, 14 for the thin. The values obtained by
measurement were 0.09 and 0.12, respectively.
Within the frequency range used, tg p should be
practically independent of the frequency, since
(8&v)' is large compared with unity and tg e should

depend only on the times of relaxation v- and 0.

However, we see that there is a very distinct
frequency relationship. It seems to us that the
cause of this may lie in the fact that in the
equation of motion we considered the displace-
ment as proportional to the deformation, instead
of equal to the deformation itself.

In conclusion we wish to express our gratitude
to Professor J. Frenkel for suggesting this prob-
lem, and to Professor W. Fredericks for his in-

terest and critical consideration of our results.


