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Since the field equations of the Born-Infeld field theory
impose no essential restrictions on the world lines of the
singularities, a dynamical condition, equivalent to equations
of motion, must be added to complete the theory. The
variation problem from which Born and Infeld obtain
equations of motion by varying the world lines of the
singularities does not appear to be susceptible of gener-
alization to include radiation reaction and, moreover, the
equations of motion are not invariant in form under a
Lorentz transformation. The definition of a magnetic
charge and current vector (which vanishes for an isolated
singularity in uniform rectilinear motion) makes possible
the derivation from the energy-momentum conservation
laws of a relation (Eq. (32)) which is the formal analogue

of the dynamical assumption, in the classical theory of
electromagnetic mass, that the total force on the electron,
including the self-reaction, vanishes. This result is not,
however, equivalent to equations of motion because the
non-classical part of the field arising from the non-linear
character of the field equations always adjusts itself, for
arbitrary motion of the singularity, to maintain the
relation. In the coordinate system in which the singularity
is momentarily at rest the relation simplifies notably and
points to a new dynamical condition which appears to be

-singled out from all other possible conditions by its

compelling simplicity. The resulting equations of motion
contain the usual radiation resistance term and also higher
order terms in the self-interaction.

I. INTRODUCTION

N the Born-Infeld! theory the electron appears

as a coulomb singularity with which is
associated in a natural and unforced manner a
definite spatial distribution of charge upon
which external fields act. The way in which the
field changes in going from one world point to
a near by point is determined by a system of
field equations which also imply the existence
of an energy-momentum tensor satisfying a set
of divergence equations interpreted as energy-
momentum conservation laws.

The principal result of this paper is the
derivation from the energy-momentum conserva-
tion laws of an equation which is the formal
analogue of the dynamical assumption, in the
classical theory of electromagnetic mass, that
the total force on the electron, including the
self-reaction, vanishes. A simple assumption then
leads to dynamical equations of motion con-
taining radiation resistance and higher order
terms, whereas the method used by Born and
Infeld to set up equations of motion does not
appear to be susceptible of generalization to
include radiation resistance.

II. TeE F1ELD EQUATIONS
The building material out of which the Born-
Infeld theory is constructed is a single anti-

!M. Born and L. Infeld, Proc, Roy. Soc. Al44, 425
(1934).

symmetric field tensor of the second rank py,
satisfying the set of divergence equations®

ap*t/axt=0. (1)
In space vector form (1) becomes®
V-D=0, VxH=09D/ca:. 2)

The electron at rest under the action of no
forces is characterized by the assumptions that
H vanishes identically and D is spherically
symmetric. Then necessarily

D= —ev(1/r) (3)

with e an arbitrary constant of integration
which is set equal to the experimental value of
the electronic charge. Since D is the gradient of
a scalar function its curl vanishes; also the
divergence of H vanishes (trivial since H vanishes
identically). Hence the stationary electron is
described by a field tensor (3) which satisfies
the set of equations

V-D=0, V-H=0,
VxH=0, VxD=0.

(4)

Turning now to the case of an electron in
uniform rectilinear motion we see that (2) and

2To avoid unessential complications only invariance
under Lorentz transformations is required of the tensor

equations. . R
3 Except where otherwise stated the notation throughout
is taken from reference 1.
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(3) and the fact that D and H together form the
six vector py; imply that the field tensor of the
moving electron satifies the complete set of
Maxwell’s equations*

ap*t/oxt=0, dp*F/dxt=0. (M)

This result is summarized in the statement
that the Egs. (1) and the assumption that the
field of the stationary electron is given by (3)
imply that the field tensor pu; for a system of
electrons, each in uniform rectilinear motion,
satisfies the complete set of Maxwell's equations
(M). It is of course well known that M possesses
solutions (in terms of the retarded potentials
for a point charge) for a singularity or group of
singularities with arbitrary world lives. Such
solutions will be written py;.

Interaction between the singularities is brought
into the theory through the ‘“Hamiltonian’®
function H=(14P)}—1 and the variation prob-

lemS$
5 f f f f Hdxdydadi=0, s)

which is to be solved by varying the field tensor
pri subject to the restriction that the comparison
tensors remain solutions of (1) and are all equal
on the boundaries of the region of integration.
It is understood that the world lines of the
electrons (the lines in xyzt space on which py;
possesses a singularity of the second order) are
not varied nor is any comparison tensor admitted
which possesses singularities except on these
lines. A necessary and sufficient condition that
the variation of the integral vanish is then

AfF+L/dx1=0 (6)

with fiu=pu(1+P)~2 (1) and (6) together will
be referred to as the Born-Infeld field equations
and denoted by the symbol BI.

The field tensor pr; defined by (3) and the
corresponding tensor fi; are, in fact, solutions of
the Born-Infeld field equations. Thus for a single
unperturbed singularity in uniform rectilinear
motion both the Born-Infeld. field equations and

4 pw* is the dual tensor; see reference 1, p. 432.
8 Reference 1, p. 436; P designates the invariant }p,,*p*rs
pron— 8
DT,

e Reference 1, p. 436.
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Maxwell’s equations are simultaneously satisfied.
This circumstance is of decisive importance in
determining the form of the equations of motion.

III. THE ENERGY-MOMENTUM TENSOR

From the field equations Born and Infeld
derive energy-momentum conservation equations

OT !/ ox'=0, )
in which?
Tw'= H+3frp") 86" —fmip™ (8a)
=3{(1+P)+(1+P)"#-2)8:!
= (frmsp™ " pme— 3 frap™0:) ). (8D)

The second form in the definition of T%! is needed
for later developments. It is instructive for the
study of the relation between the field and
particle forms of the conservation laws to con-
sider the explicit form of the field tensors and
the tensor 73! in the neighborhood of a singu-
larity. A number of definitions are needed for
use at this point and later, namely: ?pp;(£) the
field associated with a singularity, in uniform
rectilinear motion, which at the time ¢ is coinci-
dent with and moving with the accelerated
singularity, “pn; the acceleration field of the
classical point charge, °pi; the external field
which causes the non-uniform motion, g; the
difference between the actual field and the field
of a classical point charge moving with the
singularity, gi; the difference between the com-
plete field and the sum of external field and
classical field, and finally gx; the sum gu+°pr:
+2pri. Then

D= ""pri+pri,
Pri=Dri+Gri,
= Pritqrit P,
= "pritqr.

9)

The assumption that *py,; is small in comparison
with unity permits us to write it as a solution of
Maxwell’s equations. We wish to express the
field quantities in terms of *py, *fi; and qu
retaining only first order terms in gz The
results are

}I}eference 1, p. 436; from the definition of f,,, fuirp™
=jfm pmk-
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%p”prszé "Drs ”P”‘f‘ Prsq”,
H=H'—} Y.,
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(14+P)~t= (1+P°)~+"frq/(1+P"),
fkl: 1ffkl{ 1+v 7'sgrs/2(1+Pv)%} +le/(1+Pv)%;
fmkpmlz ?fmk vPMZ”{”vfkaMI_!_ ’if’"lka‘i—% 1ifmk vfml ”frsqr,s,

TWt="Ty' 1T,

(10)

°Tyt= H+3 *frs °prs) 66’ — fmz P,
T pl= — f g™ — 1ffmlgmk+% 1ffrsgmakl+%<Fv5kl_ Fmk 1ffml)qffﬂsqr“y

(with F=—P/(1+P)=%f.f"). In these equa-
tions prs, *fre, ¢rs may be replaced by P, Fre, Grs.
As a direct consequence of (7) and (10)

—— qulz — kal
Jduxt dxt
(11)
V; 0
—_— e ka4
¢ 0v;
and
9 0; 0
[t fre
. Jdx! ¢ 0v;
(12)

d
4SS
cdte

integrating about the singularity over a region
on the surface of which P is small in comparison
with unity. A simple calculation yields® (letting
B=(1—2/c))

f"I”Tk“d7-=(47rc/b2)movkﬁ, r=1,2,3,

(13)

= (4mc/b)mocB, k=4

The left-hand member of (12) must therefore be
interpreted as external force plus radiation
resistance. In this way the field conservation
laws are transformed into a form appropriate to
the particle standpoint. However, the Eqgs. (12)
are not equations of motion for, as will be
shown, the field equations do not in any way
restrict the motion.

8 my is the electronic mass; reference 1, p. 446. b is the
‘“‘absolute” field; reference 1, p. 437.

IV. THE CHARGE AND CURRENT DENSITIES
The equation?

af¥/dxt=4mpk (14)

defines the electric charge and current densities
pF. Let us add the equation

d
——pFhl= —_Gkkl= 4 gk,

dx? dxt (15)

defining the four vector ¢*, and interpret o* as
the magnetic charge and current density vector.
The preceding discussion enables us to state at
once that ¢z and ¢* vanish identically in the
case of an isolated singularity in uniform recti-
linear motion.

V. Tae FIieLp EQUATIONS FOR ARBITRARY
MOTIONS OF THE SINGULARITIES

In this section we show, by sketching a method
for the calculation of g, that the field equations
do not impose any essential restrictions on the
motion of the singularities. It is supposed that
the world lines of the singularities are arbitrarily
prescribed, subject to the broad restriction that
the curvature of any given world line should
never exceed in order of magnitude the curvature
in the world line of a classical particle moving
in the field of all the other singularities. This
restriction insures that in the neighborhood of a
singularity

Of ¥#1/ 95t = 0(*pys). (16)

(O(x) is a function which vanishes with the first

? Reference 1, p. 441.
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power of x.) With prescribed world lines p;; is a
known function of the space-time coordinates, a
solution of (1) and hence gx; must satisfy the
Eq. (1):

agt1/ax!=0. (17

Because of (17) there exists a potential vector
xx in terms of which

J 9

Xs ™ Xr-
ax” ax®

(18)

QTs* =

Then in the neighborhood of a singularity the
field Eq. (6) becomes, with the help of the
remark following (10),

i) a
Xl _ gls Xk) ]
dx” Jx®

9 0
]
ax”

_fT*kl_[(l._}_P)—%—*rs
J _
= ——f*14-0(q.?), (19)
dxt

oy
~|a+pr(e
ax

dx?

a set of four non-homogeneous linear partial
differential equations of the second.order in the
unknown functions x; if the remainder term
0(q,s?) is neglected. The appropriate solution of
(19) determines a field tensor ¢r; which is a
solution of (17) and also determines the field
tensor ¢r; by means of the equations Gn=3qu
—e¢pr. The Eq. (19) is also obtained if . is
interpreted as the sum of the fields of the
classical point charges on prescribed world lines.
Grs, the difference between p,, and pr, is then
the non-classical part of the field arising from
the nonlinear character of the field equations
and, with neglect of the remainder term, is given
throughout space by the appropriate solution
of (19).

VI. THE BORN-INFELD EQUATIONS OF MOTION

The preceding discussion brings up the ques-
tion how is it possible for Born and Infeld to
derive equations of motion from the field
equations? The answer is simply that their
equations of motion are not consequences of the
field equations, but are obtained from the
variation problem (5) by putting in place of p,,
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the tensor °p,s-+°p, and varying the world line
in the resulting definite function of the position
and velocity of the singularity. It is clear that
two distinct variation principles are thus asso-
ciated with Eq. (5); one vyielding the field
equations, the other the equations of motion.
In this manner they obtain a Lagrangian
function'?

A6®, o0, 9=mt/8= [ [ [ o0 wpiar, (20)

in which ¢;© is the potential four vector of the
external field and ?p! is the charge four vector
for a singularity in uniform rectilinear motion
with the velocity ». More generally we might
return to the variation problem and, using an
approximation to the field of the classical point
charge more accurate than *p,, obtain a cor-
rection term to be added to (20) of the form
(for small values of the velocity)

aip® @,

21

M=
M=

I
S
1

[ j=1

which would contribute a sum of odd derivatives
of the velocity to the equations of motion.* It
does not seem possible to obtain a radiation
resistance term (an even derivative of the
velocity) from any modification of this form of
the variation problem.

In addition to the difficulty in connection with
the radiation resistance there is another which
seems more fundamental. The equations of
motion will be invariant in form only if A8 is a
scalar invariant. But since the time cross section
for the space integration depends on the co-
ordinate system in which the integral is defined,
the quantity 8S S S ¢1?pldr is not in general
a scalar invariant. This non-invariant result
from an apparently invariant procedure appears
to arise from the fact that the equation §./3!2Ads
=0 follows from &6/ S S S Hdxdydsdt=0 only
if the space and time integrations separate (i.e.,
the limits for the time integration are inde-
pendent of the space coordinates). However the

10 Reference 1, p. 449,

11 See Courant-Hilbert Methoden der Mathematischen
Physik, p. 171 for statement of the variation problem and
derivation of the Euler equations for the general case in
which A is a function of derivatives of arbitrary order.
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statement that the space and time integrations
separate is not invariant and different equations
of motion are obtained for different choices of
the coordinate system in which the separation
occurs.

The interaction of an electron with a plane
monochromatic wave supplies a simple illustra-
tion of the preceding remarks.”? In a coordinate
system in which the electron is moving momen-
tarily in the direction of propagation of the wave
with velocity v the quantity BJS S S ¢, 9%pWdr
has the value

2e @ sin yz dx!
—(f dZ)B SOZ(E)(x; y, Z, t)
cy\Jy (14243 dt

with y=2xro/N8=(277¢/No) (1 +2/¢) (\o the wave-
length measured by an observer moving with
the electron). Now v is obviously not invariant,
consequently neither is AS.

VII. AN ALTERNATIVE FOrRM OF THE CONSER-
VATION EQUATIONS

The analysis is facilitated by writing the
Eqgs. (6) and (15) in the equivalent forms

0 a i)
—fimt+—fmr+— =0, (22)
dxk dxt Jx™

d 0 a

—pimt—Pmr+—DPri=8Tokim, (23)
dx* dx! ax™

in which o is a complete antisymmetric
tensor of the third order related to ¢* through
the equation'?

(24)

Okim™= JkimnO™.

To begin, Eq. (14) is multiplied by pim:
a kl k
Pkmg;;f =47mprmp".
Then
d [¢]
—(prmf*) = f—prm=4TDrmp",
dxt dx!

12 Compare reference 1, p. 450.
13 210ma 18 the complete antisymmetric tensor of the fourth
order; see reference 1, p. 431
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a d
— P paw= = (i)
dxt dx™
a
+ 3P —fri 47 f*lokim,
ax™

[¢] 0
%P“ngnkoa”x“l(P“fkm)- (25)

From these results and the identity f*'ogim
= —fim*c® follows!*

{Pkmfkl+pklfkm '—% 1‘spr86ml}
=47 (prmp*~+ fim*a*). (26)

Now if the conservation Eq. (7) is multiplied
by two and added to (26) there is obtained the
symmetrical and strikingly simple equation

I¢]
Jdxt

a
a—((l +P)i+(1+P) ) = dn (pimp* +fini*o*). (27)
xm

Let us fix attention on a particular singularity
e; and integrate (27) over the space between
two surfaces S and S’ enclosing e;. S is taken
such that in a coordinate system in which the
singularity is instantaneously at rest it is
spherical and centered at e;; moreover it is
assumed possible to take the radius of .S so great
that on S the scalar invariant P is small in
comparison with unity. (This assumption ex-
cludes the interesting case of two singularities
separated momentarily by a distance of less
than 1072 cm.) That value of the radius is
taken for which P is roughly as small as possible.
S’ is any surface having arbitrarily small linear
dimensions and symmetric with respect to re-
flection through the singularity. Then, letting
M=(1+P)+(1+P)~ -2,

a
ff ————Mdr=ffM cos (x™, s)ds
ax™
S— 87

S

+ffM cos (xm, s)ds, m=1,2,3. (28)
Sl

On S

M =1P2= (D?— H%)2/4b%, (29)

14 With the identity p*fin* = pinf* — dprsfr*ou? the left-

hand member of (26) can be written in symmetrical form.
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D has the same order of magnitude on S as the
perturbing field ¢p,, there or at e; arising from
the other singularities in the field (merely
another way of saying that S is so chosen that
on it P is roughly as small as possible). Now,
even for a radiation field, 72(D?*—H?)2<O0(*p.s2)
and consequently

f f M cos (x™, s)ds

S

<O0(°prt),m=1,2,3. (30)

The other surface integral is uniformly bounded,
independent of the linear dimensions of 5,
because the singularity of the argument at e; is
only of the second degree. Moreover a reflection
through the singularity merely changes the sign
of the argument without changing its value (in
the limit as the linear dimensions of S’ approach
zero). Hence

Lim ffM cos (x7, s)ds=0, m=1,2,3,
SI

550
fffVMdr=0

with neglect of terms having the order of
magnitude O(ep,?). Thus (27) implies

and!®

(1)

s Wherever a volume integration appears it is under-
stood that the integration is over the region inclosed by S.
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fff(Pkmpk+fkm*ok)dT=0, m=1,2,3, (32)

neglecting again quadratic terms in the per-
turbing field at e;. Classical analogy suggests
interpreting (pimp*+fin*o*)dr as the force on
the charge occupying the element of volume dr.
With this interpretation (32) is equivalent to
the statement that the total force on the electron
vanishes. But since the BI field equations do
not determine the motion neither can (32)
which is a consequence of the field equations.
The electrons may move as they please, but
always the non-classical part of the field, G,
which is determined from the motion by the
field equations has just the value required to
insure the truth of (32). This remark applies
with equal force to Eq. (12) which is indeed
equivalent to (32). It is better then not to attach
too much significance to the above interpretation
although it cannot be said to be false and does
point unmistakably to a reasonable dynamical
assumption.

Hitherto only three of the Eqs. (27) have been
considered. But, from (10),

M=M"+3F" Ufreq"* +O0(grs?) (33)

and hence both the Egs. (32) and the equation
obtained by applying to (27) for m=4 an inte-
gration over the interior of S are contained in
the set of equations

4 f f f (pkmpk+fkm*ak)d1=am4{gj; f f f Fo of,qredr— f f f F”%%—i(l—i—f’"ﬁdr}. (34)

VIII. THE CONSERVATION EQUATIONS IN THE COORDINATE SYSTEM IN WHICH THE SINGULARITY
1S INSTANTANEOUSLY AT REST

The equation

ox?

d 7; 0
vfkl=41r vpk__{,___ _vflc4

35
c 67); ( )

defines the unperturbed charge four vector ?p* which is associated with a singularity moving with

the instantaneous velocity v. Let

qpk= pk_'vpk

(36)

represent the distortion in the charge and current densities produced by the acceleration and the

external field. Then

Premb*= "Pim 0¥+ Qim *0F+ Prm 90"

(37
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Symmetry considerations lead at once to the conclusion

f f f “pm *prdr =0, (38)

Furthermore the integral over pr., %% can be expressed in a simple form. For
d
—H=d(vp 9pt) (39)
dxt

and hence, using (10),

i 9 3 3
4m tph=— ”f’°4+—(f“frsq"/2(1+P)*)+;(9u/(1+P)’§‘)+0(qrs2)- (40)

¢ 0v; 9x; d

Accordingly, after some calculation (for which see appendix),

19 P a
Arprm pF=——("frm *f** *f1:q"*) ——"frm *fH—(1+P*)1+0(g.s?), (41)
dx? c 0v;

and, combining (37), (38) and (41) with (34)

anf [ [ @ vpk+vfkm*ak>d7=—;;§t~ [ [ @ out=sinrysigreas
- f f f (F %6mi—"fim ”f’c‘*)?ciéj—i(l—l—l’”)%dr. 42)

The surface integral discarded to obtain (42) is bounded by the quantity'® 27 |g.|(e3/b%r%)
=27(e/b) | qrs| (ro/7)* which falls off with decreasing interaction at least as rapidly as the cube of
the external field (» is roughly the smallest linear dimension of S). Now F'=("B2—*E?)/b?,
vfafFt= — vF2/b% and b? *fin"f*4(m5%4) is just the vector product of *E and *B. Consequently (F?§,.*
— *f1n"f*) vanishes in the coordinate system in which the electron is momentarily at rest and also

"

(Fo ot = fim 744 f,a} =0(3).
ot

Letting the superscript O designate this coordinate system, (42) reduces to!’

fff("gm °p*+fn* o*F)dr0=0. (43)

It must be considered as significant that the unpleasant distortion charge vector %% drops out of
(32) to leave just (43) when the problem is set up in the one coordinate system (the instantaneous
rest system) which is physically singled out from all others. Finally to bring out explicitly the
manner in which classical and non-classical terms enter into (43) it is written in the suggestive form

[ [ [ ctmetpimrpar== [ [ [ Ctuncottsins conar. (44)

16 4y = (¢/b)} =2.28 X 107% cm; see reference 1, p. 446. )
17 Note that °p* is (?p*)s=0 and not the quite distinct quantity (p*)e=o.
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It is clear that neither side of (42) constitutes a four vector or possesses transformation properties
simply related to those of a four vector. This circumstance is not surprising for only under exceptional
conditions is it true that the space integral of a four vector possesses any simple transformation

properties.

IX. TeE EQUATIONS OF MOTION

The noteworthy feature of (44) which makes
it important and justifies the laborious analysis
by means of which it is derived is the occurrence
in it of the integral S J S (“Pam’+Pin®)°p*d 70,
which differs only slightly from the quantity
which in the classical electromagnetic theory is
interpreted as the total force on the electron and
required to vanish in order to supply the theory
with dynamical equations of motion. The differ-
ence is only that in the classical expression the
acceleration field of a volume distribution of
charge appears in the place of *ps,°. Here, just
as in the classical theory, a dynamical condition
is needed to determine the motion. But (44)
leaves no doubt as to the simplest physically
satisfactory condition. We must require that
the motion shall be such that the right-hand
member of (44) which represents a completely
unclassical “force’” on the electron shall vanish.
Then the equation

i) f (@punt+ *pin?)p'd7=0

determines the required motion. The vanishing
of Gr: and ¢ when the motion of the singularity

(45)

is uniform and rectilinear suggests that (45) is a
condition which makes the departure from the
classical field small, or even, in a rough sense, as
small as possible. In this respect the condition
(45) is related to the Born-Infeld equations of
motion. In terms of the field tensors measured
in an arbitrary coordinate system (45) can be
written

1 dxom .
dekfff(P4m+ P/lm) pdT
dx?
- ““f f f (“pri+pri)opdro=0. (46)
cdt

The integration over dr° in (46) implies a cut
perpendicular to the ¢° axis, the time cross
section for an observer moving with the electron.
For this reason the substitution of ?p‘dr for
°pidr° in (46) is not permitted although ?p%dr
is a scalar invariant.

There remains the problem of exhibiting
explicitly the equations of motion implicit in (45).
For small values of the velocity the electric field
in the neighborhood of a classical point charge,
computed from the retarded potentials, is given
by

D(x,y, 2z t)=el{1/r*—1-9/2c%+(1-9/8c*)r — (1-v"v/15¢%) 72+ (1 -vv /48c8)73- - - }
+el —9/2¢%r+20/3¢® — (3% /8c*)r+ (207 /15¢%) 7% — (5v¥/144cS) 3+ - - -} (47)

7 is the scalar distance from the point x, v, z at which the field is wanted to the instantaneous position
of the electron. 1 is the unit vector from the electron to the point «, y, 2. Also!8

0,4

(4

a 2713 (r/ro) (14 (7'/7’0)4)%.

(48)

Letting °D° represent the external electric field (45) becomes

20 29

2 iv v e2 d o

f [ fopropaem [ [ 122 o)
3¢ 3c® 3¢t 9c5  36¢8 ) 2mred(r/ro) (14 (r/r0)2)}

or, introducing the symbol G(m, %) for the integral

18 Reference 1, p. 444.
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©  xmdx
[0. (14 at)nre’
b f f f oD opidro= (462/3610) G0, 3)5— (462/3¢%)G (L, 3)i-+ (2ero/3c)G (2, 3)F
— (2e*r¢?/9¢5)G(3, 3)viv 4 (€%3/18¢%)G(4, 3)vv.  (50)
Now??
G(4, 3)=G(0, 3)=3G(0, 1)=0.9270= (3c*o/4e)mo,  G(1, 3)=G(3, 3)=0.5. (51)

Using the substitution? x=tan jw

G2, 3) 1(6 f " do ) 0.422 (52)
,3)=1(— =0.422. 2
: 900 (1—sin? 0 sin® )3/ pr/a

(By “Peirce’s Tables” p. 121.)
Eq. (50) now takes the form

bfff"De opidro=med— (2€*/3c®)i+ (2€2/3¢%) (ro/c) {0.422°5 —0.167 (ro/c)vV+0.077 (ro/c)%"}. (53)

We see that the equations of motion contain the usual radiation resistance term (2¢%/3¢®)79 and
additional terms which are important when the electron interacts with very high frequency radiation.
But clearly the derivation of the right-hand member of (53) from (54) involves approximations
which limit its validity, for the problem of interaction with radiation, to wavelengths somewhat
greater than the characteristic length 277, (perhaps, v =(137/3)moc?).2

The generalization of (53) to an arbitrary coordinate system is accomplished by going back to
(46) or more simply by introducing two four vectors BFx, BGr. taking the values

(Fy, F,, F3)= bfff °Deopidre, F,=0,

(54)
e
(G, Gz, G5)=0, G4=-—{ —0. 422—~3v RE }
3ct
when the velocity of the singularity vanishes. Then
b2 dxol \
k“dekfff put “ptdr
(55)

dx“fffepk °p'dr,
(Fy, Fy, F3)=bfff{6D+;(71x°H)}°p4dT°, Fy= —-E:-fffv.”D °ptdre. (56)

The equations of motion have the form

or

19 Reference 1, p. 440, p. 446. 2t A more fundamental restriction implied by the con-
20 Reference 1, p. 439. sistent neglect of quadratic terms in the external field is

| 8] <KLe?/r0.
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(Fh4-GHy = d de’” 2¢* d Bd de’°+ (57)
— —m e e s e [ e [ RN
dt " dt 38 dt dt dt
The plane wave fields,
(eD, eH)= (A, B)eZ‘lri(vt—(lx+my+nz)/)\)

lead to the force vector

(Fy, Fay F)= eg(zm) { "D-I—%(ver) } (58)

0

in which ¢D and °H are evaluated at the singularity and g(2m7o/Xo)? is a factor less than unity
representing the fact that the grip which the field obtains on the electron decreases in strength as
the frequency goes up. It is important to note that the N\, occurring in the argument of g is the
wavelength for an observer moving with the singularity. Thus g(277,/\o) is a scalar invariant, but
not a constant.

Appendix: derivation of Eq. (41).

From (40)

] d
477'Plcm qpk‘:PkmvC 1:'fk‘i'f" { (frxg”)fk fkl+fk C_I“} - (_a—;;Pkm) (fkl“ 'ffkl)l (59)

v;
(—pkm) (o= opety = (o1 — ”J"“)(——sz+—1>zk)
d
= —J(fel—oftl)—pp,
Ix™
Ie] 9
= — {3 (fre@") fraf*'+ frag®'} + 505 —(frr— *f11), (60)
axm™ ax™
a9 d Ié)
§pH—(fra— i) = — %pkl{—(flm— Fum) oo~ vfm)}
axm™ oxk dxt

U5

—%““‘—{5 4 9140kt fimt01% UFmr} PP

¢ 0v;

J 9; 0
= ()t Pgn) 4 (= fu) P
X ¢ 9v;

) P (61)

Combined, these equations yield

Ié] [P a
4mpun 1ph= ——T, l————vT4+2 —Cfom P, g”)——”f n PH—(1+P)40@E) (62)
dx? ¢ 9v; dv;

=1
2

i) Uy i)
l(?fkm UfF 2f06q") ——"fkm °f* (14+P*)4+0(g,s). (41)
X c a7;

The writer is indebted to colleagues in the Research Laboratory for many helpful criticisms and
to Mr. Julian Knipp for checking certain calculations.

22 Reference 1, p. 450 for explicit form and tabulated values.



