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On the Born-Infeld Field Theory of the Electron
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Since the field equations of the Bor@-Infeld field theory
impose no essential restrictions on the world lines of the
singularities, a dynamical condition, equivalent to equations
of motion, must be added to complete the theory. The
variation problem from which Born and Enfeld obtain
equations of motion by varying the world lines of the
singularities does not appear to be susceptible of gener-
alization to include radiation reaction and, moreover, the
equations of motion are not invariant in form under a
Lorentz transformation. The definition of a magnetic
charge and current vector (which vanishes for an isolated
singularity in uniform rectilinear motion) makes possible
the derivation from the energy-momentum conservation
laws of a relation (Eq. (32)) which is the formal analogue

of the dynamical assumption, in the classical theory of
electromagnetic mass, that the total force on the electron,
including the self-reaction, vanishes. This result is not,
however, equivalent to equations of motion because the
non-classical part of the field arising from the non-linear
character of the field equations always adjusts itself, for
arbitrary motion of the singularity, to maintain the
relation. In the coordinate system in which the singularity
is momentarily at rest the relation simplifies notably and
points to a new dynamical condition which appears to be
singled out from all other possible conditions by its
compelling simplicity. The resulting equations of motion
contain the usual radiation resistance term and also higher
order terms in the self-interaction.

I. INTRODUCTION

N the Born-Infeld. ' theory the electron appears
- - as a coulomb singularity with which is
associated in a natural and unforced manner a
de6nite spatial distribution of charge upon
which external fields act. The way in which the
6eld changes in going from one world point to
a near by point is determined by a system of
6eld equations which also imply the existence
of an energy-momentum tensor satisfying a set
of divergence equations interpreted as energy-
momentum conservation laws.

The principal result of this paper is the
derivation from the energy-momentum conserva-
tion laws of an equation which is the formal
analogue of the dynamical assumption, in the
classical theory of electromagnetic mass, that
the total force on the electron, includiog the
self-reaction, vanishes. A simple assumption then
leads to dynamical equations of motion con-
taining radiation resistance and higher order
terms, whereas the method used by Born and
Infeld to set up equations of motion does not
appear to be susceptible of generalization to
include radiation resistance.

symmetric field tensor of the second rank p&~,

satisfying the set of divergence equations'

Bp"/Bx'= 0

In space vector form (1) becomes'

V D=0, VxH=BD/cBt (2)

The electron at rest under the action of no
forces is characterized by the assumptions that
IX vanishes identically and D is spherically
symmetric. Then necessarily

D= —eV (1/r) (3)

with e an arbitrary constant of integration
which is set equal to the experimental value of
the electronic charge. Since D is the gradient of
a scalar function its curl vanishes; also the
divergence of H vanishes (trivial since H vanishes
identically). Hence the stationary electron is
described by a field tensor (3) which satisfies
the set of equations

Turning now to the case of an electron in
II. THE FIELD EQUATIONS uniform rectilinear motion we see that (2) and

The building material out of which the Born- 2 To avoid unessential comp]. ications only invariance
Infeld theory is constructed is a single anti- u~der Lorentz transformations is required of the tensor

equations.
'M. Born and L, Jpfeld, Proc, Roy. Soc, A144, 425 'Except where otherwise stated the notation throughout

(1934). is taken from reference 1.
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(3) and the fact that D and H together form the
six vector pI, ~ imply that the field, tensor of the
moving electron sati6es the complete set of
Maxwell's equations4

Maxwell's equations are simultaneously satis6ed.
This circumstance is of decisive importance in
determining the form of the equations of motion.

8p"'/Bx'= 0 BP*"'/Bx'= 0 (3'')
III. THE ENERGv-MoMEm'UM TENsoR

This result is summarized in the statement
that the Eqs. (1) and the assumption that the
field of the stationary electron is given by (3)
imply that the field tensor pi.,i for a system of
electrons, each in uniform rectilinear motion,
satis6es the complete set of Maxwell's equations
(3f). It is of course well known that M possesses
solutions (in terms of the retarded potentials
for a point charge) for a singularity or group of
singularities with arbitrary world lives. Such
solutions will be written Pi, i.

Interaction between the singularities is brought
into the theory through the "Hamiltonian" 5

function H = (1+P)&—1 and the variation prob-
lem'

8JI ) ~)~Hdxd, ifsdi= 0,

which is to be solved by varying the field tensor
pl, I, subject to the restriction that the comparison
tensors remain solutions of (1) and are all equal
on the boundaries of' the region of integration.
It is understood that the world lines of the
electrons (the lines in xyst space on which pii
possesses a singularity of the second order) are
not varied nor is any comparison tensor admitted
which possesses singularities except on these
lines. A necessary and sufhcient condition that
the variation of the integral vanish is then

gfSki/g~l —0

with fyi=Pii(1+8) ~. (1) and (6) together wi}}
be referred to as the Born-Infeld field equations
and denoted by the symbol BI.

The field tensor Pi, i defined by (3) and the
corresponding tensor fi, i are, in fact, solutions of
the Born-Infeld field equations. Thus for a single
unperturbed singularity in uniform rectilinear
motion both the Born-Infeld 6eld equations and

' pJ,~~ is the dual tensor; see reference j., p. 432,' Reference 1, p. 436; P designates the invariant —,'p„,*p*"'
= —kp p"'' Reference I, p. 436.

in which'

T„i—(H+1f prs)g i f pml (8a)

(f pml+fmlp 1f pray i) I (8})

The second form in the de6nition of T~' is needed
for later developments. It is instructive for the
study of the relation between the 6eld and
particle forms of the conservation laws to con-
sider the explicit form of the 6eld tensors and
the tensor T~' in the neighborhood of a singu-
larity. A number of de6nitions are needed for
use at this point and later, namely: 'pqi(i) the
held. associated with a singularity, in uniform
rectilinear motion, which at the time 5 is coinci-
dent with and moving with the accelerated
singularity, 'Pi, i the acceleration field of the
classical point charge, 'p~i the externa} 6eld
which causes the non-uniform motion, qI, ~ the
difference between the actual 6eld and the field
of a classical point charge moving with the
singularity, gl, ~ the difference between the com-
plete field and the sum of external field and
classical 6eld, and 6nally g~i the sum i}s&+'ps&
+ pi. i. Tllell

=p~i+q~i+'pii,
= p~i+gkt

The assumption that 'pi, i is small in comparison
with unity permits us to write it as a solution of
Maxwell's equations. We wish to express the
field quantities in terms of 'Pi&, "fz& and ~i&

retaining only 6rst order terms in @i. The
results are

~ Reference j., p. 436; from the definition of f„,f~yP '
fmlp

From the 6eld equations Born and Infeld
derive energy-momentum conservation equations

8 Ti,'/Bx' = 0,



p» —1 &p„, "p"'+ "p»g

H=H' —k "f-&

(1+~) & (1++5) w+ "f»g /(1+ )r

&f I 1+vf F8/2(1++ )~I+gQ(/(1+ )
y ml &epml+ ~f ~cI~ + f gmk+ 2 f»"

~T [ (He+1 &f» "prg)8y fm7c P'

qT l — &f —pg»~ —
/mal +~ "f g"4 +2(F ~~

~/(1 +p) lf f») in these equa
may be replaced by p»~ f"~ &"tlons» r J») &*

10direct consequence of ( )
The equation

qadi/gz&

=4~@"

defines thc electr cur re«de»'t'cs
(11)

& L t us Rdd the cquat'on

5, 8—&TI,'d7. =——
8x' c Bv;

eT 4d&

vector RQd lntc p

Th ding discussion cnRblcs Use prccc 1 Us

n t "
and o-~ vanish identlca y

'

case of an isolated singularity in unl orm rec i-
11QcaI' IHotlon.

4

ln tegl"R ting R Ou eb t the slngulaIlty ovef' R legion
Rce of which I ls sIIlall ln coIHparlson

Withal unity. sl
'

h 't A simple calculation yie s ( e i
0=(1- / s)c')

Tp dr= (4vrc/b )tÃovyP,
t

2 =i 23
(13)= (4~c/b')re, cP, &=4.

Th left-hand member of (12) must therefore bee
inter reted as external force p us+Us 1Rdlatlon

1 transforIDcd into R forID appropriate 0
th article standpoint. However, ee p owever, e
Rle Qo equations of IDo tion 01,

Rn %'Ryshown, the ficM equations do not ln any y
restrict the motion.

446. b ls Alef80 j.s t e e eh l ctronic mass. ; reference, p.
"absolute" 6eld„reference, p.

V. TH@ FIEr.D Eqm. nows OR ARBITRARY

Monows oF xHE SINGUr. xanlEs

~f*"/»'= o('P„)

(0(x) is a function whjch vanishShcs with the 6rst

' Reference 1, p. 441.

sketching R IQcthodIn this section we show, y sk g
or the calculation of g~~, that the 6CM equations

u t impose any essentia res r0 no 1 res r
f the slngUlRIltlcs. It is sUpp

thc wor ines 0 RIblId 1 of the singularities Rrc RIbl
u ub ect to the broad restriction a

the curvature of any given wor ine s
u

'
d r of magnitude the curvaturenever exccc ln 01 cr 0

in the wor lne o R movinlu 1' f a classical particle moving
ln the flc 0 a es. Isld f all the other singularities. is
I CStl 1Ctlon insures Rthat in the neighborhood o
singularity

(16)



FIELD THEORY oF THE ELECTRON

8g"/Bx'= 0 (17)

Because of (17) there exists a potential vector
x~ in terms of which

power of x.) With prescribed world lines Pi, i is a,

known function of the space-time coordinates, a
solution of (1) and hence i2i, i must satisfy the
Eq. (1):

the tensor 'p„,+'p„, and varying the world line
in the resulting definite function of the position
and velocity of the singularity. It is clear that
two distinct variation principles are thus asso-
ciated with Eq. (5); orie yielding the field
equations, the other the equations of motion.
In this manner they obtain a Lagrangian
function"

8
Xs gT ~

BX BX
h(r(t), v(t), t)=moc'/P t "~—I pi&'& "pidz, (20)

Then in the neighborhood of a singularity the in which y~'& is the potential four vector of the
field Eq. (6) becomes, with the help of the external field and "p' is the charge four vector
remark following (10), for a singularity in uniform rectilinear motion

with the velocity v. More generally we might

l3f 8kt. '(1+P) ',fCrs--
BX BX

return to the variation problem and, using an
approximation to the field of the classical point
charge more accurate than "p„„obtain a cor-
rection term to be added to (20) of the form
(for small values of the velocity)

8
foki+O(q 2) (]9)

BX'

N

pit . .s(&i ~ p(ii
i=o 2'=1

(21)

a set of four non-homogeneous linear partial
differential equations of the second. order in the
unknown functions x~ if the remainder term
O(g,,2) is neglected. The appropriate solution of
(19) determines a field tensor qadi which is a
solution of (17) and also determines the field
tensor g&& by means of the equations g&&=q&&
—'Pz&. The Eq. (19) is also obtained if Pzi is

interpreted as the smm of the fields of the
classical point charges on prescribed world lines.

j„, the difference between p„, and P„„ is then
the non-classical part of the field arising from
the nonlinear character of the field equations
and, with neglect of the remainder term, is given
throughout space by the appropriate solution
of (19).

VI. THE BQRN-INFELD EQUATIQNs QF MoTIQN

The preceding discussion brings up the, ques-
tion how is it possible for Born and Infeld to
derive equations of motion from the fieM
equations& The answer is simply that their
equations of motion are not consequences of the
field equations, but are obtained from the
variation problem (5) by putting in place of p„

which would contribute a sum of odd derivatives
of the velocity to the equations of motion. " It
does not seem possible to obtain a radiation
resistance term (an even derivative of the
velocity) from any modification of this form of
the variation problem.

In addition to the difficulty in connection with
the radiation resistance there is another which
seems more fundamental. The equations of
motion will be inva, riant in form only if Ap is a
scalar invariant. But since the time cross section
for the space integration depends on the co-
ordinate system in which the integral is defined,
the quantity pJ'J' J'pic'i"p'dr is not in general
a scalar invariant. This non-invariant result
from an apparently invariant procedure appears
to arise from the fact that the equation 5f&,'~ddt

=0 folfows from 8J' J' J' fHdxdydhdt=0 only
if the space and time integrations separate (i.e. ,

the limits for the time integration are inde-
pendent of the space coordinates). However the

"Reference, 1, p. 449,"See Courant-Hilbert 3IIethoden der Mathematischen
Physik, p. 171 for statement of the variation problem and
derivation of the Euler equations for the general case in
which h. is a function of derivatives of arbitrary order.
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statement that the space and time integrations
separate is not invariant and different equations
of motion are obtained for different choices of
the coordinate system in which the separation
occurs.

The interaction of an electron with a plane
monochromatic wave supplies a simple illustra-
tion of the preceding remarks. " In a coordinate
system in which the electron is moving momen-
tarily in the direction of propagation of the wave
with velocity s the quantity Pfffy&""p'dr
has the value

2e t' sin ys ) dx'
&~"(x»' ')

cy E p (1+s4)& ) dt

with y = 27rrp/XP = (2p.rp/Xp) (1+5/c) (Xp the wave-
length measured by an observer moving with
the electron). Now y is obviously not invariant,
consequently neither is AP.

8
f—" p p-= —

p (f"ppi)
/xi gxm

+pp"' fu+47rf"'~pi,
Bx

t3

p
p"' fp~= (p"'fp-) (25)

Bx 8x'

From these results and the identity f 'p p&

fp„*—o' follows'4

8
Ip fkl+pktf& 1f Prsg lI

Bxi
=4~(pp t'+fp *~') (26)

Now if the conservation Eq. (7) is multiplied
by two and added to (26) there is obtained the
symmetrical and strikingly simple equation

((1+&)'+(1+&) '*) =4~(pp. P'+fp-*') (27)
Bx

f~ + f p+ fpi=0,
8x' 8x' Bx"

(22)

I9 8 8
pr-+ p-p+ ppi=8«pi-, (23)

8x' Bx' Bx

in which 0.1, & is a complete antisymmetric
tensor of the third order related to 0" through
the equation"

&arm= gatm~o . (24)

To begin, Eq. (14) is multiplied by p&„..

VII. AN ALTERNATIVE FORM OF THE CONSER-

VATION EQUATIONS

The analysis is facilitated by writing the
Eqs. (6) and (15) in the equivalent forms

Let us fix attention on a particular singularity
e; and integrate (27) over the space between
two surfaces 5 and S' enclosing e;. S is taken
such that in a coordinate system in which the
singularity is instantaneously at rest it is
spherical and centered at e;; moreover it is
assumed possible to take the radius of 5 so great
that on 5 the scalar invariant P is small in
comparison with unity. (This assumption ex-
cludes the interesting case of two singularities
separated momentarily by a distance of less
than 10 " cm. ) That value of the radius is
taken for which P is roughly as small as possible.
S' is any surface having arbitrarily small linear
dimensions and symmetric with respect to re-
Qection through the singularity. Then, letting
M = (1+8)'*+(1+X) '* —2,

Then

8
p fPt —4~p ~P

Bx'
S—8'

Mdr= ) ) M cos (x, s)ds

+ t
~l M cos (x, s)ds, re = 1, 2, 3. (28)

S'

(pp f"') f" pp =4~—pp p',
Bx' Bx'

On S
M —=-',P' = (O' —II')'/4b'. (29)

~~ Compare reference 1, p. 450.
is the complete antisymmetric tensor of the fourth

order; see reference 1, p. 431
'4 With the identity p*l"fI, *——p& f~' —$p„,f"'8 ' the left-

hand'member of t,'26) can be written in symmetrical form,



D has the same order of magnitude on 5 as the
perturbing 6eld 'p„, there or at e; arising from
the other singularities in the field (merely
another way of saying that 5 is so chosen that
oil it P is lollghly as small. as possible). Now
even for a radiation field, r'(O' —II')'(0('p„,')
and consequently

I "M cos (x", s)ds (0('P„'),m=1, 2, 3. (3O)

The other surface integral is uniformly bounded,
independent of the linear dimensions of 5',
because the singularity of the argument at e; is
only of the second degree. Moreover a reflection
through the singularity merely changes the sign
of the argument without changing its value (in
the limit as the linear dimensions of 5' approach
zero) . Hence

Lim ~, M cos (x", s)ds=O, xi=1, 2, 3,
S~~o J J

anrV'

")I' tgMd, =o (31)

with neglect of terms having the order of
magnitude 0(ep„,'). Thus (27) implies

"Wherever a volume integration appears it is under-
stood that the integration is over the region inclosed by 5.

(P~ p'+f..*")d.=O, ~=1, 2, 3, (32)

neglecting again quadratic terms in the per-
turbing 6eM. at e;. Classical analogy suggests
interpreting (Pi, p"+fi *oi)dr as the force on
the charge occupying the element of volume dv. .
With this interpretation (32) is equivalent to
the statement thai the total force on the electron
vanishes. But since the BI 6eld equations do
not determine the motion neither can (32)
which is a consequence of the 6eld equations.
The electrons may move as they please, but
always the non-classical part of the field, g„„
which is determined from the motion by the
6eld equations has just the value required to
insure the truth of (32). This remark applies
with equal force to Eq. (12) which is indeed
equivalent to (32). It is better then not to attach
too much signi6cance to the above interpretation
although it cannot be said to be false and does
point unmistakably to a reasonable dynamical
assumption.

Hitherto only three of the Eqs. (2/) have been
considered. But, from (10),

M =M"+ ,'F" «f„,g--+0(q„,')

and hence both the Eqs. (32) and the equation
obtained by applying to (27) for m =4 an inte-
gration over the interior of 5 are contained in
the set of equations

I,~ t (p~ p"+fi-* ")d =t'-'
I

i i~ &""f„q"*d i —
il &" —(1+P')*d . (—34)

VIII. THE CGNsERvATIQN EQUATIoNs IN THE CooRDINATE SYsTEM IN WHIcH THE SINGULARITY
IS INSTANTANEOUSLY AT REST

The equation

8 vg 8
«foal

—4~ «pk+ «f'k4

Bx' c Bv
(35)

dehnes the unperturbed charge four vector "p~ which is associated with a singularity moving w'ith
the instantaneous velocity v. Let

represent the distortion in the charge and current densities produced by the acceleration and the
external field, . Then

Ptut«p = "Pkm "p +pl«t« "p +Pi|«p ~ (3'E)
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Symmetry considerations lead at once to the conclusion

(38)

Furthermore the integral over p~ &p~ can be expressed in a simple form. For

fkl —4~(v~k+ 4~k)
Bx'

(39)

and hence, using (10),

8 8 8
42r 2&k= — vfk4+ (fklf. q»/2(1+p)v)+ (gk, /(1+8) )+40(g ')

c Dv, Bx~ Bx'
(40)

Accordingly, after some calculation (for which see appendix),

1 I9

4~pk 2~k — (vfk vfkl vf mrs) vfl vfk4 (1+Pe)sr+0(I1 2)
2 Bx c 8v,.

(41)

and, combining (37), (38) and (41) with (34)

1 8
I (~ vpk+vf k&k)d& —

I t t(P vg 4 vf vfk4)vf 9rsrI&
2c Bt

The surface integral discarded to obtain (42) is bounded by the quantity" 22rlQ-l(s'/~'r')
=22r(s/b) Iq„I(rp/r) which falls off with decreasing interaction at least as rapidly as the cube «

external fjeld (r is roughly the smallest linear dimension of 5) . Now 8"= ("&'—"&')/&,
vf sfk4 = —v@2/tl2 and p "fk "f" (m+4) is just the vector product of "8 and "&.Consequently (F"8
—j„„"jk4)vanishes in the coordinate syst: em in which the electron is momentarily at rest and also

I (Fvg 4 vf vfk4) vf j
—0(2'l)

Letting the superscript 0 designate this coordinate system, (42) reduces to"

I Jt JI (o9 o4k4+of 4 oa k)d&o —0 (43)

It must be considered as significant that the unpleasant distortion charge vector &p~ drops out of
(32) to leave just (43) when the problem is set up in the one coordinate system (the instantaneous
rest system) which is physically singled out from all others. Finally to bring out explicitly the
manner in which classical and non-classical terms enter into (43) it is written in the suggestive form

t JI Jt(op o+ ep o)o~4d&o —
J~

~ (o42 v~4+of k o&k)d&o

"r0=(e/b)'=2. 28)&10 "cm; see reference 1, p. 446.
Note that 'p is ("p'), 0 and not the quite distinct quantity (p4)& 0.
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It is clear that neither side of (42) constitutes a four vector or possesses transformation properties
simply related to those of a four vector. This circumstance is not surprising for only under exceptional
conditions is it true that the space integral of a four vector possesses any simple transformation
properties.

jI (~p o+ ep o)o~4dro —0 (45)

determines the required motion. The vanishing
of q&& and o-I, when the motion of the singularity

IX. THE EQUATIoNs oF MQTIoN

The noteworthy feature of (44) which makes
it important and justifies the laborious analysis
by means of which it is derived is the occurrence
in it Of the integral J'fJ ('p4 '+'p4 o)op4dro,

which differs only slightly from the quantity
which in the classical electromagnetic theory is
interpreted as the total force on the electron and
required to vanish in order to supply the theory
with dynamical equations of motion. The differ-
ence is only that in the classical expression the
acceleration fieM of a volume distribution of
charge appears in the place of P4 '. Here, just
as in the classical theory, a dynamical condition
is needed to determine the motion. But (44)
leaves no doubt as to the simplest physically
satisfactory condition. We must require that
the motion shall be such that the right-hand
member of (44) which represents a completely
unclassical "force" on the electron shall vanish.
Then the equation

is uniform and rectilinear suggests that (45) is a
condition which makes the departure from the
classical field. small, or even, in a rough sense, as
small as possible. In this respect the condition
(45) is related to the Born-Infeld equations of
motion. In terms of the field tensors measured
in an arbitrary coordinate system (45) can be
written

dg07$

(op o+ ep o)op4dro
pg ~

dx7

J")~( pa;+'pg;)'p4dr'= 0. (46)
cdt ~

The integration over dr' in (46) implies a cut
perpendicular to the. t' axis, the time cross
section for an observer moving with the electron.
For this reason the substitution of "p4dv for
'p4dr' in (46) is not permitted although "p'dr
is a scalar invariant.

There remains the problem of exhibiting
explicitly the equations of motion implicit in (45).
For small values of the velocity the electric field
in the neighborhood of a classical point charge,
computed from the retarded potentials, is given
by

D(x, y, s, t)=e1I1/r' —1 v/2c'r+(1 v /8ce)r —'('1 v' /15c')r'+(1 v /48c')r'

+eI v/2c'r+—2v'/3c' (3 v /8c4—)r+''(2v' /15co') r' —(5v /144c') r'+ I.
'

(47)

r is the scalar distance from the point x, y, s at which the field is wanted to the instantaneous position
of the electron. 1 is the unit vector from the electron to the point x, y, s. Also'

$ Op4-
27rro'(r/rs) (1+(r/ro) ')' (48)

Letting 'D' represent the external electric field (45) becomes

3c'r 3c' 3c' 9c 36c 2orro'(r/rs)(1+(r/rs) )'*
(49)

or, introducing the symbol G(44&, r4) for the integral

18 Refere„ce 1 p 444
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x"dx

~ o (1+x')""

,

~ D",d;=(4e /3c r,)a(0 3)v —(4e'/3c')a(1 3)v+(2e'r /3c')G(2 3) v

(2e rQ'/9c')G(3, 3)v' +(e'ro'/18c')G(4, 3)v . (50)

Now"

G(4, 3)= G(0, 3)= 2G(0, 1)= 0.9270= (3c'ro/4e')mo, G(1, 3)= G(3, 3)= 0.5.

Using the substitution" x='tan &m

=0.422.

(By "Peirce's Tables" p. 121.)
Eq. (50) now takes the form

5 " I )
'D''p'dr'=mov (2e'/—3c')v'+(2e'/3c')(r0/c) IO 422'v' —0 167(ro/c)v' +0077(r /c)'v I (53)

J

We see that the equations of motion contain the usual radiation resistance term (2e'/3c'}v and
additional terms which are important when the electron interacts with very high frequency radiation.
But clearly the derivation of the right-hand member of (53) from (54) involves approximations
which limit its validity, for the proMern of interaction with radiation, to wavelengths somewhat
greater than the characteristic length 2xro (perhaps, hp —(137/3)moc'). "

The generalization of (53) to an arbitrary coordinate system is accomplished by going back to
(46) or more simply by introducing two four vectors PFI„PGq taking the values

(F~ F F~) —g ). , oae op4dro

(G&, Gg, Gt)=0,
fo

v' —0.422—3v v'+
C

when the velocity of the singularity vanishes. Then

dX~ l
f'—g'8 ep . Op4dro

(55)

ol

(F F& F)=b t I ~ 'D+ (vx'H) 'p'dr'-3 t

The equations of motion have the form

"Reference 1, p. 440, p. 446.
~o Reference 1t p. 439.

"A more fundamental restriction implied by the con-
sistent neglect of quadratic terms in the external field is
I ~ ) &&C'jr0.
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The plane wave 6elds,

lead to the force vector

(sD s~) (g g)S2es(vr (le+see+—es)IX)

in which 'D and 'H are evaluated at the singularity and g(22rrkjX2)22 is a factor less than unity
representing the fact that the grip which the 6eld obtains on the electron decreases in strength as
the frequency goes up. It is important to note that the ) 0 occurring in the argument of g is the
wavelength for an observer moving with the singularity. Thus g(22rrk/Xk, is a scalar invariant, but
not a constant.
Appendix: derivation of Eq. (41).
From (40)
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j
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Combined, , these equations yield

8 8; 8 8 8
42rp epk 27 l e2 4+ &. (ef sfkl vf ~rs) sfl sfk4 (] ++e)$+0(lf 2) ({j2)

Bx~ |" Bv& Bx c 8U&

8 Vs
(ef„efkl ef lfrs) efk efks (l +pe) vs+0(~ 2)

Bx c 88.
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"Reference 1, p. 450 for explicit form and tabulated values.


