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atoms, '5 and 'I' of As and 0, respectively, since
there are a number of repulsive states derived
from this combination. Furthermore, a linear
extrapolation to convergence of the vibrational
levels of the normal state gives 46,943 cm—', and
such a procedure usually leads to values which
are 20 to 30 percent too high. Therefore we
conclude that 4.93 volts is a reliable value for the
heat of dissociation.

During the present investigation, there ap-
peared a report of work on the AsO bands by
Shawhan and Morgan. ~ Their analysis of system
A is different from ours, in that the electronic
doubling is given as 644 cm ', and the vibration
frequency in the upper state 372 cm '. In view of
the good agreement we find for the doubling in
the two systems, and of the fact that 372 cm ' is

almost impossibly low in comparison to 966 for
the normal state, there seems no doubt as to the
correctness of our values for this system. These
authors have apparently mistaken the vibration
frequency in the upper state for the electronic
difference, Their analysis of system 8 is in
essential agreement with ours, and extends it to
higher vibrational states in the upper state by
the equation G' = 1098(v'+-', ) —6(s'+-,')'. As-

suming the correctness of these constants, we
calculate the origins of system 8 to be 39,862.0
and 38,838.3 cm '. In their preliminary report,
Shawhan and Morgan give no statement about
the specific bands with v') 0 which are observed,
nor about their intensities. It is stated, however,
that the bands were excited in the arc and the
Game in emission, and also observed in absorption
in the fIame. If our conclusions are correct as to

ph R 4$ 199A
~ the predissociation, it seems probable that these7 E. N. Shawhan and F. Morgan, Phys. Rev. 47', 199A

(1935) (St. Louis Meeting, 1934). additional bands were observed in absorption.
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A new type of expansion of i(f)t,'~"i2 jr» is developed.
Here i is a vector function of the spherical coordinates
denoted by 1 and r» is the distance between two points:
denoted by 1 and, 2. This expansion is used in the solution
of Maxwell's equations and a simple general expression is

found for the energy radiated from a known current
distribution. A brief application to Dirac's theory of
radiation is given. An expansion for i(1)jr» is developed
which can be used to 6nd the vector potential due to a
steady current distribution.

HE well-known expansion of e""»/re~in terms
of spherical harmonics and half-order

Bessel functions provides a method of evaluating
J'(s""»/r»)p(1)dry, which is a solution of the
inhomogenous wave equation. But the same
method is not very satisfactory for the solution
of the corresponding vector wave equation
because in any coordinates except Cartesian it
is rather diAicult to keep the various components
separate. In the present paper a new type of
expansion is found which avoids this difhculty.

Guided somewhat by the expansion for the
scalar case we anticipate an expansion of the
form
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i(1)s'"""/rg2 ——Pap(Ag'(2)A)(1) i(1). r2&rg (i)
Here vectors are in bold faced type, and the A' s
are solutions of the vector wave equation; A' is
to bear the same relation to A as the Hankel
function does to the Bessel function in the scalar
case.

Now from each solution of the scalar wave
equation we can construct three and only three
independent solutions of the vector wave equa-
tion; for example in Cartesian coordinates we
have only to multiply the scalar function by
each of the three unit vectors. There are, of
course, an infinite number of possible sets of
functions but the ones most suited for present
purposes are constructed as follows. Let P be a
solution of the scalar wave equation, say
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~ (2l+l)(l —m)!q & 1
JL+L(kr)PL" (cos 8)eL"&.

&Sl(l+1)(l+m) !) (kr) &

Then we use the three vector functions' defined by

ALL = (l(l+1))iV'&L A3L„=&V X(r~L )= —(1/X)VXA„; A„,.= —(1/X)V XA„. (3)

A' is obtained by replacing the J(kr) in g by II"&(kr). If k, l and m were to range through al! al!owed
values the resulting set of functions would be complete but here k is always considered as constant.

To determine the coeKcients a~~ we first investigate the normalizing integrals and the orthogo-
nality of our functions. Integrating between spheres of radius R~ and R2 we find

(2l+1) Ai' AL'dr= (lIL 1+(1+1)IL+1),

(2l+1) "A,' A3'dr= ((l+1)IL 1+1IL+1),

)
A3'. A3'dr= IL,

)
Ai' A3'd7=0,

(4)

Rg —Ri
X(Z3 —ZL) yyl.

2

(2l+1) I Ai'. A3'dr= (l(l+1))&(IL i —IL+1),

mk' (&)
'2

IL I
—— HL+;(l3r) r'dr

2 L3, (kr)'

We note that the functions are not quite or-

thogonal. As things work out it seems much

simpler not to orthogonalize. Some of these

results are obtained most easily by using the

polar coordinate components of the A' s, others

by using Cartesian components, The polar

components are quite simple expressions but the
Cartesian components are a little hard to write

down and since their use is quite essential, both

here and in the integrals to follow, it is worth

while to indicate that they may be obtained
'
rather directly in the following way. It is readily

seen that the s' components of A&, A2, A3 may be

obtained by operating on $ with the following

(l(l+ 1))'*~/».

( 8 8$ ( 8 8 8) 8
( 2+.—+~—+~ i

—+~"'
& ax ayi & ax ay as& »

the other components are obtained similarly
after cyclic permutations of x, y, s in the oper-
ators above. If now we write our solutions of
the sca!ar wave equation f in Whittaker's
general form, 2 the operations are readily carried
out and on putting PL (cos 33) sin 33e' ' for
Whittaker's f(N, 3L) we find the various Cartesian
components expressed as functions of polar
coordinates. The components of A' may be
found similarly or by substituting IX&') for J in

the components of A.
We next evaluate the following integrals

&2 ~ikr1g

Ai'(2)
Bj r1'2

4m'i (l(l+1))L'

dT3 (1IL 1+(l+1—)Ii+1)A1(1)+ (IL—1 IL+L)A3(1)
21+1 2l+1

gskr12

A3'(2)
Bj rig

d r3= (47r3/k) ILA3(1),

sL""L' 43.3 (l(l+1))~

A3'(2) dr3= (IL-i—Ii+1)Ai(1)+ ((l+1)IL 1+iIL+1)A3(1) .
k 21+1 21+1

~ The 6rst two of these are essentially functions used for 8'ave Motioe.
diferent purposes by Mie and others. See G. Mie, Ann. d. ' Whittaker and Watson, Moderg A.nalysjs, 4th ed. ,

Physik 25, 377 (1908); H. Bateman, Zlectricgl end OPS'ca) Par. 18. 6i.
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The above are obtained by using Cartesian
components and the expansion of e'""»/r» in
spherica1 coordinates. We may remark that
equations almost identical with (4) and (6) are
obtained if A' and A are interchanged.

Considering the left-hand side of Eq. (1) as a
function of the variables 2 (with rz&r, ) it must
be possible to expand it in a series of A' s', doing
this we find the expansion coefficients to be
(4zrz/k)A(1) .i(1). Thus we have

f(1)&*' »/&» —(4~z/k) QA. '(2)A. (1) i(1).

r,)r, (7)

Here s includes all the numbers needed to
characterize an A.

SOLUTIONS OF MAXWELL S EQUATIONS AND AN

EXPRESSION FOR THE RADIATION FROM A

GIVEN CURRENT DISTRIBUTION

The principal use of this expansion seems to
be in connection with Maxwell's equations.
Suppose that the charge and current are confined
to a finite region, say a sphere of radius R, and
that they vary sinusoidally in time so that they
can be written i(xys)e ' ', p(xys)e ' '. Then all
the other quantities will also have a common
factor e '"', tkis we will remove. Then we easily
find

A= (i/(v) Pa.A, ',

E= (—1/c)g(azt Azi '+aalu Asi~'),

8= (—z/c) Q(az)~Az(„'+a„„Az)„'),

(We use Heaviside-Lorentz units. ) The scalar
potential is not written since if i and hence A
are known, everything else may be found without
knowledge of p or the scalar potential —the
converse is not true, of course.

It should be noted that in any practical case,
such for example as the computation of the field
due to a radio antenna, the series all converge
very rapidly because near the origin the A' s
vanish like higher and higher powers of r as l
increases. Thus Aai is finite at the origin, A32

is proportional to r near r =0, etc.

From these results it is possible to find a
particularly simple expression for the total
energy radiated per unit time by a given current
distribution. The result is

Jt S.da'= (1/2C)Z(lazt-I '+
I az~-I ') (9)

The form of this last expression suggests that
its scope can be extended to include coordinate
systems other than spherical. Thus if we consider
a complete orthogonal set of vector functions
which includes among others Ai, A2 and A3 a
measure of the radiation from a current distribu-
tion is the square of the "norm on the subspace"
spanned by A2 and A3. To go further we must
decide what it is that distinguishes A2 and A3
from other functions, for instance A&. One
essential distinction is that A2 and A3 have zero
divergence, while Ai has zero curl; the reason
this is important is that a current distribution
with zero curl cannot radiate and a function
with zero curl will have no component in the
subspace spanned by the functions with zero
divergence. ' The other important characteristic
is of course that A2 and A3 are solutions of a
wave equation with the proper value of k.
Suppose now we know a complete set of solutions
of the scalar wave equation in some coordinates
other than spherical; from each of these we can
construct three solutions of the vector wave
equation, one lamellar and two solenoidal. All
the latter functions could of course be obtained
(assuming them to be orthogonal inside a
sphere) by a rotation of the subspace spanned
by A2, A3', but the norm on the subspace is
invariant under this rotation so that the total
radiation can be computed exactly as before by
summing the squares of the coefficients of the
expansion of i.

The only restriction on the functions used
that has not been mentioned is that it must be
possible to normalize the functions in the same
way the A's are normalized, i.e., so that the
average value of IA. I' over the surface of a
sphere becomes asymptotic to (sin (kr+8)/r)z as

3 Provided the function vanishes properly at infinity,
The lamellar function obtained by dividing a current
which is zero outside a finite region into lamellar and
solenoidal parts satisfies this requirement.
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rm~. Unless some rational way can be found
to normalize the functions resulting from other
choices of coordinates this seems to limit the
method outlined above to spherical polar, prolate
spheroidal, oblate spheroidal, confocal ellipsoidal
coordinates, and those designated by Eisenhart4
as Type VI.

TREATMENT OF THE QUANTUM-MECHANICAL

RADIATION PROBLEM

The functions A2, A3 may be made the basis
of a rather neat treatment of Dirac's' theory of
the radiation from an atom. Thus consider a
large spherical hohlraum of radius R and Iet
this be filled with radiation describable by a
vector potential A(V' A = 0). This A can be
expanded in a series in which only functions of
the type A~ and A3 will appear.

A= Qu, A, . (10)

(v+1)R 1
Aa' ldT

2huco. , c " (12)

For the reverse transition (n+1) is replaced by
n. The radius of the hohlraum R enters because
there are 2Rdv/c radiation components in dv of

4 L. P. Eisenhart, Annals of Math. 3S, 284 (1934); Phys.
Rev. 45, 427 (1934).

" P. A. M. Dirac, Proc. Roy. Soc. A114, 243 (1927).

The u, are functions of the time only and we

may treat them as coordinates, since if we know
them we know the radiation field. Introducing
momenta conjugate to these coordinates, and
changing units for convenience, we can write
the energy of the field in Hamiltonian form

W= g(-,'p, '+27r'v, 'g, '); q, = n, *'u, ;
(11)

P,= (1/n, *)(BW/Bu, ); n, = (1/c')(R/2).

If now there is an atom in the hohlraum and we

know the energy of interaction between it and
the field, we can treat this interaction as a
perturbation and so find the probability that
the atom will change (say) from state two to
state one and, a radiation field oscillator of type
s will simultaneously change from the nth to the
(n+1)st state. Taking the interaction energy to
be (1/c)A ie'~'"' the result is

type s and one must sum over these. Remember-
ing that n= p„c'/Smhv' we see that we obtain
both the A and B coefficients of Einstein. Thus

2

A„2,——(c/hv) (1/c) )A, id7 (13)

' For examples of actual cases where the magnetic dipole
term is important see E. U. Condon, Astrophys. J. 79, 217
(1934).

'A. Rubinowicz, Zeits. f. Physik S3, 267 (1929).
8 H. C. Brinkman, Dissertation, Amsterdam.
9 H. Honl, Zeits. f. Physik 31, 340 (1925)."R.de L. Kronig and S. Goudsmit, Naturwiss. 13, 90

(1925).

If for convenience we put the atom at the
origin of coordinates the point of the present
method of calculation is plain; the dipole,
quadrupole, etc. , types of radiation are com-
pletely and naturally separated. Thus transitions
involving radiation of type A» are generally
much stronger than those associated with Asp

or A2~ because the former is finite at the origin
whereas the latter two vanish like r. We notice
that the designations dipole, quadrupole, etc. ,
are not sufficient to describe the various types
of radiation, for example, radiation of type A~~

is in general weak compared with the dipole
type A» but has almost the same symmetry
properties. To get a complete description then
radiation of the third type with /= 1, 2 ~ will
be called electric dipole, quadrupole, etc. , and
radiation of the second. general type will be
designated. as magnetic dipole, etc.

Without more definite knowledge of the
current distribution it cannot be said whether
the electric quadrupole or the magnetic dipole
will be stronger; one easily can think of cases
where either one but not the other is zero. '

The relative intensities of the various Zeeman
components can be computed by the present
method but the results will not be given as they
have already been obtained as far as the quad-
rupole terms. ' ' These formulas can be derived
from quite general principles by group theory or
by the methods erst used for the dipole case by
Honl' and Kronig and Goudsmit. "In connection
with the latter we may mention that for given l
a sum of A, can be built up which gives radiation
that is unpolarized and with intensity inde-

pendent of angle.
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It is of interest to note that exactly the sanle

results for the Einstein A coefficients can be

obtained by computing in a classical way the

radiation from an atom with a given current

distribution. By Eq. (9) it is seen that the

Einstein A is that given by Eq. (13) except for

a factor of two that appears in such cases as

this "

There is an interesting crossing over of the

functions in the integrals that follow

('s2 A, '(2)

J dry= UiAg(1),
f gQ

f'"2 A, '(2)
dry= UuA2(1),

ry2

THE VECTOR POTENTIAL IN THE STEADY

CURRENT CASE
with

f &2 A, '(2)
dr, = U,A, (1),

r~2
f]QR]

A =r~-[1/(21+3) j~("~),
A~ ——V' XAi= V X (r)),

A3=V'XA2= V'V'Ax,

(l —m) ~

rlP msimr

l(l+1) (l+nz) !

(14)

The functions A' are the same except that the r'

in ( is replaced by r ' ' and the —1/(2l+3) in

the definition of Ai is changed to +1/(2l —1).
In the limit kmo and taking no account of
constant factors

A2~A2, AimA~, A~~A~ and A3 —(i+1)AimAi.
"J. Frenkel, Elementary Theory of 8'ave Mechanzcs,

Oxford, p. 134.

It is of some interest to investigate the

expansion of i(1)/ri2 even though use of the

expansion does not seem to lead to any results

not previously known, with the possible excep-

tion of a formula similar to Eq. (9) for the
inductance of a coil. We might start by letting k

approach zero in the expressions above but this

is likely to be rather awkward as the A's all

approach zero while the A"s become infinite.

All told it seems best to start anew in the same

way as before by inventing three vector functions

satisfying a vector Laplace equations and de-

veloping an expansion of i(1)/rig in terms of

these. Such functions are

Ui= [4m/(2l —1)'(2l—3)(l+1)3(1/R&" '—1/R&" ')

Ug ——[4~/(21 —1)(2l+1)g(1/RP' —' —1/Rg" ')

Ua= (4ml/21+1) (1/Ri2'+' —1/Rg"+').

Also

~

~~ ~~

Bg

A A d7=0 (if')
Bf

pR2
A A d7=U;,

B1

and

i(1)/rim ——gA. '(2)A, (1) i(1). ri(r2
If the vector potential and the magnetic

field due to a given steady current are deter-
mined by means of this expansion, it will be
found that 8 is apparently a linear combination
of A2 and A3. Actually, however, the terms in

A2 vanish because their coefficients depend on
integrals of the form 1'Aa idr and these are zero
because 7' i= —(1/c) p=0. We note that the
electric field due to a stationary charge distribu-
tion can also be expressed by using A3 only.
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