DECEMBER 1, 1934

PHYSICAL REVIEW

VOLUME 46

Absorption Spectra of the Samarium Ion in Solids. V. The Absorption Spectrum and
Energy Levels of the Sm*++ Ion as It Exists in Monoclinic
Crystals of Sm,(SO,);-8H,0

Frank H. SPEDDING AND RICHARD S. BEAR, Chemical Laboratory, University of California
(Received October 11, 1934)

The absorption spectrum and energy levels indicated therein for the samarium ion in crystal-
line monoclinic Smy(SO4)s-8H,0 are shown to be similar to those of SmCls-6H,0, which is also
a monoclinic salt. Absorption lines of the sulfate at temperatures between 20°K and room
temperature are used to prove the existence of several low-lying levels separated from the
basic one by 160, 188 and 225 cm™. These levels are of particular interest in view of heat

capacity and magnetic studies of this salt.

N previous papers of this series' we have de-
scribed the absorption spectra of the sama-
rium ion for monoclinic crystals of SmCl;- 6H.O
and for hexagonal ones of Sm(BrO:);- 9H0,
Sm(C,H;SO,)s- 9H,O and Sml;- 9H,0. The chlo-
ride spectrum was found to be distinctly different
from those of the hexagonal group in that its
individual multiplets were spread out somewhat
more and frequently contained more lines. These
results were in agreement with those of Spedding
and Nutting? for the corresponding gadolinium
compounds, i.e., the extension within multiplets
and the number of components of each of the
multiplets of the rare earth ions seem to depend
more on the positions of surrounding atoms or
ions in the crystal and less on the chemical
composition of the compound, except insofar as
the composition affects the crystal structure.
This paper describes the spectrum of a second
monoclinic salt, Sme(SO,)3- 8H,O. The magnetic
susceptibility® and heat capacity* of this solid
have already been measured over a wide temper-
ature range, and a spectroscopic determination
of the energy levels will be useful in attempting
to understand the results of these other investi-
gations. Here we present only the experimental
facts. In a later paper we shall introduce a
discussion of the relation between the physical
and chemical properties of samarium salts and
their energy levels.

!Spedding and Bear, Phys. Rev. 42, 58, 76 (1932);
44, 287 (1933); 46, 308 (1934).

2 Spedding and Nutting, Phys. Rev. 38, 2294 (1931):
J. Am. Chem. Soc. 55, 496 (1933).

3 Freed, J. Am. Chem. Soc. 52, 2702 (1930).

4 Ahlberg and Freed, Phys. Rev. 39, 540 (1932).

EXPERIMENTAL PART

Because of the difficulty of obtaining the
moderately soluble sulfate as large single crystals,
conglomerate absorption has been used exclu-
sively. However, the constituent crystals were
of sufficient size to escape the description
“powdered’” and were of approximately the same
individual dimensions as the material used in
preparing the former conglomerates. Groth?®
states that the crystals are monoclinic in
external symmetry, with axial ratios a :b :c
=3.0030 : 1 :2.0022, 3=118° 16".

Two different preparations (however, from
the same ultimate source) gave identical results.
One was secured by recrystallization of sulfate
of high degree of purity as originally supplied by
the Wellsbach Company ; the other was obtained
from the same material after precipitation of the
samarium as the oxalate, ignition to the oxide,
solution in HCI, evaporation and reconversion
to the sulfate by the method described by
Freed* (double decomposition between HsSO,
and the chloride in alcoholic solution and
digestion of the solid sulfate with water).
Crystals finally used were grown by slow
evaporation of saturated solutions.

Even more than in the chloride investigation
was it difficult to choose the proper thickness of
absorbing layer. Because of the magnitude of
the separation between the basic state and the
excited lower levels, rather thick conglomerates
are required to bring out the high-temperature
lines, i.e. those increasing in intensity as the
temperature is raised. The extreme thickness

5 Groth, Crystallography, Vol. 2, p. 458.
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in turn offers trouble with increased complexity
of spectra and makes longer exposures necessary.
The sulfate has the additional inconvenience of
showing rather diffuse lines. In obtaining the
photographs with the sulfate, however, the same
thicknesses, from 5 to 10 mm, have been found
most satisfactory.

Investigation of only the visible region of the
spectrum has been done. The equipment de-
scribed before was used to obtain the photo-
graphs at low temperatures.

REsuLTS

In Fig. 1 are shown the spectra of the sulfate
as transmitted at 20°, 78°, 169° and 298°K by a
conglomerate of 5 mm thickness. In addition is
shown a 10 mm layer photograph as it appears
at 78°. Table I gives measurements and roughly
estimated intensities of the absorption lines and
bands observed at those temperatures.

Close examination of the photographs at low
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temperatures of the thin- and thick-layer spectra
shows a marked tendency for the thicker layer
to produce doublets from lines which are ap-
parently single in the thin-layer case. In some
instances the lines can be observed to be double
for both thin and thick layers and then the
effect is noticed as a widening of the separation
between the two peaks of intensity.

This behavior suggests that the double lines
themselves are not completely resolved. If they
were composed of very fine lines of varying
intensities, with the strongest located on the
inner side (with respect to the doublet) of each
component, one would understand how the
widening occurred. Increase in layer thickness
would enlarge the apparent separation of the
doublet components by increasing the number
of fine lines that are able to absorb strongly the
light. The fine unresolved lines composing the
doublet components could possibly be results of
Stark splitting of the resolvable lines by the
crystal field, but one is more inclined to suppose

E:

Fic. 1. Conglomerate absorption of Smy(SO4)s-8H,0. The substances at whose boiling points the spectra were photo-
graphed are indicated on the right, the corresponding temperatures on the left. / is placed above regions wherein the
most prominent high-temperature lines are located.
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SPECTRA OF Sm ION IN SOLIDS

that they are due to magnetic interactions
between samarium ions because of the extreme
smallness of the effect. This phenomenon is not
entirely absent in the chloride spectrum but it
is interesting that this peculiarity should be
most pronounced with the sulfate, whose spec-
trum in other ways seems to be that resulting
from a crystalline field which is even stronger
than that of the chloride.

It seems reasonable to assume that the easily
distinguishable lines composing a multiplet group
are the ones that reflect the separations between
levels arising from electric splitting of a highly
excited level which would be single and de-
generate in the absence of the crystal field.
Smaller separations between lines within a
multiplet may indicate small electric separations
(of the order of 10 cm™' or less) of the well-
shielded basic ¢Hj,, level, while the variability
in apparent. position of individual lines indicates
that a further, possibly magnetic, perturbation
affects the levels. This division of the experi-
mentally observed effects cannot be proved at
present, however, since both electric and mag-
netic phenomena would produce qualitatively
identical results, i.e., with stronger or less homo-
geneous fields the magnitudes of both types of
splitting would be greater. If the above explana-
tion of the behavior of the lines is correct, one
would expect that greater spectroscopic resolu-
tion, and perhaps lower temperatures, will reveal
important facts concerning the nature of energy
levels in solids. The longer exposures required
for this procedure (they are already from 30 to
60 hours in length) would raise extreme diffi-
culties at 20°K or lower.

In spite of the trouble in locating the exact
position of the individual components of the
doublets, it has been found possible to determine
pretty definitely the situation of the lower levels
that are most important spectroscopically. This
has been done by working with centers of
doublets and diffuse lines or bands. The results
for the most clear multiplets (the same ones
previously diagrammed for the chloride) are
given in Fig. 2, though many of the less im-
portant faint low-temperature lines of these
regions are not included. All of the most intense
high-temperature lines in these multiplets can be
explained by the use of the levels 0, 160, 188
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and 225 cm™. Evidence from other more complex
portions of the spectrum supports these values
in general. Again both constant energy separations
and proper temperature behavior of intensity have
been made the requirements for the location of
the lines in the diagram.

There is some evidence at higher temperatures
for the existence of another level at approxi-
mately 245 cm™! from the basic one. This is
most apparent at about 23,600 to 23,800 cm™1,
where no other simple explanation of the red-
most ends of the bands observed at ethylene
and room temperatures seems possible. The
faint bands, which extend 300 and more cm™
from the nearest low-temperature line in the
chloride spectrum and which probably require
levels of corresponding separations, are not
visible in ‘the sulfate spectrum. This may be
related to the general displacement of the sulfate
levels to higher energy values, a shift perhaps
just able to eliminate possibility of observing
transitions from these levels.

In the foregoing consideration it is assumed
that the basic levels of the ions of the two salts
are similar (°Hj/;) and that the 145, 160, 204
and 217 levels of the chloride are related,
respectively, to the 160, 188, 225 and 245 ones
of the sulfate. In this connection it is interesting
that though the chloride lines arising from the
levels 160 and 217 seem to be most conspicuous,
in the sulfate the 160 and 225 lines are most
noticeable. This suggests a reversal of the rela-
tion just given within the doublets of levels.

The multiplet on the long wave-length end of
the spectrum at 17,000 to 17,300 cm™ is one
that offers some rather puzzling features. In
the chloride, ethylsulfate and bromate spectra
nothing of certainty could be gathered from it,
hence it could not be used to determine the
energy levels. The corresponding sulfate lines,
however, do seem to indicate the presence of
another level by the existence of two high-
temperature satellites 78 cm™ from their re-
spective low-temperature companions. It is not
justifiable to base the existence of a level, whose
Boltzmann population should allow it to be
made more evident elsewhere in the spectrum,
upon such isolated cases. Though the evidence
at hand is inconclusive, it would not be surprising
to have such a level be demonstrated eventually.
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F1G. 2. Energy levels of Smy(SO4)s:8H:0. Shaded areas represent bands. Figures in parentheses denote
band edges measured at ethylene temperature. All other figures are from plates taken at 78°K. Levels
which are actually probably double are indicated by ‘‘2.”

It may be anticipated that the bromide spectrum
also has a possible level at 58 cm™, evidence
for which is based on similar scanty evidence in
this region, beside the proper ‘‘monoclinic”
levels somewhat higher.

Table II shows how well the lines agree with
the level diagram assumed. In many other places
on the plates the existence of the new lines
brought into evidence at low temperatures by
the lessened thermal agitation of the crystal and
the higher population in the basic state makes
it impossible to pick out satisfactorily the
location of the high-temperature satellites. How-
ever, at ethylene temperature (169°K), when the
fainter low-temperature lines have been ‘“washed
out,” one is often able to locate additional
confirmation of the postulated levels.

The most important relations between the
sulfate and chloride spectra in other types of
behavior are the following. The sulfate shows
practically the same amount of displacement in
the positions of lines upon changing the temper-
ature from 298° to 20°K. At any given tempera-

ture the sulfate multiplets are shifted to shorter
wave-lengths from the corresponding ones in the
chloride spectrum, though only by about 10 to
20 cm™. On the other hand it will be recalled
that the bromate acted in a different manner,
manifesting slightly greater shifts with temper-
ature change and possessing multiplets located
50 to 100 cm~! toward longer wave-lengths than

TaBLE 1. Prominent low-temperature lines and their high-
temperature satellites (78°K).

L.-t. line  Satellite 4 Satellite B Satellite C
v(em™) p(em™) Avgy  v(em™) Avg  v(cm™) Avg
17891 17732 159 17702 189 17667 224
17919 17758 161 17732 187 17692 227
18949 18787 162 18762 187 18722 227
20041 19882 159 Too diffuse 19815 226
20056 19895 161 19868 188 19831 225
20130 19968 163 19942 188
20522 20361 161
20621 20456 165
22190 22030 160 21966 224
22239 22074 163 22052 187 22014 225
22255 22094 161
23975 23814 161 23789 186 23750 225




ELECTRON SCATTERING IN POTASSIUM

those of the chloride. The ethylsulfate of sa-
marium resembled the bromate in these respects.

CONCLUSIONS

Again, this time in the sulfate spectrum, is
proved the existence of more than three lower
levels which are of importance in determining
the absorption spectrum of the samarium ion.
It seems impossible that crystal splitting of the
basic ®Hj, level could account for them all,
since only three new levels (J+3%) can be
expected when electric perturbations remove
the degeneracy of such a state. A possible
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explanation of these levels has been advanced
by one of us.®

Magnetic interactions between samarium ions
could increase the number of levels resulting
from the $Hj,» one, but it is unlikely that these
could be of sufficient magnitude since the
magnetic moment of a samarium ion is so small.
We have indicated that magnetic effects are
probably responsible for the diffuseness and
variability in appearance of certain of the
absorption lines, an effect so small as to be
unresolvable on the present plates.

¢ Spedding, J. Am. Chem. Soc. 54, 2593 (1932).
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Elastic Electron Scattering in Potassium

J. HowAarRD MCMILLEN,* Palmer Physical Laboratory, Princeton, New Jersey
(Reeeived July 2, 1934)

A method was developed for the measurement of slow
electron scattering in vapors. Angular distribution curves
from 25° to 160° were obtained for 5, 10, 15, 25, 50, 75,
100 and 150 volt electrons elastically scattered by potas-
sium atoms. All curves contained a large peak near 100°.
The scattering curves fell off rapidly for angles up to about
60° and rose rapidly for angles greater than about 130°.
The position of the peak was found to shift to larger and
then smaller angles as the energy of the colliding electrons

INTRODUCTION

HE angular distribution curves for electrons
scattered elastically by gaseous atoms
generally contain a set of maxima and minima.
These are referred to as diffraction patterns and
are attributed to the diffraction of the associated
de Broglie waves in their passage through the
field of the atom.!

If exchange effects are neglected the nature of
these patterns is seen to depend almost entirely
upon the electrons’ distance of closest approach
as taken from the classical theory and the
magnitude of the field at that distance. Con-
siderable progress has been made in our under-

* National Research Fellow.
1 For general discussion of theory, see Mott and Massey,
Theory of Atomic Collisions, Oxford Press (1933).

was decreased. Henneberg's calculations which employ the
Thomas-Fermi atomic field were found to give scattering
curves whose general shapes agree quite well with the
experimental curves. Best agreement occurred for the 5
and 50 volt electrons. When the potassium and argon
experimental curves were compared it was found that the
curves were quite similar for electron energies of 50 volts
or more. For slower electrons the curves became more
dissimilar.

standing of the relations between these factors
by the comparison of diffraction patterns for
various gases and for various energies of the
scattered electrons.

So far scattering measurements have been
made on several important groups of atoms,
namely, the inert gases,” 3 the halogens,* and
three elements from the third column of the
periodic table, zinc,? cadmium,® and mercury.” 8
The longest unbroken sequence of increasing

2 F. L. Arnot, Proc. Roy. Soc. A133, 615 (1931).
(1;3{-21;1ghes, McMillen and Webb, Phys. Rev. 41, 154

4¢F. L. Arnot, Proc. Roy. Soc. A144, 360 (1934).

5E. C. Childs and H. S. W. Massey, Proc. Roy. Soc.
A141, 473 (1933).

6 E. C. Childs and H. S. W. Massey, Proc. Roy. Soc.
A142, 509 (1933).

7F. L. Arnot, Proc. Roy. Soc. A140, 334 (1933).
( ;E) B. Jordan and R. B. Brode, Phys. Rev. 43, 112

1933).
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FiG. 1. Conglomerate absorption of Sm:(SO,);-8H20. The substances at whose boiling points the spectra were photo-
graphed are indicated on the right, the corresponding temperatures on the left. I is placed above regions wherein the
most prominent high-temperature lines are located.




