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Transport Phenomena in Einstein-Bose and Fermi-Dirac Gases. II
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In this paper the general theory of transport phenomena
in simple gases is concluded, and numerical values of the
gas coefficients for heat conductivity and viscosity are
obtained as a function of the temperature and density
for the particular case of molecules acting as rigid elastic
spheres. In the Introduction will be found a qualitative
discussion of the principal results obtained and an inter-
pretation of these results according to elementary con-
siderations. In Section 1 the method of solution of the
integral equations with which the formal theory of Part I
was concluded is given together with the resulting general
equations for the heat conductivity and viscosity coefB-
cients. Since the integral equations can be solved only
by a method of successive approximations, the expressions
for the gas coefficients are in the form of infinite series
the rapidity of convergence of which depends on a suitable

choice of a complete set of auxiliary functions. In Section
2 all of the integrals appearing in the first two terms of
the infinite series are evaluated. That only two terms are
required is due to the fact that one is able to make an
excellent choice of functions to represent the auxiliary set.
In the evaluation of these integrals restriction is made in the
application of the theory to small values of the degeneracy
parameter A, since only terms in the zeroth and first
power of A are retained. This restriction is only slightly
greater than that imposed by the fundamental postulates
of the general theory which restrict its applicability to
moderately rare gases. In Section 3 the final equations
for the gas coefficients are applied to gases consisting of
molecules which interact quantum-mechanically as rigid
elastic spheres of diameters and masses associated with the
gases helium and hydrogen.

INTRQDUcTIGN

T has been shown in Part I' that the method
- - of Lorentz, Hilbert and Enskog for the treat-
ment of transport phenomena can be extended
to take into account the modi6cations introduced
by the quantum theory. In this paper the explicit
solution of the integral equations will be ob-
tained, and the general formulae for viscosity
and heat conductivity will be developed. Nu-
merical results for the case of the elastic sphere
model will then be given. A,s already mentioned
in Part I the quantum theory introduces two
modi6cations into the classical kinetic theory of
gases.

(a) The collision between two gas molecules
which is the elementary process in all transport
phenomena must be treated according to the
quantum theory of collisions. Deviations from
the classical theory may be expected, therefore,
if the de Broglie wave-length corresponding to
the mean temperature motion: X=A/(nzkT)& is
comparable to or larger than the diameter s of
the molecule. Just as in the classical treatment,
the mean free path / is inversely proportional to
the density p, but the proportionality factor is
now dependent on the temperature even for the

case of elastic spheres. In fact / 1/pf(X/s),
where for small values of X/s, f approaches the
classical value. Thus, the temperature depend-
ence of the gas coefficients will be different than
in the classical treatment. For light gases like
H2 and He, X/s is already as large as 0.1 at room
temperatures, so that considerable deviations
even at high temperatures may be expected.
Massey and Mohr' have recently taken this
effect into account by introducing the quantum
theoretically determined differential cross-sec-
tional area into the classical expressions of
Chapman for the gas coefhcients. The complete
justification of this procedure for temperatures
which are not too low will be given in this paper.

(b) For temperatures which are very low the
second modi6cation becomes important. This
effect is a consequence of the change in the
Stosz-zahlansatz, which is equivalent to a change
in the equilibrium distribution function from
the Maxwell-Boltzmann to the Einstein-Bose
or Fermi-Dirac distribution law. Due to this
modi6cation the mean free path l, even for an
ideal gas, will be no longer strictly inversely
proportional to the density. Instead l 1/p(1
+apX'), where u is a numerical factor, the sign
of which depends on the statistics. Thus one
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observes that the deviation from the inverse
proportionality of I, and p depends on the
magnitude of X/d where d is the mean distance
between the molecules. In contrast with the first
quantum effect the second will be smail at
ordinary temperatures, and will become im-

portant only at very low temperatures or very
high densities. The ordinary reasoning, therefore,
by which one shows in the classical kinetic
theory the independence of the gas coefficients
on the density is no longer strictly valid. A,t low
temperatures the viscosity and heat conductivity
coefficients become density dependent and the
direction of the dependence is different for the
two statistics.

That the latter effect depends on the magni-
tude of the parameter X/d and therefore on the
density as well as on the temperature requires
that one consider also other possible contribu-
tions to the density dependence. Such an addi-
tional effect is the modification in the Stosz-
zahlansatz due to the extension of the molecules,
a modification which again is equivalent to a
departure from the strict inverse proportionality
in the classical theory of / and p. Thus, even
when considered classically, there will be a
small density correction to the gas coefficients
which becomes important for sufficiently high
densities. In fact, one can write for the case of
elastic spheres l 1/p(1+Pps'), where P is a
numerical factor, and s is the diameter of the
molecule. This correction, which has been care-
fully estimated by Enskog, 3 will be used as a
criterion for the estimation of the importance of
the rare gas density'correction of the quantum
theory, and as a criterion, furthermore, for an
estimate of the possibility of an experimental
test of the statistics. Since the magnitude of the
quantum correction depends on the parameter
) /d, and the correction due to the extension of
the molecules depends on the parameter s/d
which is temperature independent in the case
of elastic spheres, there will exist a temperature
sufficientjy low for which the latter is negligible
in comparison with the former at any density.

Applying the general formulae developed in
this paper to the rigid elastic sphere model, one
finds that only below about 15'A does the

3 Kungl. Svenska Vetenskapsakademien Handlungar.
03, 5 (1921).

quantum theoretical density correction, which,
depending oo )' varies as the inverse three-
halves power of the temperature, have a magni-
tude greater than the classical density correction
of the Enskog theory. In the case of helium,
for example, one can expect at temperatures
slightly greater than its critical temperature a
correction of about 2—,'percent in the viscosity
coe%cient per atmosphere of pressure compared
with the value of this coefficient in the limiting
case of zero density, whereas the classical density
correction due to the extension of the molecules
should be about 0.5 percent. Assuming the
Einstein-Bose statistics these corrections are of
opposite sign. In this case the possibility of an
experimental test of the statistics seems to be a
favorable one. It is less favorable in the case of
the heat conductivity coefficient for which the
classical corrections are larger and the quantum
corrections are smaller than for the viscosity
coefficient. It is less favorable, also, in the case
of other gases, hydrogen, for example, for which
the range of temperatures and densities which lie
well within the vapor phase are less suitable than
in the case of helium for a test of this kind.

(mkT)l 3
fl- y \ g 0 ~

L l1&
s2 2

(46)

where m is the mass of the molecule, s is a
quantity having the dimensions of length, or in
the case of elastic sphere molecules may be
taken as representing the molecular diameter,
and x; = $,x,(r) and ~;;= (P;f.; r'/38, ;)xq(r—) are
solutions of the inhomogeneous integral equa-
tions:

f(0)2
f r2

A'e "E 3 )

,-(34)

2. SoLUTIQN QF THE INTEGRAL EQUATIQNs

The formal theory of transport phenomena
has given the following expressions for the heat
conductivity and viscosity coefficients, x and g

3k (mkT)'2
K= —Lm, , ~;],

2m s 3
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P&:f&'(1+8f&')rrd&u=0 (&=1, 2, 5), (36)

f&, =m, m$&, m&2, mes and mr' being the five
solutions (spoken of henceforth as null solutions)
of the homogeneous equation: J(P) =0 where,
furthermore

I(F) =
~2+2g

da)i)tdQ yI(8y)

. (p+pi Fi piI). f&o&f &o&

X (1+of"(1+t&f, &") (32)

[F, G] = t d&o. GJ(F). (32a)

so determined that they fulfill the auxiliary
conditions:

[F, G]=[G, F],
[F, G+H] = [F, G]+[F, H],
[F, cG] =c[F, G], where c is independent of all

[ F, F]~0 variables of integration,

the integral [rr —or&"&, rr —rr&"&] can never be
negative. Should one succeed in minimizing it to
the value zero, the function ~(") for which this
condition exists becomes the sought for solution.
This result is a consequence of the fact that
x —m("' under this condition can be on)y a null
solution. It satisfies, however, the auxiliary
conditions since rr as well as or&"& (which is only
a linear combination of the fi& "&) separately
satisfy these conditions. A function satisfying
the auxiliary conditions, and which is itself a
null solution can only be zero. Consequently

(n)

The values of the constants c„ in the fqpction

For the remainder of the notation reference
should be made to Part I.4

Eqs. (34a and b) will be solved by the Enskog
method of successive approximations. ' If one
has a complete set of functions h'"' wbich fulfill

the following conditions:

(a) t P&,f&'&(1+()f&'&)h&"&d(v=0
k=|, 2, ~ ~ 5

r=1 2

(b) Linear independence,
(c) The integrals [h&"&, h&'] and [)&&'&, n.) have

finite definite values,

a function x(") may be constructed as a linear
combination of the functions h& "& (r = 1, 2, n),
and the n constants of x("' may be so determined
as to minimize the integral [rr —rr&"', rr —rr&"&].

According to the fourth of the properties of this
operator discussed in Part I

4The operator previously designated as I(F) is now
written J(P), and the primes attached to the operators
LF, Gj and which were used to distinguish them from
analogous operators which also appeared in the formal
theory are here omitted since no confusion can arise.
The differential cross-sectional area previously designated
by m(87) is now written as I(8p) to conform to the more
usual notation.' Dissertation, Uppsala, 1917, p. 43; Courant-Hilbert,
Methoden der Mothematischen Physik I, chapter 3.

6 That this operator has these properties becomes
immediately obvious from the fact that J'des GJ(Ii) is un-
changed if G is replaced by G1, —G', of G . One may show
also that the analogous operator

&&F, G$ =fF(t;)G(g;)dho ffF(o;)G(t.—)K(rr'o)doodoo'

rr&"&= P c,h&"&

r=l
(62)

are now determined by applying the condition
for an extreme of H&"& = [rr —rr&"& rr —~&"&). This
condition is

BH&"&/Bc„= —2 Ii&"&, or —P c,h&'& =0
s=l

or de6ning a„,=[&&"& )i&'&] and n, =[h&'& rr] the
set of equations determining the extreme of
II(") is ~

obtained from the homogeneous part of the integral
equation in its more usual form

I(&,) = or(P;) frr(g, ')K(r—r'o)doo'

into which form Eqs. (34a and b) may be put (Eq. (37),
Part I) has these properties in general if the kernel is
symmetrical and is positive definite with a first eigen
value greater than or equal to unity. The kernel of Eqs.
(34a and b) when the equations are written in the standard
form has these properties.' That the extreme of H(n) thus determined is actually
a minimum and not a maximum is shown by obtaining the
second differential quotients and developing H(n) for
values of cr slightly different than those determined by
Eq. (63) in a Taylor series. One obtains, since H(n) is a
quadratic function of the h(r)

g2H(n)
2 Lh(r) h(s) j H(n) —H0(n) +f~rcr h(r) ~rcr h(r) j

OcrBcs

where c,'=cr —cr0, the c„0 are the constants determined by
Eqs. (63), and H0(n) is the corresponding value of H(n).
According to the fourth property of the square bracket
operator the first variation of H(n) is positive. Further-
more, H(") is equal to H0(n) only when the c,' are zero,
since Z„c,'h(") cannot be a null solution consistently with
the requirement that the h(r) be linearly independent and
at the same time satisfy the auxiliary conditions.
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Q &a&ra (2r =0
s=l

[&r("&, 2r("&] is also bounded is proven from the
Sa relation

From Eqs. (62) and (63) the nth approxima-
tion function x(") then becomes

n
2r(~) = g (A (a)/A(a))k(a)

s=l

where A("& is the determinant ~~u;;~~ of n rows
and columns, and A, '") is the determinant A(")

with the sth column u;, replaced by o.;. In order
to make the character of the successive approxi-
mations of m(") to the true solution x apparent
in Eq. (64), this equation will be transformed so
that the difference between m(") and
appears only in the last (the nth) term of 2r("'.

Written in this manner Eq. (64) becomes

2r(~) —p [A (a)D (a&/(A(a —1)A(a))] (65)
s=l

where D, ') is the determinant A(' with the last
(the sth) row a„replaced by k(», or since the
elements a, ;are symmetrical, D,(') is the determi-
nant A(') with the last column a;, replaced by
h(t')

One can show now that the following relations
exist:

[k(r) D, (a)] =A (a) r=s

r(s , (66)

(a) D (r)] —A (a—1)A (a)

, (67)
=0 res

[2r D ('&]=A ,(*' (68)

From Eq. (66) A "& =a» is a positive quantity
since h(') is not a null solution. Similarly from
Eq. (67) using the result that A"))0, the fact
that D,(') cannot be a null solution because of
the linear independence of the h(" and the
existence for h(" of the auxiliary conditions, and
the fourth property of the operator [I", Ii], one
can show that A(' for each successive value of s
cannot be negative or zero. Consequently, each
term of [2r("), 2r("&] (Eq. 69) is positive. That

and that as a consequence

[2r(") &r("']=[&r &r("&] (69)

[A (a)2/A (a—1)A (a)] (70)
s=l

[&r —)r("& 2r —)r("&] 0
(71)

[2r 2r] —2[2r, 2r("&]+[&r("& 2r(")]~0

Thus [2r("), &r(")] is bounded provided Eqs. (34a
and b) have solutions such that the integral
[2r, 2r] iS finite. That [2r("), 2r(")) aCtually COn-

verges to this upper limit as n approaches
infinity may be proven in a manner analogous
to that used by Enskog in the classical case.
One may write then

(s)2

[)r, )r]=lim gn~ s=l A (s—1)A (s)

which, when introduced into Eq. (43) gives for
the heat conductivity coefficient

3k (rnkT)& 2 „A,('&'

K=
S2 3 s=l A (s—1)A (s)

(72)

The solution of Eq. (34b) is obtained in a
similar manner using functions 0(") satisfying
conditions analogous to those of h(") which
involve now the solutions ~;; instead of
Defining as before the quantities b„,= [k("&, k"]
and p„= [k'"', 2r], constructing the function 2r("&

and the integral II(") which is then minimized to
completely determine m("), one obtains finally
for the viscosity coeKcient from Eq. (46)

(rnkT) l 3 8,('&'

—Z
2 s=l g (s—1)g (s)

(73)

where 8(') and B,(') are determinants analogous
to A(') and A, (') defined as before, but with the
functions k("&(b„, and P,) instead of k("&(a„, and

a„).
We will now make a choice of the functions

k("& and k("&. The analysis of Part I (/8 and
note 4) has shown that the solutions of Eqs.
(34a and b) are of the form: 2r; = t,x,(r'),

=(P' —r'/3)x(, (r') These functions are ac-

and the result of Eq. (69) from which Eq. (71)
becomes

(s)2

[2r, )r] —g
s=1 A (s—1)A (s)
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cordingly chosen so as to be proportional to P;
and ($;2 —r'/3), respectively, and to depend
otherwise only on 7' in such a way that the m. (")

constructed from these functions represent power
series in v'. Using now further the fact that they
must satisfy the auxiliary conditions one obtains
as a suitable choice:

where

h(r) —
g r2r

I'(r+5/2) F„„»i

F(5/2) F»

k (r) —(t2 r2/3) 72r —2 b.

F
F(r+3/2)

3"+id'
(75)

(1/A) exp s —8

3. EVALUATION OF THE INTHGRALS

I»». . The functions &)., and &8,

Introducing the expression for h("' into the definition of a„, and making the substitutions:"

A'e "
gf (o)

27 O'T
p/nkT = Fyg/F, ~s,

one obtains
f~8/(& " m Pmy

dr = —m f(' r dr = ——I'~ —(F~~2
87 0 2 (2i

2~ p2r+7y
n,.= ri F(2r+3) /2

3A ( 2 ) 2r+5

F(2r+1) /2F3/2

Fi/2

But for A & 1, to which all future considerations will be restricted

8A (8A)' (8A) "-'
F=A1+ + +. +

2 p+l 3p+I np+'
+ ~ ~ ~

Accordingly, for 2&&1
27rr (2r+5 ) 8A 2r+

r( I
l+

3 0 2 ) 2 +')' 2r

5 5
+-(2" ' —1) (77)

Similarly, introducing the expression For k'"' into the definitions of P,

and for A((1

8&r (2r+ 5 q
f3 = f'I )F(~+»io

453 E. 2 )
8&r «2r+Sy 8A

~ =—~i I &+
45 ( 2 ) 2 +»

(79)

) 2. The functions a„, and b„,
These functions will be evaluated only for the case of 2&&1. They have been defined in Section 2

in the following manner:

1
a„,= [h("), h«)] = des, ~d(g Id&Q yI(8y)(h& "&+hi&"&—h&"&' —

hi&
"&')

4s'A' ~ J

X(h(o)+hi(e) h(e)' h((a)')f(o)fz(o)(l+gf(o)')(g+. gf, ( )') (o80)

with an analogous expression for b„using k("& and k«& for h("' and h&». It is convenient now to
introduce a transformation of variables from gr&» pig)f') to y7&88&)&e where y =.g(m/4kT)» as previously
defined; X =7(m/kT)», l being the actual velocity of motion of the center of gravity of the interacting

Transport Phenomena I, Eq. (60).
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rnolecules; 0 and b are the polar and azimuthal angles respectively describing the direction of the
vector /; and 0. and e are the polar and azimuthal angles respectively describing the direction of the
vector g with respect to the vector /. In collision the only variables of this system which undergo
alteration are 0. and e which after collision become n' and e', and then describe the direction of the
vector g with respect to the vector l. Introducing the considerations of the velocity pyramid, one
obtains for the function h(") in terms of the new variables

h&"& =2 " '[X cos 0 —p(cos a cos e —sin a sin t& cos c)](X'+y' —2yX cos a)",

h&'"& = 2 " &LX cos 0+ p(cos a cos 8 —sin a sin 0 cos e)](X'+p'+2yX cos a)"

(81)

(82)

plus terms which contribute nothing to the expression a„,. Similarly, for the function k(") one obtains

k'"' = 2 "L(cos' 0 ——,') (X'+ p' —2yX cos a)"+ (y' sin' t& sin' a cos' ~ —y' cos' t& sin' a

+2yX sin 0 cos t& sin a cos e+ p2 sin |& cos t& sin 2a cos e) (X'+ y2 —2yX cos a)" ~], (83)

k&&"& = 2 'L(cos' 0 —3) (X'+ y'+2yX cos a) "+(y' sin' |& sin' a cos' e —y' cos' 0 sin' a
—2pX sin |& cos t& sin a cos e —y' sin t& cos 0 sin 2a cos e) (X2+y2+2yX cos a) " '].

A,nalogous expressions exist for the primed functions in which u' and e' appear everywhere for a
and e. The differential product in the new variable becomes, furthermore

dmdmq=), y sin OdOd6 sin odadedyd). (85)

Before introducing the new variables into the distribution function f", this function is to be expanded
in ascending powers of A for values of A &1. One obtains finally after retaining only powers of A

up to and including the first:

f& &f0&& &(10+of")(1+ef&")=2'e '"'+&"L1+20Ae &'"'+"' {cosh(yXcosa)+cosh(pecos a') I]. (86)

The function a„, then becomes

(X) CO 2' 7r 2'
a„,=— e—()'+&')r') 2dyd) sin OdOdb sin ndnde. I(6y) sin 8d8dp

2S 0 ~ 0 0 0 0 0 0 0

OA oo co 7r 2 m.

. (h(r&+. h (r& h(r&' h&(r&')(h(q&+h&(q&)+ t
—~(&'+q~&+3&&2d&d&& sin OdOd5

o o
2

0 0

7r 2%

x)I )I
0 0

I(8y) sin 6d8dp. (h&"&+h, &'& —h&'&' —h, &"&')(h'&&+h, «&)

~ {cosh (yX cos a)+cosh (yX cos a') I, (87)

the function b„, being an analogous expression with k(") and k«) appearing everywhere for h(")

and h«).
Integration over all values of the variable p, the azimuthal collision parameter, is accomplished.with the help of the Maxwell theorem of spherical harmonics. ' The following notation is used in

the development of the various functions of the integrand considered as functions of ae and ~'g'

in spherical harmonics: The development coef6cients in the functions

(h(~&+h (~&)

(h(~&+h&(~&) (h(Q&+. hy(Q&)

' Maxwell, Sc. Papers II, 681; Boltzmann, Gostkeorie I, 171.

are c~„("', c~ (")"

( ) d) (, )'
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cosh (y). cos u)

(li"+hi("&) cosh (pl~ cos (&.)

(k("'+hi("&) (I&"'+h)(") cosh (yX cos n)

flare Cl» 8l p

f (r)' fi (r)"

(, )' (, )"

where a typical development is

l

(h("&+hi("&) = P P (c&y("' cos e+c&„("&"sin e)P((")(cos (&)
l=o p=o

Integrating then over y with the aid of the Maxwell theorem, adding and subtracting suitable series
involving fo I(gy) sin @de, using relations existing among the coefFicients to show that the sum
of all terms which then do not involve fo [1—Pi(cos g) JI(6y) sin PdO is identically zero, integrating
over 0. and c, and defining a function

1
g('&(y) =— [1—Pi(cos g) jI(gy) sin PdO,

$2 0

(88)

where the cross-sectional area effective in transport will be defined then as

one obtains finally
(89)

CO CO 1r

a„=2'' g e ("'+~2)r'!Pg"'(y)dydee sin gdg. 2c(, ( &'c(r, & &'«
l=i 2l+i 0

($+m) 1

(ci &r&'ci„«&'+ci &r&"ci «&") +2gA e l()'+&'&y'), 'g('&(y)dyd&(
=i (l —m)! 0 0

(l+m) !
X sin gdg 2(c&.('&'f&.«'+c&, (&&'f(.("&'—di. '" "'ei.')+ Q

=i (l m)!—

~(ci ( )'f (q)'+c( ( )"fi (e)"+ci (a&'f (r&'+ci (a&"f &r&" d (r a&'e( ' d (r «) "ei ") (90)

Similarly, one finds for b„q an analogous function in which the various coefficients represent the
development in spherical harmonics of the expressions just described in which k("' and k«) appear
everywhere instead of k(") and h(".

We restrict our considerations now to the second approximation to the solution of the integral
equations. Besides ca(n Pd, for r = 1, 2 one requires for this purpose (Eqs. 72 and 73) the six quantities
a„, and b„, with r, q = 1, 2. Determining then, all of the coefficients required in the various develop-
ments in spherical harmonics, integrating over 0 and ) and defining

P(i n)((&) =
t e «)'mpng(&)(p)dp—

0

one obtains the expressions for the a„~ and b„~ which are given in A,ppendix 1.
The heat conductivity and viscosity coefficients, &( and», then become (Eqs. 72 and 73):

25 3k 5 3 128 P" '&(4/3)+6P&' '&(4/3)
(1+~&) 1+—nX' 7— +ci', (92)

32vr& 2m X 2s'P(' '&(1) 4 3&
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5 A 3
(1+e2) 1+—nX' 4—

16m-1 X 2s'P&' '&(1) 4

128 P &' '&(4/3)
+62

3I& P(2 7&(1)
(93)

where, as dehned in the introduction, ) is the de Broglie wave-length corresponding to the mean
temperature motion, and n is the number of molecules per unit volume. The small quantities ~~

and e2 are given by the following equations:

L7/2P" "(1)—P" "(1)]'
61

P(2, 11&(1)P(2,7&(1)
I
P{2,9&(1)]2y7LP(2, 7&(1)]2

L7/2P&' '&(1) P&' '&(1—)]'
62 =

P~ ' »(1)p& ' '&&(1)
I

P~2' &(1)]2+77/6t P& ' &(1)]

The small quantities e&' and e~' involve P&" "(a) with values of e&. equal to 4/3 in addition to those
with a equal to unity; with r =4 in addition to those with r equal to 2; and with q having the series
of values 13, 11, 9, and 7. These expressions need not be given since their numerical magnitude is
always small compared with the principal term of the density correction, which is already small,
and except for light gases at low temperatures negligibly small, compared with the term independent
of density. The order of magnitude of ei and e2 will be discussed in connection with the application
of these formulae to elastic sphere molecules.

Eqs. (92) and (93) for the gas coefficients have been written only for the case of the Einstein-Bose
statistics for which the parameter 8 of all previous equations has been put equal to +1. In the
Fermi-Dirac statistics the equations for ~ and q are similar to these with the opposite sign for the
term depending on density and with the understanding that the integrals P&" '&(e&.) will then be
evaluated according to these statistics. The term independent of density in these equations is exactly
equivalent to the classical expressions of Enskog and Chapman when in the integrals P&" q&(u)

classical cross-sectional areas are introduced instead of the quantum-mechanically determined areas.
It is of interest to consider the ratio of ~ and q in connection with the w'ell-known proportionality

in the classical theory of this ratio to the speci6c heat. Neglecting the second approximation quanti-
ties e, this ratio becomes, for the case of rigid elastic spheres, when the classical expression for the
differential cross-sectional area is introduced ~/»=(5/2)(Be/BT)&, where e is the energy per unit
mass, an expression which degenerates to proportionality with the speci6c heat only in the classical
statistics. In the strict quantum theory, however, for the elastic sphere model as well as for a general
force law, the coefficient of n) ' is temperature dependent and there are deviations from this simple
result.

4. APPLICATION TO THE& RIGID SPHERE M ODEL
where

1(Ba) = (1/«') I~ f(Ba) I', (94)

In order to obtain an indication of the magni-
tude of the effects introduced by the quantum
theory, the viscosity and heat conductivity
equations will be applied to the case of the rigid
elastic sphere molecule. The procedure is to
evaluate first of all the differential cross-sectional
area I(By), then the function B&'&(y) given by
Eq. (88), and finally the function P&' »(a) given
by Eq. (91). The general expression for the
differential cross-sectional area is:"

"Faxen and Holtimark, Zeits. f. Physik 45, 307 (1927);
Massey and Mohr, Proc. Roy. Soc. A141, 434 (1933);
Mott and Massey, The Theory of Atomic ColI7'siorls.

f(0g) = P(2l+1)(e"&—1)p&(cos B), (95)

X = 2m.rng/h.

g is the relative velocity, m the reduced mass of
the molecule, and the b~ are phase angles
determined in the asymptotic solution for large
values of r of the radial wave equation. Since
Eq. (94) is valid only if the molecules may be
considered as similar but not identical, one
obtains the correct function in the Einstein-
Bose statistics by multiplying by a factor 2 and
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summing over even values of l. Similarly, in
the Fermi-Dirac statistics one would sum over
only the odd values of l. In all further con-
siderations only the Einstein-Bose statistics will
be used.

Having determined I(6g) one may next evalu-
ate the function 8('&(y) and with it the transport
cross-sectional area. The latter has been dehned
by Eq. (89). Putting I equal to 2 one obtains
the second order transport cross-sectional area,
which becomes simply

functions of only the single variable y=Xs.
Consequently, the function P(' »(&() defined by
Fq. (91) can be a function only of the ratio 7&/s

where X =k/(mkT) &. This result follows from the
fact that y = g (m/4k T) & = I( "A =y. X/s, where IC

=2mg/k, m being the actual mass and not the
reduced mass of the molecule. One obtains,
therefore, from Eq. (91)

(l& ) @+I

P( ~ P)(~)
~

—
~

p (&/&) w yPe( & (y)dy (10O)
Es) o

Qr('&(y) =3~ I(ap) sin' ede,
0

(96)

whereas the scattering cross-sectional area is
dehned by the equation

Q.(y) =2 ~f I(ap) sin ~de.
a)p

(97)

12 16l'+ 12l2 —2l —1
0('&(y) = Q — sin' 8g(

Z's' i (4/ —1) (4/+3)

Introducing Eqs. (94) and (95) into Eq. (88)
and using the recurrence relations for the
Legendre functions one obtains for the second
order function in the Einstein-Bose statistics

Thus, besides an explicit dependence of ~ and g
on ) and s there is an implicit dependence on
these quantities only through the ratio of ) and s.

In order to make the results susceptible of
comparison with experiment, the integrals will
be evaluated for values of s and m corresponding
to hydrogen and helium, of which the masses
are 1.66189 and 3.2998 Y 10 '4 gram per molecule,
respectively. The diameter of these molecules
will be taken as 2.75 and 2.10&10 ' cm, re-
spectively. The phase angles have been deter-
mined from Eq. (99) for twelve values of y =As
between 0.25 and 30.0, and from these phase
angles the function 0"I(y) of Eq. (97) was
determined. The results of this calculation are
given in Table I, and a curve showing the

(21+2) (2l+ 1)

4t+3
Cos (52& —82&+2) TABLE I.

0('){y} ) /s

TABLE II.

P(2, &){1}
Xsin &i2& sin 82&+2, (98) 0.000

0.25
0.5
1.0
1.5
2.0
3.0
4.0
5.0
7.0

10.0
20.0
30.0

4.000
3.91
3.67
2.77
1.78
1.14
0.88
.80
.74
.67
.61
.58
.53
.500

12.000
7.98
4.26
3.24
2.61
2.37
2.27
1.95
1.90
1.82
1.81
1.77
1.76
1.74
1.500

1.77
1.02
0.79
.56
.45
.39
.21
~ 188
.136
.125
.112
.107
.103
.0000

where s, as throughout the theory, is an arbitrary
quantity having the dimensions of length. In
the Fermi-Dirac statistics one would have a
similar expression with 2l everywhere replaced
by 2l+1.

Our considerations will be restricted now to
the case of the rigid elastic sphere model, and
the quantity s will be specialized to represent
the molecular diameter. The phase angles b~

are now, determined' by the equation:

I(+i(Xs)
8&=are tan ( —1)'I i i(Es)'(99)

Thus, in the particular case of the elastic sphere
model the phase angles and therefore (t("(y) are

dependence of the transport cross-sectional area
measured in units of the diameter squared as a
function of y is given in Fig. 1. It will be ob-
served that 8('&(y) and Qr('&(y) approach their
classical values as y approaches in6nity and a
value equal to 8 times the classical values as y
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FIG. 1. Qz&'&/s' as a function of Xs.

approaches zero. In this respect the transport
cross-sectional area differs from the scattering
cross section, since the latter, due to the inAuence
of small angle scattering, fails to approach the
classical value as y becomes indehnitely large.
In the Fermi-Dirac statistics one would And

that 0"'(y) and QrI" (y) approach the limiting
value zero as y approaches zero.

The functions P&' »(n) are now determined
by numerical integration for a series of values of
X/s (a series of values of the temperature).
Actually only the integrals with I = 2, P = 7, 9 and
u=1, 4/3 have been evaluated. The remaining
integrals appearing in the four ~'s have not been
determined, since it is certain from the form of
these expressions that they are somewhat tem-
perature insensitive, and that, consequently,
their classical values may be used. These small
quantities, when evaluated quantum-rnechani-
cally, approach their classical values for X/s((1
and )/s))1 (limiting case of very high and very
low temperatures), and have a slight maximum
or minimum at some intermediate temperature
depending on the gas. In the case of hydrogen
and helium this temperature is in the neighbor-
hood of 1—3' Abs. The quantities e& and ~2, for
example, exhibit minima equal to zero for s/X
about equal to —', (T less than 1' Abs. for H2
and He) and increase monotonously in both
directions achieving their classical values of
0.02273 and 0.01485 for s/X very large and very
small. Also the ratio of integrals appearing
directly in Eqs. (92) and (93) are temperature
insensitive, but in this particular case it is the
difference between these ratios and a constant
quantity of the same order of magnitude which
is of consequence. The direction of the tempera-
ture dependence is such as to make the absolute

magnitude of this difference increase with de-
creasing temperature, so that, whereas the ratio
of the integrals by themselves vary only by a
factor 0.3 between either end of the absolute
temperature scale and the temperature at which
the maximum is reached, this difference in the
case of the heat conductivity coefficient varies
by a factor 4.0. Thus, the temperature depend-
ence of the density term in i~: and p is by no
means confined solely to the appearance of V
in these expressions.

Since the four e's are the quantities coming
from the second approximation in the solution
of the integral equations, their magnitudes give
some idea regarding the nature of convergence
of the resulting series. The values of e~ and. ~~

have already been given. Classically, and
quantum-mechanically for the case of very high
and very low temperatures, e&' and e&' add
corrections to the density term of about f.4 and
3.0 percent, respectively. Their temperature
dependence has not been investigated, but, as
already mentioned, this dependence is certainly
small. All of the second approximation correc-
tions are therefore small; in fact, they are of
the same order of magnitude as the probable
errors in the numerical integrations. In the final
numerical results these corrections are, therefore,
not included. Various analytical relations exist
among the integrals P" »(a) which have been
helpful as a criterion of the accuracy with which
the numerical integration was performed. This
accuracy is certainly as good as 3 percent, and
is probably somewhat better. Values of all the
integrals will not be giver&, but merely to
illustrate the behavior of these functions a set
of values of P&' '&(1) is given in Table II, and
a curve showing the dependence of PI' "(1) on
s/X is given in Fig. 2.

The results of the numerical integration are
now introduced into Eqs. (92) and (93), and
numerical values of fi and q are found as functions
of the temperature and density. These results
are tabulated as follows: (a) To show the
temperature dependence of the principal term.
Actually these results should correspond to the
limiting case of small densities. For the sake of
comparison the best of the available experi-
mental data are also given, most of the experi-
mental data available having been obtained at
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12-
TABLE V. Viscosity coepcient of hydrogen, p in micropoise.

10-

4 S
s/w

LIHIT )gp)
P '0)=

&

0 10

3.0
5.0

10.0
15.4
20.6
70.9
89.6

170.2
273.1
296.1

Experiment

5.7
8.5

31.9
39.2
60.9
84.2
88.2

Classical
theory

8.7
11.2
15.8
20.0
23.0
43.0
48.0
66.0
84.0
88.0

Quantum
theory
(.=0)

3.0
5.1
9.0

12.4
14.9
32.2
37.2
53.4
70.2
73.6

Fro. 2. P&' '~(i) as a function of s/X.

TABLE I II. FIeat condlctivity coegcient of- hydrogen, z in
ergs cm ' sec. ' ('C cm ') '.

3.0
5.0

10.0
15.4
20.9
73.1

123.1
173.1
223.1
273.1
323.1
373.1

Experiment

1.06 X 10'
4.83
8.1.2

11.02
13.6
15.9
17.96
20.04

Classical
theory

1.33 X 10'
1.72
2.43
3.02
3.52
6.58
8.54

10.13
11.50
12.72
13.83
14.53

Quantum
theory
(~ =0)

0.47 X10'
0.80
1.40
1.92
2.38
5.12
6.91
8.36
9.59

10.86
11.97

TABLE IV. FIeat condlctivity coegcient of helimm, ~ in ergs
cm 'sec. ' ('Ccm ') '.

3.0
5.0

10.0
15.0
20.9
73.1

123.1
173.1
223.1
273.1
323.1
373.1

Experiment

2.14X 103
5.55
8.24

10.4
12.3
13.9
1.5.4
16.7

Classical
theory

1.62 X 10'
2.09
2.96
3.63
4.28
8.01

10.39
12.32
13.99
15.48
16.83
18.09

Quantum
theory
(p =0)

0.62 X 10'
1.03
1.76
2.31
2.85
6.22
8.31

10.19
11.87
13.49
14.81

a pressure of about one atmosphere. These
results for the heat conductivity and viscosity
coefficients of hydrogen and helium, respectively,
appear in Tables III, IV, V and VI. In the case
of the viscosity coe%cient the calculationp lead-
ing to these results are a duplication of the
published work of Massey and Mohr. ' These

TABLE VI. Viscosity coegcient of helium, p in micropoise.

3.0
5.0

10.0
15.0
20.2
75.1
88.8

170.5
203.1
250.3
273.1
294.5

Experiment

29.46
35.03
81.5
91.8

139.2
156.4
178.8
187.0
199.4

Classical
theory

20.8
26.8
37.9
46.0
52.0

101.0
110
152
167
184
193
200

Quantum
theory
(.=0)

7.96
13.2
22.6
29.6
35.7
81.5
89.7

129.4
142.6
163.4
173.3
180.5

results are given again, however, because they
dier from those of Massey and Mohr by an
amount exceeding the probable error of the
numerical integration. (b) To show the density
dependence of the gas coefficients. The results
of these calculations appear in Tables VI I and
VIII for both H2 and He at temperatures close
to the critical temperature. They are tabulated
only for one value of the density since the
magnitude of the density e6ect is in first approxi-
mation directly proportional to the density. The
value of the density chosen corresponds to a
value of the degeneracy parameter A equal to
0.1 except at temperatures below the critical
value when lower values have been given
corresponding to the existence of the vapor
phase. Above the critical temperature somewhat
higher values of the density than those cor-
responding to A =0.1 may be considered without
violating seriously the applicability of the theory.
Also, in these tables, for the purpose of com-
parison with the quantum corrections, appear
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TABLE VII. Density dependence of the viscosity coegcient.

T'K

$0 'gp 'gp QP

(atmos. ) Quantum Non-ideal

15.4
20.6
34.0

3.0
5.0
6.0

10.0
15.0
20.2

0.001
.003
.1

0.03

.1

.1

Hydrogen
0.068
.44

49.8

Helium
0.097
1.15
1.82
6.53

18.0
37.9

0.0004
.001
.04

0.017
.05
.043
.039
.037
.037

0.0003
.001
.08

0.0008
.006
.008
.016
.03
.05

TABLE VI II. Density dependence of the heat conductivi ty
coePcient.

T'K p
(atmos. ) Quantum Non-ideal

20.9
34.0

3.0
5.0
6.0

0.003
.1

0.03

.1

Hydrogen
0.44

49.8

Helium
0.096
1.15
1.82

0.0003
.009

0.007
.014
.013

0.004
.27

0.0026
.019
.025

the Enskog classical non-ideality corrections
discussed in the introduction.

CON CLUSION

Eqs. (92) and (93) are general expressions for
the heat conductivity and viscosity coefficients
as given by the Einstein-Bose statistics appli-
cable to any gas consisting of molecules whose
interaction function is spherically symmetrical.
The application of these equations to the rigid
sphere type of molecule leads to the following
conclusions: (a) As already remarked by Massey
and Mohr, ' the temperature coefficient of vis-

cosity and heat conductivity is not correctly
given by the rigid sphere model though the
agreement with experiment is considerably better
than that given by the classical equations. This
improvement is due directly to the increase in

the total transport cross-sectional area v ith

decrease in the relative velocity of the molecules,
and can be attributable only in very small part
to the density correction. The latter acts in the
right direction, but is effective only at extremely
low temperatures. At higher temperatures the
quantum density correction is not only negligibly
small but is more than compensated by the
classical non-ideality correction which acts in
the opposite direction. (b) The numerical values
of ~ and q have been calculated for only one
value of the diameter s. One can easily show that
a somev hat smaller value of s than that used
would in the case of both H2 and He give
temperature coefficients in better agreement
with experiment, but that the numerical values
would at nearly all temperatures be somewhat
too large. This result follows from the fact that
the principal parts of a and g depend on s and
'1only through s' and s/X, and that at a partic-
ular temperature the derivative of s'P&' '&(1)
with respect to s is always less than 2sP&' '&(1),
its value at the two extremes of the temperature
scale. A series development in powers of s&'X

would be of interest in determining the exact
dependence on s, but such a development has
not been obtained. (c) The density correction
is by no means negligible under suitable condi-
tions, and seems to be susceptible to experi-
mental- test. Such a test leading to an experi-
mental verification of the predictions, would be,
also, an experimental verification of the statistics.

It is hoped, now, that the general theory may
be extended to include mixtures of gases as well
as the simple gases. In concluding this paper I
v ish to gratefully acknowledge my appreciation
and indebtedness to Professor W. Heisenberg
for the privilege of working in his Institute
where the greater part of this study was made,
and for his interest in the problem and the
consultations which helped so materially in its
eventual solution, and to Professor G. E.
Uhlenbeck of the University of Michigan who
originally suggested the problem, contributed
considerably to the formal portions of the theory,
and who was throughout a continual source of
valuable criticisms and suggestions.
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APPENDIX

The results of the integration in Part 3, f2 are as follows:

8;rag~ 8 2 1 (4& 2 (4)
P&' '&(1)+eA— — P' —"I —I+—P'

9 3 3 9 E3) 3 E3)

16m'Q m 8 2 (4q
b&g= P" "(1)+ed— P&' '&I——I,

45 3 3 I3)
Sx'Q m. 7 8 2 26 (41 31 (4l 14 (4qP ' (1)+-P~ »(»+a~- — P&

I

- I+—P
I

- I+—P& '&I -
I9 2 3 3 1S9 E3) 27 E3) 9 E3)

P&4»&I —
I

4 (4y

945 E3)

Sm'Q ~

45

7 8 2 4 (4q 7 (4q
P&' '&(1)+ P&' '&(1)+—|&A— — P" '&I —I—+ P&' '&I ——

I

2 3 3 3 & 3) 3 E3)

8~'g ~ 77 8 2 124 (4i 3260 (4)
P(2, 11&(1)+7P(2,9&(1)+ P(2, 7&(1)+0/

' P(2, 13&I I+ P(2, 11&I

9 3 3 729 (3) 1701 E3)

463 (4y 154 (4q 4 (4q 44 (4q+ P" "I —I+ P" "I —
I

- P" "'I —I-
81 (3) 27 &3) 405 (3) 945 (3)

Sm'Qm 1 7 301 8 2 1528 (4yP2»(1)+-P-2 (1)+ P 2»(1)+ga-
45 2 2 24 3 3 1701 E3)

320 (4t 301 (4y S (4y+ P' "I —I+ P' "I —
I

— P" "'I —
I

~

81 E3) 54 43) 2835 E3)

Errata: On the Paramagnetic Rotation of Tysonite
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