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If I is the intensity of any x-ray wave-length as observed
in a direction making an angle @ with the face of the
(thick} target in which the radiation originates, then

—1 d log ISa'=—
p. d csc Q cso y-0

is the depth of the centroid of the x'-ray luminosity distribu-
tion in the target. This depth is greater than the effective
mean depth of production by an amount which depends
upon the angle of observation and the form of the lumi-

nosity distribution. For large angle observation of Ag Xa
at 100 kv (and probably at any voltage} the two depths
are identical within the errors of measurement. The dis-
tributions of x-ray luminosity with target depth for Ag Xa
from a thick target are calculated for six tube potentials
from 50 kv to 175 kv from the intensity observations of
Webster, Hansen and Duveneck. There is as yet no theory
of these distribution functions. The characteristics of the
curves obtained are shown to be capable of fairly simple
mathematical description and to be in harmony with cer-
tain physical checks.

'INTRODUCTION MEAN DEPTH OF PRODUCTION

HEN x-rays are produced by normal inci-

~ ~ ~ ~

dence of electrons upon a thick target,
radiation originates at all depths within a layer
extending from the target surface to some hereto-
fore undetermined maximum depth which de-
pends upon the characteristics of the target
material and the energy of the incident electrons.
It is the purpose of this paper to discuss the dis-
tnbution with depth of the x-ray /uminosity of the
target, that is, the energy (of a specified wave-
length) radiated per second per unit volume of
target per unit target current. This luminosity is a
function of electron energy as well as of depth and
wave-length and for any given value of these
three independent variables it is presumably
diferent for characteristic and general radiations.
While the following discussion is partly of general
application it relates more particularly to the Xo.
luminosity of silver targets.

The work of Ham, ' of W. P. Davey' and of L.
G. Davey' established the concept of a mean depth
of production for the unresolved x-ray output of a
thick target, and showed the possibility of meas-
uring such a depth by observation of the relative
intensities of total x-radiation emerging at differ-
ent angles with the target face. Webster and
Hennings, ' in a study of the penetration of
cathode rays in molybdenum, measured the mean
depth of production of a particular wave-length
(i.e. , the wave-length of the absorption limit of
the target) for a number of molybdenum continu-
ous spectra. While the next step in the problem is
the determination of the depth distribution of
luminosity for a particular wave-Jength, this

' W. R. Ham, Phys. Rev. 30, 1 (1910).
2%. P. Davey, J. Frank. Inst. 17'1, 277 (1911).
3 L. G. Davey, Phys. Rev. 4, 217 (1914).

D. L. Webster and A. E. Hennings, Phys. Rev. 21,
301 (1923).
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FIG 2. Assumed rectangular x-ray luminosity distribution.

Fr@. i. Kulenkamp8 curve for determining mean depth
of production and target absorption correction for mono-
chromatic x-rays. (Ag Xa 'at 100 kv. )

matter is deferred until the next section, while we
consider here an extension of the theory of the
mean depth of production.

The only known method of measuring the
mean depth of production of monochromatic
radiation applicable to any chosen x-ray wave-
length is the method of Ham' and the Daveys2 '
with the addition of an x-ray spectrometer for
wave-length resolution. This is essentially the
method used by Kulenkampff' to determine the
attenuation of primary x-rays through absorp-
tion in the target, and since used by others for
the same purpose and for the determination of
mean depths of production. Following Kulen-
kampif; one sees that if all radiation (of some
observed wave-length) were actually produced in
a thin layer situated at a depth Sbelow the target
face, with Io representing the intensity as emitted
then the intensity as observed would be similarly
represented by I=Ioe I"~, where p, is the x-ray
absorption coef6cient of the target and x the
cosecant of the angle of observation measured
from the target face. It follows that log I= log Io
—pSx and that both S and Io may be obtained
graphically from a plot of log I vs. x. In particular

5= (—1/p)d(log I)/dx.

Now although the equation above shows a linear
re1.ation between log I and x the real graph
(Fig. 1) is not straight, for it results from a
luminosity distribution which is quite different
from the assumed concentrated layer, and with

I

' H. KulenkampE, Ann. d. Physik 69, 548 (1922).

such a distribution the effective depth of produc-
tion may be said to vary with x. When, as in
real targets, luminosity is distributed over a
range of depths the mean depth of production is
best defined as that depth at which the entire
luminosity could be concentrated without change
in the externally observed intensity. We sh'all

designate the depth so defined by S and call it
hereafter the effective depth of production.

The graph of Fig. 1, which is typical of the
many Kulenkampff curves which have been used
in thick target studies, shows a marked upward
concavity. That such curves must always possess
this type of curvature unless the radiation all
originates at the same depth may be shown by
considering a rectangular luminosity distribution
buried in a thick target as in Fig. 2, in which f(s)
measures the luminosity and s represents dis-
tance into the target. The emerging intensity is

I= se~'ds= —k xp e ~' —e~ '.
If y=—log I this leads to

dy p6e ~" 1
pC

dx 1 —e I'~ x

where, as in Fig. 2, 8= b —a. Upon differentiating
again it is found that the second derivative is
positive, which insures the upward concavity for
this special distribution. But any distribution
whatever can be analyzed into rectangular ele-
ments and consequently any Kulenkampff curve
may be regarded as the sum of the curves belong-
ing to its constituent rectangular distributions.
Since all the constituent curves are concave up-
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ward their sum must be curved in the same sense.
We may now examine the variation of the

effective depth of production with the angle of
observation. By definition of 5we have I=Ipe & *

or

S= (log Ip —log I)/px,

which is (1/p) times the absolute value of the
slope of the chord drawn in Fig. 1, from the inter-
cept on the log I axis to the point of the curve
having the abscissa x. It is apparent from the
graph that the effective depth of production
varies with the angle of observation, being zero
when tt =0 and increasing with p, in a manner
which depends upon the form of f(s), to a maxi-
mum for normal observation of the target face
(csc P= 1).

Although the angle csc ' 0 is fictitious, it has
useful properties in this analysis. Kulenkampff'
shows that the extrapolation of the curve to
csc p=O furnishes an intercept (in the case of
smooth targets) which measures Io, the intensity
which the radiation would have if the target were
non-absorbing. We now show that the effective
depth of production for this fictitious angle is the
depth of the center of gravity of the luminosity
distribution curve. As x approaches zero, Fig. 1

shows that the chord of the curve approaches the
tangent, and at the limit we have by Eq. (1)

—1)d log Iq
S.=, =

p & dx ).=o

To evaluate the derivative we 6,rst restrict our-
selves to the conventional distribution of Fig. 2,
whose derivative is given by Eq. (2). Rearrang-
ing Eq. (2) we have

(~~)' (~~)'x (~~)'x'
~ ~ ~

3! 4!
x(pb)' x'(p8) '

@6+- —+ + ~ ~ ~

2f 3!

from which it is apparent that

(dy/dx). o
= —p(a+8/2) = —pS„

the center of gravity of the assumed distribution.
From Eqs. (4) and (5) it follows that

5, p
——Sg.

Though the luminosity distribution assumed
was a special one, more general conclusions may
be drawn. Imagine two distinct (though permis-
sibly contiguous) rectangular distributions in the
same target, and suppose it to be possible to
observe in various directions the radiation from
either separately or from both together. In each
of the three cases of observation suppose the
Log I vs. x curve to be plotted and extrapolated
to x=0, where all the intensities and intensity
derivatives used below are taken. Using sub-
scripts 1, 2 and 1to designate quantities related
to the separate distributions and to their total,
respectively, we have

IT =Il+I2 and (dI1/dx) =dI1/dx+dI2/dx

The depths to the centers of gravity of the sepa-
rate distributions, as shown by Eq. (4), are

S„=( —1/p) (dy, /dx) = ( dI, /dx)/v—I,
and

Sgm = ( dIg/dx)/pI—2

From the equations of this paragraph we may
obtain

Sg,I,+Sg,I~
dyr/dx = (dIr/dx) /Ir = —p——

Ij.+I2
—pS&, (6)

where ST is the depth of the center of gravity of
the combination. Since any real distribution may
be built up by the successive addition of properly
chosen rectangular blocks it follows that in any
case the depth of the center of gravity of a distri-
bution is given by Eq. (4).

The center of gravity depth is greater than the
effective depth of production, even when the
latter is at its maximum (&=90'), but it is
obvious in Fig. 1 that the change in slope from
x=0 to x=1 is very small, for any reasonable
extrapolation, so the difference in these two
depths must also be small in this fairly typical
case. We refer to these depths again in a later

where S, is the distance from the target surface to section.
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METHOD OF DETERMINING LUMINOSITY DIS-TRIBUTIONSS

Webster, Hansen and Duveneck' have meas-
ured the intensity of the Xo. lines from a thick
silver target upon whose plane face cathode rays
were incident normally, making observations at
several voltages up to 175 kv and at various
angles p between the direction of observation and
the target face. With the symbols used above the
observed intensity (in arbitrary units) at any
given electron energy is

r)4) =f fX~ '*d&,
0

(7)

a b—+ —+- + ~ ~ 0

px+II (px+II)' (px+II)'

Having a number of observations of I equal to
the number of constants retained in f (s) we can

6 D. L. Webster, W. W. Hansen and F. B. Duveneck,
Phys. Rev. 44, 258 (1933).

7 L. Silberstein, J. O. S. A. 22, 265 (1932); Phil. Mag,
15, 375 (1933);C. Eckart, Phys. Rev, &5, 851 (1934).

where I(p) is known for a number of values of @

from experiment and f(s) is the luminosity distri-
bution function to. be found. The history of this
equation as recorded in the literature of mathe-
matics does not encourage an attempt at an
exact analytical solution, and it seems necessary
to resort to methods of approximation. Physical
considerations impose important conditions upon
f(s) which serve as guides in seeking solutions: the
function is never negative or infinite, it is zero
for all negative values of s and practically so for
all positive values exceeding the foil range of
cathode electrons. It is finite at s= 0 and almost
certainly goes to zero with zero slope.

Eq. (7) has appeared in physical problems
before' and several possible methods of attack
have been used or proposed. We have found most
useful an as yet unpublished method suggested by
Professor William V. Houston of Californi, a Insti-
tute of Technology. In this method it is assumed
that the luminosity distribution is adequately
representable by

f(s) =e "'(a+bs+cs'+ ),

an assumption which gives Eq. (7) the form

solve for these constants and thus determine the
function. Since f(s) must in reality be a smooth
curve and since it is believed to decrease mono-
tonically to zero at the maximum depth some-
what after the manner of an exponential, it
seems certain that the assumed form will permit a
satisfactory representation.

Our procedure has been to replot the data con-
tained in Fig. I of reference 6 in such a way as to
smooth out certain slight irregularities caused by
the use of non-identical units of measurement for
different angles of observation. This smoothing
did nothing to correct for possible systematic
variations of the unit of measurement with angle.
If such variations existed they were probably
worst at the largest grazing angles of observation,
so we have not used Webster, Hansen and Duve-
neck's data for any angles above 8.05', except
for checking purposes. From the selected data the
constants of Eq. (8) were obtained, through the
method suggested by Houston, assisted by
graphical devices and cut-and-try approxima-
tions which cannot be economically described.

The constant a in the expression for f(s) repre-
sents the luminosity of the target surface, which
should vary with voltage in approximately the
same manner as does the intensity of the Xn
lines from a tkin target of silver. The two cases
differ in that the thick target surface emits a
greater proportion of radiation produced by
fluorescence and electron rediffusion, but both of
these secondary effects show voltage variations
which approximately parallel the variation in in-
tensity of the directly produced radiation, so we
have ignored the difference and imposed the con-
dition that variations of a with voltage shall agree
with the thin target intensity variations found by
Webster, Hansen and Duveneck. '

The function assumed in Eq. (8) takes on small
negative values for large values of s, since the
constant c turns out to be negative. This physi-
cally impossible result emphasizes the arbitrary
nature of the functional form assumed, and in
this connection we must certainly disclaim any
suggestion that the terms in the series represent
separate physical processes of x-ray production.
However, any method of luminosity analysis
based upon the angular variation of external in-

' D. L. Webster, W. W. Hansen and F. B. Duveneck,
Phys. Rev. 43, 839 (1933),
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Fro. 3. Luminosity distributions of Xo. radiation from a thick silver target with cathode rays incident along normals
to the plane target face. Solid vertical line segments intersecting the curves mark the positions of the centers of gravity of
respective distributions. The relation of the center of gravity to the effective depths of production for various angles of
observation is illustrated in the case of the 100 kv curve. For 90' (normal} observation the two depths are sensibly iden-
tical. Dotted lines crossing the curves indicate foil ranges of electrons at corresponding potentials. Ordinates are in
arbitrary units which are the same for all curves.

tensity will give results which are less depend-
able the greater the depth, and the negative
luminosities which we obtain are within the prob-
able error of luminosity determination for the
depths at which they occur, as is shown by the
fact that the calculated external intensity from
the integrated negative luminosity is within the
error of intensity measurement. We have there-
fore discarded the negative part of the distribu-
tion curves and smoothed o8 the region of ampu-
tation in an arbitrary but, we believe, physically
plausible manner.

RESULTS AND DISCUSSION

The distributions obtained are shown for a
series of six cathode-ray energies in Fig. 3. The
equation representing each curve contains four
constants and has been derived from intensity
observations at four values of the angle p. Since
the simultaneous solution of the four equations
containing experimentally determined magni-
tudes was a very inexact process and since the
obtained solutions have been arbitrarily adjusted
in some particulars it is important to check the
distributions obtained back against the original
data. This is a much simpler operation than
its inverse, and is in line with our view that the
proof of the distribution is not in the rigor of its
derivation but in its ability to recreate all the

original intensity observations. The recheck was
performed by plotting from each f(s} in Fig. 3 a
series of curves represented by y=f(s}e I" for
6ve values of p, including the four used. in ob-
taining f(s} The ar.eas of the curves so obtained
were found to be proportional to the correspond-
ing original observations upon I(p}, as they
should be, closely enough so that the two sets of
values could be matched with an average dis-
crepancy of between 1 and 2 percent and with a

-maximum under 5 percent. Uncertainties in the
original data, make it useless to strive for a better
Gt. The distributions obtained are therefore as
good as the observations permit.

It is difficult to evaluate the probable errors of
the distributions in Fig. 3, or, indeed, to define
a suitable measure of probable error. We 6,nd,
however, that a distribution will fail to check
back upon the data from which it came, causing
discrepancies of 5 or 10 percent, if the maximum
of the distribution be raised or lowered by as
much as 10 percent relative to the ordinate at
s= 0, or if the extreme depth of the distribution
be changed by 20 percent.

Present knowledge of electron scattering and
stopping processes is probably not complete
enough to permit a theoretical calculation of the
luminosity distribution functions, and even with
such knowledge the computation would be for-
midably complex. A partial check on the experi-
mental distributions may be obtained, however,
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by comparing the maximum depths in Fig. 3 with
measured foil ranges of electrons of corresponding
energies. A, foil range means the thickness of the
thickest foil which normally incident electrons
will pierce. Since the path in such a foil is far
from straight, the foil range is, in silver, probably
jess than half the real range. Foil range for differ-
ent elements is a function of the density of the
foil, so it is possible to use measurements by
Schonland" and others on aluminum to deduce
by interpolation a series of silver foil ranges for
electrons having potentials pertinent to the
curves of Fig. 3. The ranges so obtained are de-
noted by vertical dotted lines crossing' the distri-
bution curves.

The relation of these ranges to the luminosity
distributions was an afterthought and has not
been injected in any way into the solutions them-
selves, so the agreement shown in the figure may
be accepted as a useful confirmation. The exis-
tence of luminosity below the depth of the foil
range is presumably caused by fluorescence.

The centers of gravity of these distributions all

agree in. depth with the values obtained by the
graphical method (Eq. 4) within the limits of
error of our determinations of the latter. Since
both methods start from the same data, this is
not exactly an independent check on the correct-
ness of the distribution curves but is a demonstra-
tion that the same result can be had by two
methods for computing the same quantity when
one method depends heavily upon the correctness
of the distributions.

Webster, Hansen and Duveneck, ' after correct-
ing their thick target silver Xo. intensities for
target absorption by extrapolating the curve of
log I vs. csc p to csc &=0, found the corrected
intensity Io(U) to vary with U, the ratio of tube
voltage to X-ionizing voltage, according to the
equation Io(U) =X(U—1)'"up to about U=4.
Using for Io(U) the areas under the curves of
Fig. 3 we find a similar relation to hold, over the
same range of voltage, except that the exponent
is 1.58. This difference does not seem too large to
be accounted for by the combined non-systematic

E. J. Williams, Proc. Roy. Soc. A130, 310 (1931).
B. F. J. Schonland, Proc. Roy. Soc. A104, 235 (1923);

108, 187 (1925); C. E. Eddy, Proc. Camb. Phil. Soc. 25,
50 (1929); R. W. Varder, Phil. Mag. 29, 726 (1915).

errors of the two methods so it would be unwar-
ranted to conclude from this one case that either
method is inherently prone to yield either high or
low results.

Along the 100 kv curve of Fig. 3 are marks
indicating the effective depths of production of
this distribution for several values of p. For
ninety degree observation this depth differs from
the center of gravity depth by less than the width
of the vertical line indicating the latter.

CQNcLvsIQN

Summarizing, the luminosity, f(s), of silver
En radiation produced in a thick target by
normal cathode rays when plotted against depth,
s, in the target results in a distribution curve
which starts with a finite f(s) at s=0, rises to a
maximum and falls away gradually to zero at a
depth several times the depth of the maximum.
This general character is possessed by all distri-
butions investigated, from 50 kv to 175 kv. The
depth of the maximum in microns is given ap-
proximately by S =0.8 (U—1). The depth to
the center of gravity of the distribution, which is
almost identically the effective depth of produc-
tion for normally emerging rays, ' is given ap-
proximately by S,= 1.45 (U —1). The maximum
depth limit is difficult to state since the curve has
no sharp intersection with the s axis, but the
depth at which the distribution has decreased to
1/10 of its value at the maximum may be stated
approximately as S~= 3.3 (U—1), at least up to
U= 5, after which 5& seems to increase slightly
faster with U. The height of the maximum of f(s)
varies from 2.5 times its value at the target sur-
face in the case of the 50 kv curve to 6.5 times
for the 175 kv curve. The height of the maximum
increases with U less rapidly as U increases and
attains a maximum between U= 6 and U= 7. The
area under the curves, giving the total emitted
energy, varies with U according to the formula
found by Webster, Hansen and Duveneck in a
different treatment of the same data.

It is a pleasure to acknowledge a number of
helpful conversations with Professor Carl Eckart
of the University of Chicago upon the solution of
Eq (7).


