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An Indeterminacy Relation for Several Observables and Its Classical Interpretation

H. P. RQBERTsoN, Princeton University

(Received September 10, 1934)

An examination of the limitations placed by the con-
ceptual structure of quantum mechanics on the simul-
taneous measurement of two or more observables leads,
for the case of an even number m = 2k of observables, to a
quantitative estimate, depending only on the mean values
of their commutators in the state in question, of the least
value which the product of their m uncertainties may

assume. This indeterminacy relation is interpreted classi-
cally to mean that, by measurement of these observables
alone, a point (p, q) in phase space can be determined only
to within a certain channel whose normal cross section, as
measured by the value of the 4th integral invariant taken
over it, must be at least of order h".

1. INTRQDUcTIoN

PERHAPS the most revolutionary and far-
reaching consequence of quantum mechanics

is the surrender which it entails of strict de-
terminacy as a fundamental physical principle.
That the limitations on determinacy thus imposed
are in some measure susceptible of quantitative
expression was first recognized by Heisenberg
and by Bohr, ' who showed from general con-
siderations that the product of the uncertainties
in the measurements of two canonically con-
jugate observables, such as p and q, must be at
least of the order of Planck's constant h. The
familiar precise form Ap Aq —h/4~ of this in-
determinacy relation for any two canonically
conjugate observables, in which their uncer-
tainties are measured by their standard deviations
(root-mean-squares of deviations from the means)
in the state under examination, was obtained by
Kennard' within the framework of quantum
mechanics, thus showing that it is inherent in
the fundamental postulates underlying the sub-
ject. The extension of this result to any two
classical observables (i.e. , functions of p;, q')
was given by Robertson, ' who showed that the
product of their uncertainties is limited on
the lower side by the mean value of their
commutator in the state in question. Finally,
the corresponding result for general systems was
derived by Robertson and by Schrodinger, 4 and
at the same time made more restrictive by the
introduction of an additional term depending on

'W. Heisenberg, Zeits. f. Physik 43, 172 (1927); N.
Bohr, Nature 121, 580 (1928).' E. H. Kennard, Zeits. f. Physik 44, 326 (1927).

3 H. P. Robertson, Phys. Rev. 34, 163 (1929).
4H. P. Robertson, Phys. Rev. 35, 667A (1930); E.

Schrodinger, Sitzungsber. preuss. Akad. Wiss. 1930, 296.
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the mean value of the anti-commutator of the
two observables.

Now since the commutator of two observables
is the quantum-mechanical analogue of their
classical Poisson bracket, these formulations
suggest the possibility of obtaining a classical
interpretation of the uncertainty principle, at
least insofar as it involves the commutator.
The present writer4 was in fact able to show
that it implied that the first integral invariant
I& = J'g p;dq' taken over an appropriately chosen
surface in phase space, is at least of order h;
since the methods employed in the (as yet un-

published) proof of this result are of importance
for the present work, the derivation is given in
the latter part of Section 2 below.

All of the above investigations have been con-
cerned with the uncertainty in the simultaneous
measurement of two observables. However, it is
clear that the measurement of more than two
observables must in general be subject to more
severe limitations than those imposed by the
above on each pair taken separately, for we
cannot in general expect that the conditions
necessary to insure minimum uncertai'nty in one
pair will be consistent with those which insure
the minimum in other pairs. This suggests the
existence of an indeterminacy relation involving
at once the uncertainties of all observables under
consideration. In the first part of Section 2
below we prepare the way for the derivation of
such a relation by presenting a proof of the
known inequalities for two observables in a form
susceptible of extension to the general case.
This extension is given in Section 3, where in
particular it is shown that the product of the un-
certainties of an even number of observables
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2. INDETERMINACY RELATION FOR TWO OBSERV-

ABLES AND ITS CLASSICAL INTERPRETATION

We begin with a derivation of the uncertainty
relation for two real observables a„(r=1, 2) in
a given state P, adopting in general the notation
and conventions of Dirac. ' For convenience we
introduce in place of n„ the two new (real)
observables

p, =u, —a„, where a, =pa, p (2.1)

is the mean value of O.„ in the state specified by
P or its conjugate 00; the mean value of P„ in
this state is then zero. Now let x„be two arbitrary
complex numbers, and consider the scalar square
of the composite state g(r)x, p„p; this (nu-
merical) quantity may be written

'I

O': Q P„,x„x„ (2.2)

cannot be less than a certain positive function of
their commutators. On taking into account the
correspondence between commutator and Pois-
son bracket this result leads, in Section 4, to a
classical interpretation involving the higher
integral invariants of phase space.

Ke may, then, take the Hermitian form 4 as
positive def1-nite 0 it can assume only positive
values unless all x„vanish. Expressed in terms
of its real and imaginary parts P,. and g... the
matrix element P„, is

4'r* 5r*+inr* 40 2 (pr pa+ p pr) o

(2 4)
Srs 22(prps pspr)0 22[r2ry 02s]0 'Ssr

where [u„, n, J is the commutator a„02,—. n, oo„of
n„, n, and the subscript zero again denotes mean
value in the state P. Note that the diagonal
element

4-=4.=0 (~. ~.)V=—(~~.)' (&o) (2 5)

is the square of the standard derivation 60., of
the observable n„ in the state P, which is to be
taken as a measure of the indeterminacy of u„ in
this state; this essentially positive quantity can
vanish only if P is a characteristic vector of a„
a possibility which we discard for the moment as
being included under the case of linear de-
pendence, for we should then have P„P=O (cf.
also footnote 5).

The necessary and sufficient condition, in
addition to the inequalities implied in (2.5),
that the form + be positive-definite is that

where x, is the conjugate complex of x„and det (p„,) =—$11/22 —
~

$12~'&0 (2.6)

4-=0 p.p.4 =(p.p.)o, (2.3) or, on employing (2.4) and (2.5), we may write

the subscript zero denoting, here and in all
quantum-mechanical formulae in the following,
mean value in the state P. The form + is
Hermitian, for P„„=P.„and by the fundamental
postulates of quantum mechanics it cannot
assume negative values. Furthermore + can
vanish only if p1$, p2$ are linearly dependent;
hence for simplicity of expression we sha11

assume during the course of the work that these
two states are linearly independent, and at the
end modify the result to take account of the
exceptional case.

' P. A. M. Dirac, The I'rinci p/es of Quantum Mechanics,
(Oxford, 1930). It is to be noted that in adopting this
viewpoint care must be taken to avoid the employment of
a state P which is a characteristic vector corresponding
to a point in the continuous spectrum of any of the opera-
tors a, for the formal evaluation of the mean value in
such a state of the commutator of n with any other
observable leads to the value zero—contrary to the fact
that, for example, the mean value of the commutator of
p and g in any state whatever must be h/271. i.

(+021' +022) —(P1P2) 0(P2P1) oy (2.7)

~121.&122~2I[~1 ~2)0~ (2.8)

This latter, more readily interpreted, form. is the
one with which we shall be concerned in the re-
mainder of this section.

We turn now to the discussion of the classical
analogue of (2.8), returning in the next section

'For the terminology and results here employed in
dealing with quadratic or Hermitian forms see, for ex-
ample, L. E. Dickson, Modern A/gebraic Theories, Chap.
IV (Chicago, 1930), or B. L. van der Waerden, Moderne
A/gebra II, Chap. XV (Berlin, 1931).

where equality can hold only if the P„f are
linearly dependent. This is the final form of the
uncertainty principle for two observables men-
tioned in the preceding section', on noting that
the right-hand side is equal to $122+g122 and
dropping the first of these essentially positive
quantities, we obtain the weaker form'
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p n

I„= ~l Pdp, dg', (2.9)

and we should therefore look for an interpreta-
tion involving it, where the integration is to be
taken over some 2-dimensional region invari-
antively associated with the observables n„(p, g).

Suppose, then, we attempt to locate a point
P(P, g) in phase space in such a way that the
values at P of two functionally independent ob-
servables n, (p, g) diRer from some given mean
values a„by not more than an amount of
absolute value bu„. Assuming sufficient regu-

larity of the functions in the portion of phase
space under consideration, the situation can be
described as follows (cf. Fig. 1, illustrating one
quadrant of the region here of interest). The

a, +/a

to the quantum-mechanical problem for more
than two observables. If the mechanical system
under consideration has but one degree of
freedom, it seems evident that (2.8) must be
interpretable in terms of area in the 2-dimen-
sional phase space of p and g; indeed, on applying
it to the canonically conjugate observables P, g
themselves, the relation Ap Ag=h/4m. is, as has
often been noted, to be interpreted as implying
that the position of a point in phase space can
be specified only to within a rectangle whose
area is of order h. But instead of following
through this simplest case for arbitrary functions
of P, g we turn immediately to the general case
of n degrees of freedom, and ask what quantity
is there the analogue of area. The answer is

clearly the first integral invariant

point I' must lie within the channel formed by
the four hyper-surfaces n, .(p, g) =u, .&Ra,. ; in
order to obtain a measure of the region over
which P can vary laterally we compute I& over
some appropriately chosen cross section of this
channel. Now there exists at any point A(pp, gp)

lying on the "center" of the channel, defined as
the intersection of the surfaces n„(p, g) =a„, a
unique direction associated with each of func-
tions 0. , namely, the "normal" at A to the
surface n(p, g) =c. This normal is described as
the locus of a point whose (p;, g') coordinates
relative to A, are

( —Xn;, Xn"), where n; = [Bn/Bg'$0,

n'= [Bn/Bp, ]p, (2.10)

X is a parameter specifying the position of the
point along the normal, and the subscript zero
here denotes evaluation at A. ~ We now choose
as the cross section of the channel, over which
I& is to be evaluated, that plane cross section
spanned by the two normals at A to the two
surfaces n, (p, g) =a„; its equation in terms of
parameters )" is therefore

P =P'0 —QVn„;, g' = gp'+ QX"n„'. (2.11)

Before proceeding to the evaluation of the
integral Ij we remark that this normal cross
section of the channel is unique in the sense
that of all plane cross sections it, and it alone,
renders the integral an extremum; in order not
to interrupt the present development we relegate
the proof of this interesting result to Note 8
below.

In order to evaluate Ij we must first determine
the range of the parameters )". Let Xi" denote
the parameters of the point A~ in which the 2-
spread (2.11) cuts the intersection of the bound-
ing surfaces n&

——a~+ha~, o.~=a2,' we must then
have

ng(P;0 —QX) "n„;, gp'+QXg'n„') =ag+8ag,
(2.12)

n2(P~O 2~1 nriyr gp +2~1 nr ) +2.

FIG. 1. Quadrant of normal cross section of channel in
phase space.

~ It may at first appear strange that the direction of
this normal" lies in the surface, as to terms of first
order in ), n(p;0 —Xo.;, g0'+)ia') =0. But it is to be re-
membered that the geometry of phase space is based on
the bilinear concomitant Z(i)(dp;Bg' —dg'bp;) of the two
displacements d, 8; hence every displacement is "or-
thogonal" to itself I That the normal lies in the surface is
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Xp' ———hap/(ui, uo) p, Xp' =0. (2.13')

Ij now becomes, in terms of the integration
variables )"

"a m i7(p gi)
Ia =4 dX'dX' (2.15)

i=& 8(V X')

where the p, , g' in the Jacobian are defined as
linear functions of X" by (2.11), and we have
made use of the fact that to within terms of
higher order in ba, the entire integral is the four-
fold of the integral. over the parallelogram de-
fined. by the three vertices A, A& and A,&. But
the value of the sum of the Jacobians occurring
in (2.15) is found to be —(ui, uo)p, whence

4&ai&ao/(ui, uo)o, (2.16)

it is convenient, for comparison with the quan-
tum-mechanical result (2.8), to write this clas-
sical one in the form

aai 8ao ——, ~
(ui, up)o~ ~Ii~ (2.17)

in terms of absolute values.
We digress for the moment to indicate an

illuminating alternative approach to Eq. (2.17),
which in effect reduces the problem for any two
observables u, (whose Poisson bracket does not
vanish at A) to that for two canonically con-
jugate ones. From this viewpoint we would

but an expression of the familiar fact that, on employing
a(p, q) as the Hamiltonian function, a =const. is an integral
of the canonical equations.

On expanding these functions u„about the
point A, and retaining only terms of first order
in the X~", we find

. ) i'=0, Xi'=bai/(ui, up) p,

where
(Bni Bng Bay Bo.qp

(uli u2) =z
~ ( (2 14)

'=& EBg' Bp; Bp; Bg'1

is the Poisson bracket formed from 0.~, n2 and
the subscript zero indicates, as usual, evaluation
at A. That X~' vanishes to within terms of
second order in the ba& is of course immediately
attributable to the fact that the normal to the
surface a2=a2 is tangent to the surface itself.
Similarly the parameters ) &" of A2, the point of
intersection of (2.11), ui=ai and uo=ap+5ap,
are found to be

first set up a linear canonical transformation T:
(p, q)m(p, g) which has as its (pi, g')-plane
the plane through A normal to the channel;
the equations (2.11) of this plane may, on
writing X'=ag', X'=bpi where ab.=1/(ui, uo)o~

be most significantly interpreted as defining the
correspondence induced in it by T. But to the
degree of approximation employed in- the above
we have on the cross section

ui Gi+b(u], up) pal uo ap a (ul uQ) pg', (2.18)

from which we obtain immediately the previous
result (2.17) on noting that in the new coordi-
nates the integral invariant Ii = J' J'dpidt
=48pi8g'.

In making this comparison between (2.17)
and (2.8) two points must be considered: first,
the relationship between the Poisson bracket
(ui, uo) at A and the mean value of the com-
mutator [ui, u&]; secondly, the relationship
between the sharp classical limits ba„and the
quantum-mechanical uncertainties Dot.„.The first
point is easily settled; if a„on the left is the
classical observable corresponding to the quan-
tum-mechanical observable o.„on the right, then
(ui, uo) (—2~i/h)[ui, uo], ' and since to the
approximation employed (ui, up)p is the mean
value of the Poisson bracket over the cross
section, we may set

(ui, uo)p = —(2~i/&) [ui, uo]o. (2.19)

The second point is somewhat more trouble-
some; we return for the moment to the simple
case ui =p, uo = g in order to examine it. Our
procedure above seems most reasonably in-

terpreted as being based on the assumption that
all points within the rectangle po&8p, go~8g
have the same a priori probability, whereas
those outside have zero probability; the standard
deviations of p, g are then Ap = 8p/3 &, Ag

=kg/3~, whence hpAg= ~Ii~/4 3. Now the older
quantum theory considered phase space as
divided up into cells of area h, and we should
therefore like to be able to conclude that the un-

certainty principle hpAg=k/4m could be in-

terpreted precise 'y as stating that it is impossib. le

to determine the location of a point (p, g) to
within an area ~Ii~ =Ji; this would demand,

' Reference 5, p. 96.
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however, the relations dp=8p/~', Aq=bq/~l-
and it is not generally held that ~ =3 9 We dis-
miss the whole quibble by taking the relation
between the 8 and 6 for any observable a in
the form

80 = (pal ) 'Dcx (2.20)

where p is a factor of proportionality which our
procedure seems to assign the value 3/m, but
which leads to a somewhat more satisfying
interpretation if, leaning on the older form of
quantum theory, it is given the value 1.

We are now in a position to give a precise
classical interpretation of the indeterminacy re-
lation (2.8), for on eliminating An~, Acx~ and

[n~, ng)0 with the aid of (2.20), (2.19) and
(2.17) we find

This highly significant inequality may now be
interpreted as follows: Whereas purely classically
the simultaneous measurement of tv o observ-
ables o,„may, in theory be so performed as to
constrain the representative point in phase space
of lie on the intersection of n„=a„, the quantum-
mechanical uncertainty principle asserts that
such observations can at most constrain the
representative point to lie within a channel
about n„=a„, whose normal cross section, as
measured by the value of the first integral in-
variant I~ taken over it, is of order h.

are clearly those which state that + is positive-
definit" i.e. , that its determinant, together with
the m —1 determinants obtained from it by
dropping out successively the last ns —1 rows
and columns, be positive. These conditions do
yield immediately inequalities of the form

(Any. hng. . An„) )F„,[(hu„)', P„,], (3.1)

where r, s=1, 2, m', m'=1, 2, m, Ii.„
is a (positive) multinomial of degree m —2 in
the (An„)'. However, these results as they stand
seem to hold little interest because of the rather
unmanageable multinomials, and so although
some useful information concerning the product
of the m uncertainties can be obtained from the
inequality for I'=m by a judicious use of the
remaining ones, we prefer to seek the (assuredly
weaker) classically interpretable extension of
(2.8) by a less direct attack.

Our modified objective is to obtain from the
form + an inequality which asserts that the
product of all m uncertainties is greater than
some positive function of the mean values
[n„, a,70 of the commutators alone, i.e. , of the
imaginary parts q„, of the elements P„,. As
the first step toward its attainment we take
note of an inequality which will eventually
enable us to eliminate the real parts P„of the off-

diagonal elements: by applying to the positive
definite form

3. INDETERMINACY RELATION FOR SEVERAL

OBSERVABLES

We consider now the extension of the relations
obtained in the previous section for two ob-
servables to the case of m observables n, (r = 1, 2,

, m). For a given state P we may define

P, =a„—a„as in (2.1) and construct the m-ary
Hermitian form N, Eq. (2.2), in which the
indices r, s now run through the extended range.
This form, whose coefficients are given by (2.3),
is positive-definite unless there exists a linear
dependence between the states p„f—a possi-
bility which we again exclude for the moment.

Now the most restrictive inequalities which we
can hope to obtain on the present line of attack

' See, however, W. W. R. Ball, 3/mathematical Recreations
and Essays, p. 297 (London, 1914), for references to
weighty empirical evidence to the contrary!

a theorem of Hadamard" which states that the
product of the diagonal elements of a positive-
definite quadratic or Hermitian form is not less
than its determinant, we obtain the inequality

(3.3)

equality holds here only if all off-diagonal ele-
ments vanish. This reduces our problem to that
of showing that the determinant of the real
parts t„, of the coefficients of the positive-
definite Hermitian form + is greater than some
positive function of the imaginary parts
Now in case m =2k is even the determinant of
the antisymmetric elements is the square of the

For an elementary proof of this theore~ see O.
Szasz, Math. u. Naturwiss. Ber. aus Ungarn 27, 172 (1909).
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PIa%an function'-'

det ($„,,) &det (q„,) ( =g»2), (3.5)

equality setting in only if the matrix of 0' is of
rank k; if m is odd this relation is of course
trivial, as then det (q„,) =0, but as we shall see
in the sequel we may expect a classical inter-
pretation along the lines initiated in Section 2

above only for even m. I have not been able to
find this lemma (3.5) in the literature, and have
therefore presented a simple proof of it in Note A
below.

On combining the two inequalities (3.3) and
(3.5) thus won, we obtain the desired extension
of (2;8) to the case of any even number»r» = 2k of
real observables n„'.

An». Dna . . &n2» —(1/2") ~g», ([nr, n']0) ~, (3.6)

where equality holds non-trivially only if all
].;„, (res) vanish and there exist exactly k linear
dependences between the states P„P. This result
is of little interest unless the rank of the
matrix ([n„, n, ]0) is m, as otherwise ff'» =0;
note that in particular this trivial case arises in

any sta, te P whatever if there exists between the
c~„a relation of the form

PX„n, =n, (3.7)

where a is an observable which commutes with
all o, However, for k & 1, a functional de-
pendence between the operators n„does not
uffice to make+», vanish; we shall have occasion

to return to this point in the sequel.
It is of some interest to compare this result

with the best inequality which can be obtained
1&y the repeated application of (2.8) above.
Consider the product Ao. » Ao. 2 60..~ as broken
up in any way into the product of k pairs of
uncertainties; corresponding to this resolution

"See, for example, G. Kowalewski, EinfNhrgng in die
Determinuntentheorie, p. 149 {Leipsig, 1909).

gk('mrs) P ( 1) gr»r» g'rar»' '' ' r»r~ »r~q (3 4)

where the indices (r», r2, , r,„) represent a
permutation of (1, 2, , »»») with P derange-
ments and the sum is extended over the 1 3 5

. . (»»» —1) distinct products. And it can in fact
be shown that under our conditions

there is exactly one term in/»„ in the sense that
it is the product of the k commutators of the
observables in each pair. Hence by applying
(2.8) to each of these pairs we may conclude
that the entire product hn» An2~ is not less
than 1/2" times the absolute value of any term
in g»,—and so, in particular, (2.8) alone implies
the inequality obtained from (3.6) on dividing
the right-hand side by the number 1.3 5

(»»» —1) of distinct terms in+»„.

4. CI.ASSICAL INTERPRETATION OF INDETER-

MINACY RELATION FOR SEVERAL
OBSERVABLES

Just as in the above we surmised that the un-
rertainty principle for two observables should
find its classical interpretation in terms of the
first integral invariant taken over an appropri-
ately chosen 2-dimensional surface in phase
spare, so in the general case of m = 2k observables
we may expect the classical analogue to involve
the kth integral invariant

I», ———I t p dp dq*& dp dq'" (41)
ktJ

taken over some m-dimensional surface in-
variantively associated with the m classical ob-
servables n„(p, g). We have here divided by k! in
order to avoid the duplication of integrands in
the sum corresponding to permutations of the
indices (i&, i~, , j»); k can of course not
exceed n, the number of degrees of freedom of
the classical system, and the integral of maximum
order

I.=)I ~ ' '
I

I dp, d»I» dp„dq" (4.2)

is the Liouville measure of volume in phase
space.

The development for m = 2 given in Section 2
clearly points the way in which the present
extension is to be effected. On assuming func-
tional independence of the m observables o, and
sufhcient regularity to insure the construction,
we choose any point A(po, qo) on the inter-
section of the m hyper-surfaces n„(p, g) =a„and
evaluate the integral IL. over the normal plane
cross section through A of the channel formed
by the 2m surfaces n„(p, g) =a„&l»a, . This
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normal plane is again defined by (2.11), in which
the summation index r now runs from 1 to m;
here we remark that the Ia so defined is again
an extremum (cf. Note B). In order to determine
the range of the m parameters ) ", denote by
X~" the parameters of the point At, in which the
I-spread (2.11) cuts the intersection of the sur-
faces O.I =a~, O.~=a&+6a&, ~ ~ ~, O.„., =a. . These
parameter values are defined implicitly in terms
of the ba„by

Io ——( —1)"g&,[(a„,n, )o]j . d) ' dX'o. (4.8)
U

Now in the approximation here employed the
volume of the entire )-region is 2 times the
volume of the parallelopidon whose rn defining
vertices A& adjacent to the vertex at the origin
have the X-coordinates (X&&, X&o, , 4 ); but
this latter is measured by the determinant of
the X&", whose value is given by (4.5). Hence

~, (P,o
—Zli&"oo-, qo'+ ZXi"oo, .') =a.+8„8a„ (4.3)

v here 8, &

——1 if s =t, 0 otherwise; retaining only
terms of first order these conditions yield

or, on taking absolute values and writing in a
form suggesting comparison with (3.6),

Q(oo. , oo.)o)«'= 8,&ha, . (4 4)

We shall in the following need only the value of
the determinant of the ) &", on evaluating the de-
terminant of both sides of this equation we find

g&,'[(n„n,)o] det (X&') =ha& ba, (4.5)

where we have made use of the fact that the
determinant of the antisymmetric (a„, oo,)o is
the square of their Pfaffian function, defined by
equation (3.4).

In terms of the integration parameters )"

~(P&ll q 7 t P~ &q o)

8(V . X'")

)(d&&,' ~ ~ dgoo (4.6)

where the p, , q' are the linear functions of X'
defined by (2.11).The integrand is the sum

$1~ ~ ~ $2a

—ny;,
2ig

—Ay ia 0!I a

~ , (4.7)

0'2a 'x 2a ' ' —o'2a ia o'2a '

"Cf. reference j.i, p. 38.

and on expanding these Jacobian determinants
by columns of 2-rowed minors" we find as the
value of the sum ( —1)ok!go[(n„, a,)o]; hence

Before proceeding to the interpretation of this
result in the light of (3.6), we note the at first
apparently discordant fact that whereas this
classical construction fails if the observables o.„
are even functionally dependent, the quantum-
mechanical result is trivial only if there exists a
linear dependence among their commutators.
But our procedure in this section has been to
retain only the zero and first order terms in
the expansion of the functions n„, and hence a
functional dependence is for our purposes equiva-
lent to a linear dependence of the form (3.7)
which suffices to render the quantum result
trivial.

On expressing the ba„, (n„, a&,)o in terms of the
Acx„[a„n,] byomeans of (2.20), (2.19) and com-
paring this classical result with the quantum
indeterminacy relation, we find

(4.11)

This leads for k=n to the familiar notion that
the least physically significant volume in phase
space is of order h". For k&n it is to be inter-
preted as asserting that the simultaneous ob-
servation of 2k dynamical variables a„can at
most constrain the representative point in phase
space to lie within a channel, about the inter-
section of the surfaces n„=const. , whose normal
cross section is of order ha.
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=-: Zg„,xrx„ I: Zi&„,x„x,

are both Hermitian forms, the former of which is itself
positive-definite, as shown by Eq. (3.2) above. Hence there
exists an affine transformation T: x„~y„which simul-

taneously transforms ™into the unit Hermitian form and
H into diagonal form:"

A. PROOF OF AN INEQUALITY

We append here a proof of the lemma employed in

Section 3: If O': Z1t„x„x,is a positive-definite Hermztian

form, then
det (P„,) )det (g„,), (A.1)

where ~~„(=p.,) and q„(=—q„) are the real and imaginary
parts of P„„the indices r, s assuming the values 1, 2, ~ ~ ~,

m =2k.
Under these conditions

by m arbitrary vectors (—p„;, y„') through A and showing
that the conditions

BI),/By„' =0, BIg/By„; =0
for an extremum lead to the previous definition.

Take, then, as the new m-spread

(B.1)

p; =p;0 —Zvy„;, g'=go'+ ~~rp ' (B.2)

II,=(—1)I 2 Sal . .Sa (C)'/A,

where C, A are the determinants whose elements are

(B.3)

On evaluating the integral I~ over this cross section—
omitting here the steps involved, as they are completely
analogous to those involved in the derivation of Eqs.
(4.3)—(4.9) above —we find it to be

(A.2)
Cst ~(psjpt ps ptj)q ast ——~{n„yt~—u.,~yt;), (B.4)

The (real) numbers 'A„are the m=2k roots of the secular
equation

I XP„,—is„, I
=0. On interchanging rows and

columns, and taking into account the symmetry properties
of the P„.and s„„this determinant becomes I) f.„+frl„[=0;
hence only even powers of ) occur in its expansion

I g„, I
V'+ ~ +(—1)",s„,l =0. (A.3)

The 2k real roots )„are therefore equal and opposite in

pairs, and their product is ( —1)"
I s„[/[t',.I. On renumber-

ing the y„we may take X„)0, )~+&= —X~, (m=1, 2,
~ ~ ., k), and the original form += -+H becomes

g': &[:(1+1.)[y I'+(1 —1.)lyi, I'3. (A4)

Since + is assumed positive-definite each ),„(1,and from
the above the product of all ) „, multiplied by (—1)", is

Is-I/Ib. [
—(4 &~ &a)'&1;

hence
I p„I ) I l„[,rq. e.d. Note that if we weaken the

original assumption that + is positive-definite to +~0
for s, /0, then Ip„, [~Is„,[, where equality can set in

only if the matrix (p„,) is of rank k.

B. EXTREMAL PROPERTY OF Iy

We here show that the integral II, defined as in Section 4,
i.e., over the normal cross section (2.11) of the channel
a,(p, g) =a„mba„, is an extremum as compared with any
other plane cross section through A. This we accomplish
by evaluating the integral over the cross section spanned

"See, for example, B. L. van der Waerden, reference 6,
p. 148.

respectively, and we have made use of the fact that because
of the skew-, symmetry of crs we may write gI,(c„)=(C)'.
The condition for the vanishing of the derivative of II, with

respect to any of its arguments y may now be written

(B/By) log C—2(B/By) log A =0. (B.5)

On defining est, ast as the normalized cofactor (cofactor
divided by determinant) of c, t, a, t in C, A, respectively,
and applying the usual rule for the differentiation of a
determinant, the conditions (B.1) for an extremum be-
come

Z(c'tBc„/Bp —2a"Ba,t/Bp) =0,
s, t

(B 6)

But these imply, on multiplication by ct, and summation
with respect to r, that the vectors (—y„, y„') which render

Ig, an extremum are obtained from the m vectors (—a„., n, ')
by the non-singular linear transformation whose matrix is

( Etc„tast), and therefore also define the normal cross
section employed in Sections 2 and 4, q.e.d.

It is to be observed that we have only shown that our
definition leads to an extremum; this is in fact about all of
interest here that can be shown. We cannot, for example,
conclude that this extremum is a minimum, although we
can make the invariantive statement that it is less in

absolute value than the integral over the "Euclidean"
normal cross section spanned by the "vectors" (B~/BP;,
Bo./Bq'), even though this latter is not invariant under
canonical transformations.

where 7 represents the 2mn arguments y„', y„;. On sub-

stituting the values of c, t, a, t from (B.4) these conditions
become

g(c«~„. a»~„.) =0 g(csr~, ' asr~, ') =0 (B 7)


