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The Rotational Wave Equation of Tetramethylmethane for Zero Potential and a
Generalization
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An exact solution for the rotational wave equation of
tetramethylmethane f'or constant potential has been found.
The solution is very similar to that of the rigid spherical
top, which is the other limiting case for the rotational
motion of the molecule in question. The energy levels for
free rotation of the methyl groups are spread out corn-

pared to those for fixed methyl groups. This might make
possible an estimation of the potential function between

the groups. The energy levels might be used to calculate
the specific heat. Some selection rules are given for infra-
red and Raman spectra although the rotational spectra are
just beyond the limit of resolution at present. A generaliza-
tion has been made for a spherical top with attached
gyroscopes whose axes are rigidly fixed on the top according
to certain symmetry requirements.

l; INTRODUCTION

~r ONSIDERABLE quantum-mechanical work~ has been done on the symmetrical top' and
Nielsen' has treated a generalization in which
there i's a degree of torsional freedom between
two principal parts of the rotator about an
axis of symmetry. The present paper gives an

exact solution for the spherical top with tetra-
hedrally spaced gyroscopes of equal moments of
inertia. This wave equation is of interest because
it becomes the rotational wave equation for
tetramethylmethane, C(CH3)4, if a suitable po-

tential function is added.

II. SOLUTION OF THE WAVE EQUATION

The five C atoms of tetramethylmethane, one at the center and four at the corners of a regular
tetrahedron, are equivalent to a spherical top. The C atoms at the corners are the C atoms of four
methyl groups each of which can rotate about a line through its C atom and the center atom. The
methyl groups are equivalent to the tetrahedrally spaced gyroscopes.

The coordinates used are as follows. The angles n&, n2, a3, and 0,4 give the positions of the gyro-
scopes, or methyl groups, with respect to the C5 tetrahedron. The angles 0, p and x are Eulerian
angles giving the orientation of the tetrahedron. The axes xp, yp, s'p in Fig. 1 are fixed in space while
the axes x, y, s' are fixed on the C5 tetrahedron. 0 is the angle between the sp and s axes, and q and

x are, respectively, the angles between the line of nodes and the x and xp axes.
The kinetic energy T is given in terms of the angular velocities by the expression

2T=II x2+2 cos exp+ j'+92I+P I, IL(Q„q sin q Qq cos q—) sin 8+Q,q cos 8$2xnq

+[Q„q cos y+Q, q sin y]28nj, +2Q,qxi4+o. a I, (1)

when I=moment of inertia of the whole molecule with the methyl groups fixed, I,=moment of
inertia of a methyl group about its axis of symmetry, and Q,&, Q» and Q,I,

——direction cosines on
the previously described x, y and z axes of the axis of rotation of the 0th n1ethyl group.

The kinetic energy in terms of the momenta is given by
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where IO= I (4/3—)I, and cos kl= the cosine of the angle between the axes of the kth and lth methyl
groups.

The wave equation was obtained by the method given by Schrodinger. ' It is
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Only the case in which the potential is zero will be considered. For this case it can be seen from
the wave equation that the nk's are cyclic variables. The wave function can therefore be taken as

4'(8, y, X, ng, np, ng, n4) =$(8, q, X) IIe' " ",
k=1

where the mk's are integers because of the single-valuedness of C. Substituting this wave function
into the wave equation gives
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It is possible to eliminate the terms in the preceding equation which involve y explicitly by
properly choosing the x, y, s axes with respect to the C5 tetrahedron. These axes are fixed on the
tetrahedron, but their orientation is arbitrary. The proper orientation for the elimination can be
found as follows. Along the axes of rotation of the methyl groups consider momentum vectors whose

' E. Schrodinger, Ann. d. Physik 79, 748 (1926); A. Sommerfeld, TVave 3/mechanics„'p. 124, E. P. Dutton and Co. Inc.
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magnitudes are given by the corresponding quantum numbers mI, . Then the expressions P'»m&Q, &,

P I,=~m~g„~, and +4~=~my, g,~ are components along the x, y and s axes of the resultant momentum
of the four methyl groups. For any given values of the mk's it is always possible to choose the x,
y and s.axes in such a ~-ay that the resultant lies along the s'-axis and therefore the x and y components
are zero. This can be shown analytically as follows. Take any set of fixed axes x", y", 2" on the C5
tetrahedron. Rotate p degrees about the s"-axis to get the new x', y', s' axes. Next rotate the primed
axes 8 degrees about the y' axis to get the x, y, s axes. Then the y and x components of the resultant
momentum of the methyl groups are, respectively

and

p mj, g„g ——E'2 sin (p —po)
k=1 (6)

P mug, q = ['X~' jZP cos' (P —Po) )l sin (8—Bo)
k=1

where X2, E8, po, and Ba'depend only on the mI„.'s and are theret'ore constant for any particular choice
of the mq's. Taking p = po and 5 = Bo gives

4

2 mug, a=0,
4

Q mug, p
——0,

and
4

P m&g, &=
~

P cos klmzm& ~
=the resultant momentum of the four methyl groups. (10)
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Then the wave equation becomes
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Since x and p are cyclic, P may be taken as

8~ Io—sin 8Q'P+ sin 8' =0. (12)
h2

(13)

where m„and m„are integers because of the single-valuedness of %. Substituting this value of P
into the wave equation gives
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Let

X = (Ss'Io/k')E —Q(IO/I, )mj, ' —Q'+2gm„.

Then the wave equation becomes identical with the wave equation for the symmetrical top. 4 The

4 A. Sommerfeld, reference 3, p. 13j..
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function O~(8) involves Jacobian polynomials; an expression is given for it later. The energy levels
are given by the formula

Z = (k'/Sir'Io) Ij(j+1)+P (Io/I, )m&,'+Q' —2Qm„I,
k=1

(16)

where the total quantum number j is an integer equal to or greater than the larger of the two quanti-
ties

~ m„~ and
~ m„~, and Q is the vector sum of the momenta of the methyl groups as given by

Eq. (11).

III. SELECTION RULES

It has been mentioned that the q-axis was taken in the direction of the resultant momentum of
the methyl groups in order to separate the variables. It will now be shown that selection rules for
j, rn„, and m„can be obtained for transitions in which it is not necessary to shift the p-axis, or in
other words for transitions in which the direction of the resultant momentum of the methyl groups
is not changed with respect to the C5 tetrahedron. If no interaction between vibration and rotation
is assumed, then the wave function can be written as

%(0, x, p, ai, a&, $i, $.) =P(8, x, p)e'"" e""«Hi(pi) H„(f„),
when the $i, 's are normal coordinates of vibration, and the Hi, (&~)'s are the corresponding eigen-
functions.

Let M, and P;& be, respectively, the electric moment and polarization for axes fixed in space and
3II;. and P; i, the moment and polarization for axes fixed on the sphere. Then

M;=PM, cosii' Pgg = Q Pygmy cos 'N cos kk,

when cos ii' is the cosine of the angle between the i and i' axes. It can be seen that M', and P, q

depend on the n&'s and t&'s, and the quantum numbers mi, m2, m8 and m4, which determine the
direction of the p-axis, while the functions cosii depend only on 0, x, and p. The matrix elements
for the infrared and Raman transition probabilities can therefore be written as

and

V, m1, ~ ~ m4, j, m~, mx &, m1, "m4 pi mph mg
(M,)i„, „... „, ,„=P(M, )i. .. .. , ,, (cosii'). .i'

V', m1, ~ ~ «m4, j, m&, mX V', m1, ".m4 mph mg

(PQ)ig ~ g . ~ &i si ~r ~i P (Pj~g~)y'r ~ g . . .~ s(c sozz cos kk )
gl I

(20)

(21)

when V and V' represent the totality of vibration quantum numbers. It will be seen that the matrix
elements (cos fi')," ".

„'
",„and (cos ii' cos kk')&,

' ".„' "„.are the same as those occurring in the corre-
sponding matrices for the symmetrical top. The selection rules for this case are therefore as follows.
For infrared transitions Aj, dna„and Am~ can have the values 0 or +1, while for Raman transitions
they can have the values 0, ~1, or ~2.

A rough idea of the selection rules for the methyl group quantum numbers can be obtained as
-follows. Consider classically, first, vibrations of the II atoms of a single methyl group, the C atoms
being assumed fixed, and second, vibrations of the C atoms, the H atoms being assumed rigidly
fixed to them. The forces and masses involved in these two classes of vibrations show that the
frequencies of the two classes diRer considerably. It follows that the normal coordinates of vibration
of the tetramethylmethane molecule can be divided into two classes with the following properties.
Each normal coordinate in the first class depends almost entirely on the coordinates of the II atoms
of a single methyl group while the normal coordinates in the second class depend almost entirely
on the coordinates of the C atoms. Designate the quantum numbers of the first class by U& and U. '
and those of the second class by V2 and V2'.
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Let the assumption now be made that the electric moment 3I,' and the polarizability P, z. with
respect to the C5 tetrahedron can be expressed as follows

M ' =3/I'&'+PcV" /) and P'/ =P'/ +EP'/(c) . (S)

l
(23)

where the first term on the right in both expressions depends only on the coordinates of the C atoms,
and M; //) and P;./,

'" depend only on the coordinates of the H atoms in the lth methyl group.
The remainder of the argument will be carried out only for the electric moment. ; it can be applied
equally well to the polarizability. Let 3f;", represent the moment of the FI atoms of the 3th methyl
group with respect to axes fixed on this methyl group. Then Eq. (22) becomes

3II; = 3II; ~') + P 3';. , cos i'i" /, (24)

when cos i'i"
~ represents the cosine of the angle between the i' axis and the i"~ axis on the 3th methyl

group. The matrix elen-. .ent can then be expres ed as

when

j, m~, mX, &1, W'2, m1, ~ ~ m4 f mpfm &1, m1, ~ ~ m4
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(25)
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i I V
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W'1 f'
+ P (2;,")v, ~~

cosq'q'/"e™ m&' a& e™~"4' a4da . dn . (26)
l i"

The first integral is zero unless all the mq's do not change, while the parts of the other integrals
involving 0, ~ are the same as those occurring in the case of the rotator. The selection rules therefore
become d m~ = 0, &1 for infrared transitions. A similar treatment gives Amj, = 0, ~ i, ~2 for Raman
transitions. It also follows from Eq. (26) that two /x//, 's cannot change simultaneously; this is a
result of the assumed independence of the electric moment and polarization of the methyl groups.
Since this assumption is not strictly true, the selection rules obtained for the nz&'s are only approxi-
mate.

IV. DIscUssIoN oF WAvE. FUNcTIQNs& ENERGY LEvELsp AND SELEcTION RULEs

In summing up it may be said that the Eulerian angle x and the four angles nl, giving the positions
of the methyl groups were cyclic. The Eulerian angle p was made cyclic by taking the p-axis in the
direction of the resultant momentum of the methyl groups. This gave the follov ing wave function

xfi(g X + /x~ /xq ~q +q) Qa(g)e™xxe/myqe&nlale™2aqe™aa3e™4a4

where the quantum numbers are all integers because of the single-valuedness of +. The di8erential
equation obtained for O~(8) is the well-kpown one obtained in the case of the symmetrical top.
The function Oa(8) is a polynomial of the lth degree in cos 8 and has the form

when
Q~&(m&) (mx) (g) —(1 z) I mq, mxl /q(1+—z) lmq+mxl /qG/, (p /l ~)

~*= ( f
~„—~, I+ f~„i~„J)/2,

x'-q(1 -x)q-~ d'-"'
G (p ~ &) . [&q+l m 1(1 &)—p+/ ——m"—qj

g(/i+1) (q+l —m~ —1) dx' m'

(28)

(29)

(3o)

g=1+ ~m„+m„~, (31) p =2qqq*+1 (32) and x = (1+cos 8)/2. (33)

The function 6/ „*(p, g, x) is the l —mth Jacobian polynomial in x.
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FIG. 1. Eulerian angles.

The energy levels are given by Eq. (16). A
diagram of the lower levels is given in Fig. 2
where the lower levels are also given for a
molecule of tetramethylmethane with the methyl
groups assumed fixed, which is the limiting case
of the rotational motion for low temperatures.
It can be seen from Fig. 2 that the six lowest
energy levels for the two cases nearly coincide.
They do not coincide exactly because the
moment of inertia of a molecule with free methyl
groups is slightly less than it would be if the
methyl groups were fixed. This can be seen from
the following classical consideration. Consider a
torque applied to the molecule about one of its
methyl group axes. This methyl group will not
have to be accelerated, and therefore a greater
acceleration will be given to the rest of the
molecule than would be the case if the methyl
groups were fixed.

The energy levels above the sixth are spread
out compared to those for the rigid spherical
top. This is caused by removal of the degeneracy
in ns„ in levels above the sixth. The energy
levels might be used in calculating the speciFic
heat, and the spreading out of the levels for the
case of free rotation might make possible an
estimation of the potential function between the
methyl groups.

Although the rotational spectra of tetra-
methylmethane are at present just beyond the
limit of resolution, the selection rules may be of
value later. For transitions in which the direction

of the resultant momentum of the methyl groups
remains the same with respect to the C~ tetra-
hedron, the selection rules are the same as for a
symmetrical top, namely, Aj, Am„and hm„can
have the values 0 or ~1 for infrared transitions
and the values 0, &1, or ~2 for Raman transi-
tions. In transitions of the methyl group quan-
tum numbers which involve a shift in the y-axis,
the selection rules for j, rn„, and m„are probably
much less sharp because the y-axis is shifted in
a rather arbitrary manner. Approximate selection
rules were obtained for the methyl group quan-
tum numbers by assuming that the interaction
of H atoms. in different methyl groups did not
affect the electric moment or polarization. These
approximate selection rules indicate that the
stronger lines probably occur for infrared transi-
tions in which Anz~=0 or &1 and for Raman
transitions in which Ansi, = 0, ~1, or ~2.
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FIG. 2. Energy levels.

V. GENERALIZATION

It has been found possible to generalize the
conditions for which a wave equation analogous
to Eq. (3) applies. Consider a rigid body with
gyroscopes attached to it in such a way that the
axes of the gyroscopes pass through the center
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of gravity of the combination, the axes being
fixed on the rigid frame. Assume the following
three conditions to be fulfilled.

(I) The combination of the rigid frame and
gyroscopes is a spherical top for all values of the
coordinates giving the positions of the gyro-
scopes.

(II) Each of the gyroscopes is a symmetrical
top which rotates about its unique axis through
its center of gravity.

(III) The axes of the gyroscopes are placed in
such a way that

Q Ii,Q~'=&i,
k=1

when II,= the moment of inertia of the kth
gyroscope about its axis, Q&= the direction cosine
of the kth gyroscope axis on an arbitrary axis q,
XI=a constant for all axes q, and the sum
extends over all the gyroscopes.

The only changes necessary to be made in the
previously obtained expressions for the kinetic
energy, the wave equations, and the energy
levels are the following. The sums extend over
all n gyroscopes; the moment of inertia I, must
be replaced by Ik,'and Io becomes I—X1.

In conclusion I wish to express my gratitude
to Professor Linus Pauling for having suggested
this problem and for having made many valuable
contributions to it.
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The Effect of Concentration, Temperature and Wave-Length of Light upon the
Verdet Constant of Cerous Chloride Solutions

FRANcIS G. SLAcK, RALPH L. REEvEs AND JAMEs A. PEQPLES, JR., Department of Physics, Uanderbilt University

(Received June 20, 1934)

The Verdet constants of solutions of cerous chloride in
water have been measured at concentrations varying from
zero to an almost saturated solution. Measurements were
made at temperatures from 10 to 45'C and for the wave-
lengths 5893, 5461 and 4481A. The results are given in
the form of curves showing the Verdet constant as a
function of temperature and as a function of concentration.

Tabulated values of the concentration, density, index of
refraction and Verdet constant of the solutions are also
given. Attention is called to the point that the effect
attributed by Allison and Condon to a time lag in the
Faraday effect may have been due to a temperature
change during the course of their observations.

HE magnetic rotation of the plane of polar-
ization of light is particularly interesting in

the case of solutions of cerium salts. These
solutions, when fairly concentrated, cause a
negative rotation (opposite the direction of flow
of current producing the magnetic field) and
solutions may be prepared which for any one
temperature and wave-length produce zero rota-
tion. Data on the Verdet constant of these
materials are not found in any standard tables
nor in the literature.

The Verdet constants of solutions of cerous
chloride in water from zero concentration to an
almost saturated solution have been measured
at temperatures from 10'C to 45'C for three
wave-lengths of light'. The rotations were meas-
ured by means of a Schmidt and Haensch

"Lippich" half-shade polarimeter, which could
be read to hundredths of a degree. The three
light sources used were: (1) the mercury "Lab-
arc" with Corning Didymium and G34-Y filters
to transmit X5460.7A; (2) a sodium arc with
Jena filters OG-1 and VG-1 (each 2 mm) to
transmit the D lines at li5893; (3) a spark
between magnesium electrodes with Jena filters
BG-4 plus GG-3 (each 2 mm) to transmit the
spark line at )4481. The spark was operated
from a Thordarson spark transformer with a
condenser across the secondary.

The liquid whose rotation was being measured
was placed in a water jacketed cell' 26.15 cm

' Thanks are due to Professor H. W. Farwell of Columbia
University for the use of these cells.


