
OCTOBER 15, i934 PHYSICAL REVIEW VOLUME 4 6

Contribution to the Theory of the Comyton-Line

F. Br.ocH, Department of Physics, Stanford University

(Received July 24, 1934)

Starting from Wentzel's theory of the Compton scattering of bound electrons, and assuming
that the motion of the electrons in the atom can be described by hydrogenic eigenfunctions,
general formulae are developed for the calculation of the intensity distribution in the Compton
line. It is shown that the interaction of the electrons with the atomic nucleus gives not only a
broadening of the Compton line but makes it also asymmetrical, shifting at the same time the
position of the maximum intensity from Compton's value AX = (h/assoc) (1—cos 8). The "defect
of the Compton shift" is shown to be quadratic in the wave-length of the incident radiation.
This law as well as the value of the constant entering into it are found to agree satisfactorily
with experiment.

INTRODUCTION

N the original form o'f the theory of the Compton effect, as given by Compton' and Debye, ' it is
assumed that the scattering electrons can be considered as free and at rest before the scattering

process. This assumption is justified if the energy of the electrons after having scattered is very large
compared with their binding energy in the atom, and leads to the well-known formula for the increase
in wave-length of the radiation, observed at an angle 0 with respect to the primary radiation:

DX= (h/moc) (1—cos 0)

(h= quantum of action, mo= mass of the electron, c=velocity of light). In this approximation, where
the binding forces are neglected, one should expect that monochromatic primary radiation under
every angle would give rise to a sharP Compton line, the position of which is given by formula (1).
The more detailed analysis of the Compton line, however, as performed in recent years4 has shown a
distinct broadening and shape for the Compton line. Moreover, the position of the maximum intensity
of the line is not given by (1) but, according to the measurements of Ross and Kirkpatrick, ' by the
corrected formula

AX= (h/moc) (1—cos 8) —DX', (2)

D being a constant which depends on the scattering substance, and ) the wave-length of the primary
radiation. For the wave-lengths and observation angles used the order of magnitude of the "defect
of the Compton shift"

(3)

is of the order of magnitude of 1 percent of the total shift AX.

It is clear that both the broadening of the line and the defect of the shift are due to the binding
forces, acting on the scattering electrons. As DuNtond showed, the broadening of the line can easily be
understood by ascribing it to the Doppler effect, due to motion of the electrons in the atom and there-
fore proportional to their velocities. Indeed, the observation of the broadening of the Compton line

may be said to give direct information about the velocity distribution of the electrons in the atom.
Since the average speed of an electron is essentially proportional to the square root of its binding

i A. H. Compton, Phys. Rev. 21, 483 (1923).
~ P. Debye, Phys. Zeits. 24, 161 (1923).
~ The very small broadening of the line, due to the reaction of the scattered radiation on the electron can here be entirely

neglected. Compare I.Wailer, Zeits. f. Physik. 88, 436 (1934).
4 G. E. M. Jauncey, Phys. Rev. 25, 314 (1925);31, 723 (1928);H. M. Sharp, ibid. 20, 691 (1925);Jesse W. M, DuMond,

ibid. 33, 643 (1929); 30, 146 (,1930); F. L. Nutting, ibid. 30, 1267 (1930).
~ See the preceding paper of P. A. Ross and Paul Kirkpatrick.' Jesse W. M. DuMond, Rev. Mod. Phys. 5, 1 (1933).
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energy, the broadening of the Compton line is also proportional to this square root. It is obvious that
the consideration of the Doppler effect can only explain a symmetrical broadening of the line around
the position of its center of gravity as given by (1), since the average of the electronic velocities in
the atom vanishes.

In order to get an explanation of the defect of the shift Q, one has to go one step further. By a
simple consideration, Ross and Kirkpatrick' obtained for the constant D in (2) and (3)

D= zE/kc, (4)

where E is the binding energy of the electron under consideration and ~ a numerical constant of the
order of magnitude 1, the exact value of which could not be obtained by their semiclassical method.
Nevertheless, formulae (3) and (4) account for the observed order of magnitude of the defect 9„
and for its dependence on 'A. Since the broadening of the line is essentially proportional to 4 8 while
6X is proportional to Z, the latter may be said to be a higher order effect, provided the binding energy
is considered small compared with the recoil energy of the electron after the scattering process.

A consistent wave-mechanical scheme of the Compton effect of bound electrons has been given by
Wentzel. ' However, he worked out his formulae only for the case of a X-electron, as in the hydrogen
atom, and furthermore restricted himself to an approximation which accounted for the broadening
but not for the defect of the shift of the Compton line. In order to make possible a quantitative
comparison between the theory and the measured data for Be and C' we have generalized his results
for the case of higher electronic orbits, assuming that the forces acting on each electron can be ap-
proximately described by a Coulomb field with properly chosen screening constant. The method repre-
sents a series-expansion in powers of the binding energy, which goes far enough to allow a calculation
of the defect Q, ; in this approximation the law (3) is verified and the constant D is determined in
satisfactory agreement with experiment.

2. GENERAL FORMULAE FOR THE INTENSITY OF RADIATION) SCATTERED BY AN ELECTRON IN A

CoULQMB FIELD

We consider an electron with principal quantum number n and angular momentum 1h/2m before
the scattering process in a Coulomb 6eld with effective nuclear charge Ze; its binding energy is then
given by

We call the frequencies of the incident and scattered radiations v and u, respectively, and the energy
of the electron after the scattering process

It will be assumed that
ku((woe~,

(6)

so that all relativistic effects can be neglected; furthermore we assume

We shall see later that, in order to account for the defect of the Compton shift, it is sufhcient to
consider in the expression for the scattered intensity only terms of the relative order of magnitude 1
and (Z/W) . In this approximation, as in Wentzel's paper (G), we still need only to consider Dirac's
"true scattering" processes.

Using formulae (10), (12), (12a) of G, and considering that the primary radiation is unpolarized,

~ P. A. Ross and Paul Kirkpatrick, Phys. Rev. 45, 223 (1934).
G. Wentzel, Zeits. f. Physik 43, 1, 779 (1927);Zeits. f. Physik 58, 348 (1929). (We shall refer to this paper from now on

as ( l G) ) )
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we can write the intensity scattered by our electron at an angle 0 with the direction of the incident
radiation into a frequency range between v' and v'+dv' in the form

dlnla lp
moC4r

27r'e4 1+cos' 0 +
dk'

) ~„(, k (Ak) ~'dm,
hk

(9)

where II is the intensity of the primary radiation, r the distance from the scattering atom, k the
quantity defined by (6). e„&., k„(Ak) is the matrix-clem'ent, associated with transitions of the electron
from the initial state (n, 1, a) to the final state (k, m). As in G, we use parabolic coordinates p, g, 2)2

to describe the position of the electron; if v and v' are vectors wit'h an absolute value equal to the
frequencies and directed in the direction of propagation of the incident and scattered radiations,
respectively, the azimuth p of our parabolic system of coordinates is measured around an axis in the
direction of the vector

&0= (22r/(:) (v —v'). (10)

The quantity a in (9) is the azimuthal quantum number of the initial state with respect to this axis,
m is a parabolic quantum number, related to the direction of momentum of the recoil electron, dk
is the absolute value of the vector LA, defined by (10).The matrix-element e„&, )k (hk) is then given
by'

2m CO 00

~.2. , k (~k) =& " dV f d5 ( dn(h+n)e"'" ""Vk-(&nV)0* 2.(hnV) ~

0 p ~ p

p „i, is the conjugate-complex of the normalized eigenfunction p„&, of the initial state, pf, , is the
eigenfunction of the final state. We add here the azimuthal quantum number a to the two quantities
(k, m), used before to describe the final state in order to remember that the component of the angular
momentum in the direction of ~k remains unchanged during the scattering process, due to the fact
that the perturbation function e'~~&& &~I' does not contain the azimuth q. Writing

(12)

(12a)

we can perform in (11) the integration over p, finding

k„i. k (Ak) =— f d$ ) dr/($+rf)e' "(& "»'uk ($2))u 2 ($rf)
0

'
p

(11a)

According to (8) the final state (kma) has to be assumed to be in the continuous spectrum. Using
the well-known methods developed by Schrodinger, " the eigenfunction nq„, ($2)) can be represented
as in G by complex integrals. We write

(13)
with

f(k)=(1/2 t),f, e"t(t -ktk/2)»' '&'+'&e+ &(1; tk/2)»' —'&' '«e »tt— — "

and

2. (e) (1/2 t)ge" (t ,+2k=/2)& » '+ &e &(t t' k'/2')& ''» ee —&kt

P = (1/2k) (42r'Zm os'/k') .

(14)

Compare G, formulae (4) and (26).
E. Schrodinger, Ann. d. Physik 4, 361 (1926); 4, 437 (1926).
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Cl,„„——-'22l 2&t: +'e e( r[(1—a)/2+2(Pym)g
~ ~

r[(1—a)/2+1(P —m)] ~. (14a)

With this normalization and the condition, that

The same considerations which lead to formula (24) in G give the constant of normalization, enter-
ing into (13)

2x 00 OCI

n)a
0 0

(16)

it can be shown, as in G, that under the assumption (8)

dk de enta, am ~~
0 —CO

which, using (6) and (9) gives for the tots, l intensity scattered at the angle 8

(17)

I„l,= dI„l, Ip(e'/——2mt&2c'r2) (1+cos' 8).

This is Thomson's formula for the scattering of free electrons. We shall see later, that in our approxi-
mation, although the spectral distribution is changed, the total intensity is still given by (18),
since (17), in this approximation, remains valid.

In polar coordinates, re, the function u„l, in (12a) is given by"
2 l+ I

u„l,= C 1 e "&2(ar) &P&'(cos tt)I.&+ (ctr)

where the constant C„l, has to be determined such that (16) is fulfilled and t&t is given by

t2 = 8&r2Zmt&e2/nt&&2.

In order to get a general expression for the quantity (11a) consider the expression

(19)

(20)

e„«, 2 (ak)
g«(k, m, ak, t) =—P

~ ~-1 C„«(n+t)!
(21)

Performing the summation under the integral in (1la) and using the formula"

and (19), we find

t tt l 1(——1)2l+1

(12r) — e—ttrt/(1 —t&

n=1 (n+ I) ! (1—t) "+'

( 1)21+1 m ctt

g«(k, m, hk, t) =
I d$ I

dt&($+t&)e'~2'«& "u1,()t&)(txr)tPt'(cos 2't)e & ""&&' t&'&'+t& (22)
(1 t)2l+2 J

In order to express the variables r and 2&, entering in (22), by means of the parabolic coordinates $

and q, we use the expressions

Writing
cos 2& = (g —t&)/(P+ t&). (23)

Pl'(cos 21) = (1 cos' 2&)'—"p c~ cost' 2&, (24)

"Cf. A. Sommerfeld, 8'ave Mechanics, page 60 8."E.Schrodinger, Ann. d. Physik 4, 431 (1926).
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where the quantities c„are certain numbers defining the spherical harmonics Pla, we find, using (13),
(14), (22), (23) and (24)

(ik) —oa {)ll ( 1)2l+1 1 a /Iaa co

gl. (k, z/z, 1) k, t) =— 2 e. ' d( i
d~(!+~)'+' "-(S-n)-"(t~)

4zro 2' a (1—t)"+' n o ="o ~o

P
—)) {11 +t ( Zk) (a—1) /O+'(/1+m) ( Zk) (a—1) /O I(//+m—)

XeXp i&k +— ($+z/) e' &I tl+—
I

dtl
2 41—t ( 2) 2)

( zkq (a—1)/o+/{// —m) ( Zk) (a—1)/2 —1(e—m)

x "Ito+—
I2) 2)

( —1)o'+1 l ( —{) {l ) 1 l a & ( {) {1 q 1—»m ~" I +
4zro 2l a — (1 t) o/+o &q, a2~0 y o ({ltll 8/{lo) E Btll . {)/12~ {)tzla{)tzoa

(zk)-'a n'

( i/)k {21+t q ( zk) ' ') "+'(e+ ) ( zk) (' ')" "e+ '
dtl dt exp &I tl+ —— +&) I I

tl+—
I

2 41 t ) & — 2)
CO ( z/) k u1+t q ( ikq (a ') "+'{~™)( zk) (' "" '(~ "'

dt, d)) exp 1)I to — +/{lo
I I

to+—
I I

to—
I

. (25)

~ ~

~

E 2 41—t ) E 2) 2)
After having performed the integrations over P and )), the remaining integrand in the integrals over
t~ and f2 have simple poles for

n 1+t iAk
t~' =— —p~—

41—I, 2

n 1+t iAk
and t2' =— —p2+, respectively.

41—t 2

The application of the theorem of residues gives"

gl. (k, z/z, Ak, t) = (zk) " n' (—1)o'+1 l a ( {) {—) ) 1+'—a—& ( {)
+2'- (1 t)"+' o=o E Btl, —Btlo) EB/{11 8/{zo) Bt{1 Btlo

(n1+t pk —kq ( -') "+'{e+")(n1/t
&&

I

— —
t 1—Z

(4 1 t 2 —)' &41 —t

gk+kq (a—1)/o+'(// —m) ({11+t pk —k) (a—1)/1 &(// m)— —
—/{lopez I I

go+i —
I (26)

&41 t 2 —) (41 t 2 )—
This expression can be simplified, if we restrict ourselves to the zero and first power terms in an

expansion with respect to P, which according to (15), (5) and (6) is of the order of magnitude of
(E/W) and, accepting (8), can be considered as small compared with unity. Since we have to expect
a considerable contribution to the scattered intensity only, if Ak —k is of the order of magnitude of
a, i.e. if the momentum transferred to the nucleus is of the order of magnitude of the momentum
which the electron has in its initial orbit, we can write y= a/2(/) k+k)= n/2k or, according to (15)
and (20)

p = 2P/)z. (27)

In the expansion of (26) we can then neglect all terms which are quadratic or of higher order in P
"I

"Cf. the analogous considerations, which lead to formula (28) of G.
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and y. With
V = (2/a) (Ak —k); T1 ———4ti(/n, T2 ———4ti2/n, (28)

and using (14a), we find in our approximation:

p~~
—2+2mi

q,.(k, m, ak, t) = 8~-t( —2) 'I —
I(2)

$1—a -r
(1 t) 21+2 (g k+ k)1 a+2mi—

1 —0
+i(P+m)

2

1 —a
X r +z(p —m)

~1+1 a Vp (i
—

g yn
lim P c„I +

0 m=0 I( BT1 BT2) ECIT1 8T2) 8T1 8T2

) (a—1)l2+im (Iyt ) (a—0/2+'m

+T1—zv
I I

+T2+zv
EI -t ) 41 t-

1+t+ (1 —t) (T,—zv) )(2 —1
X 1+iP lg +i7I zm—I(T, T,)—. (29)

1+t+(1—t) (T2+k) & 2

Once the expression (29) has been determined for given numbers l and a, we obtain readily the
quantity ~ 1,, & (Ak) by differentiation with respect to t. Indeed, according to (21) we find

8" ' 'gi (k, m, Ak, t)
e 1., 2 (Ak) =2(t( —1)'2—2-'(A„(.)&

g]n—l—1 /=0
(30)

The constant (A„(,) ' of (30) stands in a simple relation to the constant of normalization C„i, ap-
pearing in (21). Instead of determining C„i, from the Eq. (16), we can determine A„(, by the equiva-
lent Eq. (17) after having calculated e„&,, &„(Ak) from (30). The fact, that relation (17) remains valid
when all quadratic and higher terms in P and p are neglected can be seen from (29). Indeed, by the
substitutions T1—2T2, T2—2T1, s—2 —zi all the terms in (29) not containing p or p do not change, while
the terms with P or y change their sign and vice versa. Those terms in

I
e

I

' which are linear in P or y are
therefore uneven functions of v and therefore their integral over v, or over k as in (17), vanishes, thus
giving no contribution to the total scattered intensity.

3. SCATTERING OF ELECTRONS IN THE X- AND I-SHELL

We proceed now to calculate the contribution to the Compton scattering of electrons in the different
orbits of the X- and L-shells. Assuming hydrogenic orbits, we can express the constants P and y
entering in (29) and (30) in terms of the observed binding energy Z, using (5) and (15) and (27).
These constants are, of course, different for different orbits and elements.

(a) s-electrons
l—a

Here, we have l=(1=0; in the sum g of (29), there appears only the term with P=O and it is,
y=0

according to (24), c2= 1 since P, (cos 8) = 1.
A straightforward differentiation with respect to T1 and T2 and taking the limit T], TWOMO gives:

(~q
—2+2mi

g22(k, m, Ak, t) =82r
E2)

k
. IrI l+'(0+ )HIIrI:l+'(& — )ll

(gk+ k) 1+2m(

- -:+'-
t 1 +tq 1+3—(1 t)zsy-

x—
I I +"

I
I(- I+»m)11+'(3 lg - . I

-»~ (31)
(1 —t)' &1 t) (, 1 ——t) 1+t+ (1 t)zv)—
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In order to obtain explicit expressioris for the scattered intensity of the s-electrons in the E- and
J-shells, we have to treat the two cases separately.

(cz) E shel-l. Since n=1, /=0, we obtain from (30), taking simply the expression (31) for 1=0 and
noticing

iP Ig [(1 i—v)/(1+i v)] = 2P arctg v

E o)p, gg„(Ak) = (A ioo) '(a/2) '+'"'(k/(Ak+k)'+'"')
(
I [,'+-i(P+m)] ((F[-,'+i(P —m)g (

(1+v') &+'"

&& I
—1 —2P arctg v —2Pv+2mi(1+2P arctg v) I. (32)

Taking the absolute square of (32), we neglect again all quadratic and higher terms in p. It can be
easily seen, that in this approximation the terms containing P in the I'-functions of (32) can be
neglected.

We use the relation'4
~

r(-', +'m) ~'=
~
r(-,'—zm)

~

'= ~/ch~m, and further

k = hk ——',nv = hk(1 —n/2hkv) =6k(1 —yv)

6k+ k =26k ——', av = 26k(1 —nv/46k) =26k(1 ——',yv).
(33)

Eqs. (33) follow from (28) and (27) which, for n=1 gives &=2P. Hence we obtain

( 6)00 p (dk)
~

' =A&00(n/2) '(v'/4)[(1+v') '/ch'')rm] I (1+4m')(1+4P arctg v)+2Pv}. (34)

For the following integrations over rn, we make use of the formula"

~ mgdm + (m+i)'dm 4 (~ q ))
~ ~

ch' m)rch'arm v E2)

which, applied for g= 1, 3, 5 gives

f dm 2

ch'zm

With the help of (35) we find

+ m2dm 1

ck'm-m 6x f+ m4dm 7

ch'xm 120m
(35)

().;a))~'=Jr )», a )S))~'dm=A»( /2) '( /(1+v')'))(5/6)0+ Par4ctgv)+))e) (36)

In order to satisfy (17) we have to choose the constant A„, such, that according to (28)

J &xoo k& ~k 2dk —n 2 ~zoo k ~k 2dv=1
0 CO

(37)

Since 1+v is an even function of v, while arctg v and v are uneven, the terms of (36) containing P
give no contribution to the integral (37).

Applying the erst of the following formulae

we And

}+" dv 5~

(1+v') ' 16

+ dv 35~

1 v' ' 128
(38)

(c)./2)Jt )' ciao(k, Ak) )'dv=~ioo(~/2) '(5~'/16) =1, (39)

'4 G, page 359.
» This equation, is a slightly different form of the equation, given in G in the footnote page 366.
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therefore
Aypp= (n/2) (16/Sv' ) (39a)

and from (36)
I oooo(k, hk)

I

' = (16/3 prep) $1/(1+v')'j I 1+4p arctg v+ (6/5) pv I (40)

with v= (2/n)(Ak —k). Formula (40) becomes identical with formula (32) of G, if the terms with p
are neglected.

(P) L shell. -Here we have n = 2, I=0; in order to obtain popo, o„(Ak) from (30), we have to derive the
expression (31) once with respect to t and take the limit t= 0. Instead of (32) we find thus

oooo, a (~k) =(Apoo)~(n/2) o+o '(k/(6k+k)'+o ')
I ILk+i(P+vo))III'I i+i(P —vp)ll2(1+vo) &+'

3 4m' q t 5—(1+2p a«tg v) I
2 — + I 2pvI —1 —-

1+v' (1+v')') 4 1+v'J

4 q 4pv
+2mi (1+2P arctg v)

I
2 —

I
—,(41)

1+v') 1+v'

Keeping only the linear terms in P it follows that, instead of (34):

I oooo, p (teak) I'=4Apoo(a/2) 'm'L(1+v') '/ch' mprrk'/(6k+k)'j

12 9
L1+4p arctg vj 4 — + —+4m'I 4—

1+vo (1+vo) o

16m412 10
+ I+1+v' (1+v') ') (1+v') '

13 15 12''
+4pv 2 — + — — +

1+v' (1+v') ' 1+v' (1+v') '

Integrating over m with the help of formulae (35) and using (33) with y=P according to (27) for
n= 2, we get

(nP 4 pr

I oooo(k ~k)
I

=
I oooo, o (~k) I

dvo=AoooI —
I

E2) (1+v')'

32—[1+4P arctg v] 1—
3

3 12+-
1+v' 5 (1+v')'

4 5 32
+16Pv —— +—

3 1+v' 5 (1+v')'
(42)

Applying (17) we obtain with the help of formulae (38) in a way, similar to (39) and (39a) the
result:

and therefore

(a/2)jf I
p oo(k, &k) I'&v=A pop(co/2) '~'= I; A pop = (1/pr ) (a/2)

64 1 3 12 1
I

oppp(k, Dk) I L1+4P arctg v$ 1 — +-
3v n (1+v')' 1+v' 5 (1+v')'

15 1 48 1 ™
+Pv 2 —— +— (43)

2 1+v"- 5 (1+v')'
(b) p-e1ectrons in the L-shell

Since in this case n —1—1=0, it is not necessary to carry out any differentiation with respect to t.
It is sufficient therefore to consider the quantity q~„given by (29) only for t=0. Yet we have to
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consider separately the two cases a = 0 and a = 1, which correspond to the orientations of the angular
momentum in the initial state perpendicular and parallel, respectively, to the axis, given by the
direction of the vector bk, defined by (10).

(n) a=0. Since Pio(cos vo) =cos i1, we have, according to (24) cp=0; ci= 1. This means in (29) a
differentiation with respect to ri and rp of the form 8'/Brio 8'—/Br p' and leads to the result

ppip, k~(kk) = —ir~2 (A pip) 'pip(k, m, Ak, 0) = (Apio) '(n/2) + '(k/(6k+k) + ')

X
I
I'[—,'+i(p+m) j~~I'[-', +i(p —m) ]

~
2( —1+2mi) (1+v')-'+'" —mv(1+2 p arctg v)

2mP 2+4m'
+my(1+v') — (1 —v')+i —ov(1+2P arctg v) ——',y(1+v')+P —(1—v') . (44)

1+4m2 1+4m'

Taking the absolute square of (44) and keeping only terms linear in p we find

(1+vo)-P
j opio, p (Ak)

~
=Apio~ Iv'(9+40m'+16m') (1+4P arctg v)

E2j ck'arm (9k+k)'

+pv(1+v')(6+12m' —32m') —8Pv(1 —v')(3+4m') }.
The integration over m and the use of (33) and (35) leads, in a manner similar to that employed for

obtaining (42) to the expression

I &»o(» ~k)
~ =Jl ) &pio, im(~k)

~

dm

(nq
=Apio( —

/(2j 60(1+v') 4
384[1+4P arctg v$ 1—

1+8

1216
+Pv 598—

1+0

The determination of Apip with the help of (17) gives

+m

I pp»(k, ~k) I'dv=Apio(cx/2) —' v'/4=1,
co

A pip= (4/vr') (a/2)' and therefore

256 1 1 299 19 1
(.»o(k, Zk)) = [1+4P arctg v] 1 — +Pv

5va (1+v')4 1+v' 192 6 1+v'
(45)

(P) a= I. Here again the summation over P in (29) contains only the term with P= 0 and from (24)
it follows that cp ——1. The differentiation with respect to ri, rp in (29) here takes the form

(8/8 r i+8/8rp) (8'/BriBr p)

One finds

ppii, p~(Ak) = —ir'2 (Apii) 'gii(k, m, 6k 0 = (Apii) *'(a/2) + (I/(6k+k) ')
~
I'[z(P+m))

~

&&
~
I'[i(P —m) j ~

2im(1+v') '+'
I
—m'(1+2P arctg v)+m'yv im[1+—2P arctg v+Pv —yv7}. (46)

By taking the absolute square of this expression and keeping only the terms linear in p and y= p, it
is again permissible to neglect the term with P in the I'-functions of (46). From the formulae

I'(1+v) = zi'(z) and I'(s) I'(1—s) = ir/sin ors

it follows
~

I'(im) ~'=
~

I'(=-im) ('= ir/msk~m and we obtain from (46)



THEORY OF THE CO MPTON —LINE

~
ppkk, p (Ak)

~

' =Apik(p2/2) 442r'L(1+v') 4/sh'2rm] {(m'+m') [1+4p arctg v] —2mkpvI.

For the integration over m, we make use of the formula
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Jf (m'dm/shPn-m) = 2p '/2' i —1Jt"(mpdm/chPmm),

which for g= 2 and g=4, with the help of (35) gives

m'dm sh'am = 1 3m,

~+00

m'dm/sh'irm = 1/15 m. (47)

We find thus

„,(k, kk)~l'=jf
I
„,, (kk) ~'km=4„, ( /2) '(8 /24)[1/(1+v')'](3(2+44 v cvkv) —kv)

and with the help of (38)

( /2)j( I
(k, kk)~l'kv=4 . ( /2) ' '/2=1,

24pii= (2/2r')(n/2)' and therefore

~
pp»(k, 8 k)

~

' = (32/52ra) (1/(1+v') ') {1+4p arctg v ——', pv I . (48)
/

4. TOTAL INTENSITY AND DEFECT OF THE COME? TON-SHIFT FOR ELEMEN TS WITH X- AND L-ELECTRONS

With the expressions (40), (43), (45) and (48) we are now able, according to (9) to give the intensity-
distribution on the Compton line of any element with given numbers N„&, of electrons in an orbit
(nla) of the X- or I-shell. Indeed, assuming t:he electrons as independent, as has been done in the
previous paragraphs, we can write for the total intensity of the frequency range d v' '.

dI=QX 2 dI 2,
n, la

(49)

It has to be noticed, that for p-electrons in the L;shell all the three orientations of the angular
momentum with respect to our chosen axis appear with the same weight. Calling N3 the number of
electrons in any one of the k/)-orbits, we have therefore in (49) to take:

%pip= Xp/3; Npkk= 2Xp/3. (50)

Furthermore, we have to remember that the constants 42. and p as well as the variables v, according to
their definition (28) have different significance for different orbits, changing with the binding energy
of the corresponding electron. In order to distinguish them, we write instead of a, P and v

for s-electrons in the X-shell: a1, p1, v1,

L-shell: cx2, P2, v2,

p-electrons " " " " - O3, P3, &3,

and further for abbreviation: Nioo = &1, Woo =%

Remembering that according to (28)

k=6k —pkv =&k(1 4)v/&2k) =&k(1 —2pv/n)—

and using (9) (40), (43), (45), (48) snd (50), we find for the total intensity of the range dk' the
following expression, which is correct, if all terms with second and higher powers in P are neglected:
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2m'g' 1+cos' 0 16 Xg 1 16
d~'—— 1+4P~ arctg v~+—P~v~

3pr ng (1+vg')' 5
dI =Ip

moc'r' hAk

4' 1 3 12 1
(1+4'»rctg»+P»p)

~
1-,+-

np (1+vp')' 1+vp' 5 (1+vpP)')

15 1 48 1 y
- 4N, 1

+P»pl 2 —— +—
~

+
2 1+vp' 5 (1+vp')') Snp (1+vpP)4

4 ) (283 38 1
X (1+4Pp ««g vp+Ppvp)( 5 (+Ppvp( )

~ (51)
1+vp') E 48 3 1+vpP)

In order to obtain the relation between v and the wave-length of the scattered radiation )', we notice
that according to (28) and (6) it is

2 2 8m2v2 8vmp ('E$
v =—(Ak —k) =— (1—cos e)

CL A C a & a) (52)

since for hv«mc', i.e. , v —v' it follows from (10)

From (5) and (19) we get
(gP)'= (8pr'n'/c') (1—cos 8).

(8pr'm p//tP) Z = n'/4

(53)

With the notation y= n/2k —n/26k used before, and

X' —) =c(v v')/v—'=x(k/mpc)(1 —cos e)

we can therefore write (52) in the form

v = (1/v) I1—(~—~') 'I (56)

Since we expect a considerable intensity only in the neighborhood of Compton's value (1), i.e., for
4X=X' —) = (h/mpc) (1—cos 0), we write

x=1—8 (57)

and, expanding the square-root in (56), keeping only the terms with 8 and y', we get

v= (1/2y)(8+y'). (58)

As long as one neglects all terms with P&, Pp and P p in (51) and consequently with y in (56), one sees
that the intensity is symmetrically distributed around Compton s value (1), namely, symmetrical
around v= 0 or 5=0. Fig. 1 shows this symmetrical distribution for Be(N&= ¹=2,Np=0) assuming
for the binding energies the values: Z~= 122 volts. Ep 9.5 volts Fig. 2 is. dr——awn for C(¹=Np Np-—
=2) with E~ 285 volts; Ep= 24.9 v——olts; Z, =11 volts.

The appearance of uneven functions of v&, p, p in (51), however, makes the Compton line slightly
asymmetrical. Furthermore, it changes the position of the maximum intensity and we are particularly
interested in this maximum position, io order to compare it with the empirical results. s

Since this maximum will occur for very small values of the variables v&, z, p in (51) it is sufficient
to consider in the bracket I I in (51) only the terms, linear and quadratic in v&, p, p. Near the maximum
the bracket becomes

36 4¹2 61 4¹ 85
Y=—1 —3vy +—

Privy + ——3vp +—P»p + 1 —Ppvp

Cly 5 o.2 S 10 5 us 48
('59)
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BERYLLI UM
A-K ELECTRONS

-L~ ~r

C.TOTAL INTENSITY

Zr(OI77AJI-C0$8 ) -I

FK'. 1.Intensity-distribution in the Compton-line of beryllium, neglecting all higher order efFects,
causing asymmetry and defect of the shift. The ordinates are plotted in arbitrary units, the
abscissae measure the difference of the wave-length X and X of the scattered and incident radiation,
respectively, in units 0.0177 X(1—cos 8)&, 8 being the angle between the direction of the incident
and scattered radiation. The scale of the abscissae is chosen such that at the origin ) =X+ (h/mco)
X (1—cos 0). The binding energies are assumed to be for the X-electrons, 122 v; for the Lz elec-
tron, 9.5 v.

It is interesting to notice that the third term in (59) does not contain v32, the intensity curve for
p-electrons near the maximum following a fourth power law.

In order to determine the maximum of V and therefore of the intensity in the ) -scale, we calculate

BF BF Bvj BV Bv2 BF Bv3
+ +

88 Bvz B8 Bvm 88 Bv3 86

or, according to (54), (58) and (59)

BF ¹ 3 18 - 4¹ 3 61 47 ¹3
4~& = ——(~+vi')+ —vi + ——(~+ v~')+ —

vm
———.

V2 - V2 10 12 y3
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CARBON

A -K ELECTRONS
Lg

Q L rr rr

D- TOTAL INTENSITY

8(olrr~h case )- 0 +2

FIG. 2. Intensity distribution in the Compton-line of carbon under the same approximations and in
the same scale as in Fig. 1. The binding-energies are assumed to be for the X-electrons, 285 v;
for the Lz-electrons, 24.9 v; for the Izl-electrons, 11 v.

This expression vanishes for

1 3Ni/pi+ 62Nr/p, (85/12) N, /p, —

15 Ni/7, '+4N, /y, '

Using finally (53), (54), (55), (27) and (57), we find for the position of the maximum intensity in the
X scale:

k X' 1 3Nr/g Ei+62Nr/Q Z2 —(85/12) Nr/Q Zr
X'=X+ (1—cos 8) ———

mpC kC 15 »/4 &i'+4Na/ v' &2'

We see that the defect of the Compton shift

8X= X—X'+ (k/m, c) (1—cos 0),

(61)



THEORY OF THE COMPTON —LINE - 687

with
1 3N&/Q E&+62%2/Q E2 (85—/12) K3/1J E3

Xg/Q EP+4Xg/Q Fg'15hc

as expected from formula (2) has indeed the form

(62)

(63)

For the case of H and He, where %2= Kg=0, D can be written in the form (4) D= ~E~/hc with
~=3/5. For higher atomic numbers, however, one has to treat the complete expression (63), D
depending essentially on both the binding energies E2 and E3 of the J.-electrons in a rather compli-
cated way.

5. COMPARISON WITH THE EXPERIMENT

Table I shows the numerical values of Q, calculated for Be and C and the corresponding observed
values for a primary radiation with ) =0.631A, the binding energies E&, E2, E3 being given in elec-

TABLE I. Theoretical and observed values of D,.

Be
C

122
285

9.5
24.9

E3 ~~u ear. (A)

2.8X10 4

6.5&(10 4

sz.b, .(A)

2.3 0&10-4
5.9X10 4

tron-volts. The values 5),b, are taken from the preceding paper of Ross and Kirkpatrick. The dotted
lines in their Fig. 4 show the Compton shift as expected from the theory here presented.

One will notice that in both cases of Be and C, the theoretical value lies about 10 to 20 percent
higher than the measured value. It does not seem surprising that the theory here proposed will tend
to give too high values of 5X. Indeed, with formulae (60) and (61), 8X has been computed by using
the binding energies, as given from spectroscopic data. These binding energies are meant as being
the energies needed for removing a specified electron from its atomic orbit to infinity. However, in
the solid state, the electrons ejected by the Compton-recoil will not be removed to infinity but into
the neighborhood of other atoms in the crystal lattice, a fact which will tend to decrease the "effec-
tive binding energy" and therefore 5X. An approximate way of correcting our result might be to
subtract from the binding-energies the electronic work function, i.e. , the energy needed to bring a
conduction electron from the interior of the crystal to infinity, which would account for the sign and

'

the order of magnitude of the correction. We need not say, however, that a more accurate considera-
tion of the forces, due to the interaction of different atoms in the lattice, would require much more
elaborate calculations than we intended to give here.


