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Note on an Approximation Treatment for Many-Electron Systems

CHR. M))LLER AND M. S. PLEsSET, Institnt for teoretistt Fysik, CoPenhagen

(Received July 14, 1934)

A perturbation theory is developed for treating a system of n electrons in which the Hartree-
Fock solution appears as the zero-order approximation, It is shown by this development that
the first order correction for the energy and the charge density of the system is zero. The
expression for the second-order correction for the energy greatly simplifies because of the
special property of the zero-order solution. It is pointed out that the development of the
higher approximation involves only calculations based on a definite one-body problem.

HE Hartree-Fock method' for treating a
system of n electrons in a given external

field consists in making the approximation of
assigning to the system a wave function of the
determinantal form
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where the variables q; represent space and spin
coordinates, and the rt functions po„(g) are a set
of orthogonal normalized solutions of the equa-
tion

ih((t) Bt) po„((1) = (Hp+B —A) (o„(II). (2)

and V is the interaction energy for a pair of
electrons.

As follows from the definition (5) the density
matrix p is Hermitean and obeys the equation
p'= p; (5) together with (2) give the equation of
motion for p

ihp = (Ho+8 —A) p —p(Ho+8 —sf). (6)

As Dirac has emphasized, all probabilities can
be expressed by means of this density matrix p, '
in particular the charge density at g is given by
(al pl~)

It is supposed throughout the following that
IIp does not contain the time explicitly. We may
then consider solutions of (2) and (6) which
belong to a stationary state p, so that our equa-
tions become

In (2) Hp is the Hamiltonian for an electron in p (»(g (H, +g g ) (»(g
the external field, and the matrix elements of 8
and A in the g-representation are given by' =& ("( (")(v); (&)
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I IA"')(fQ"dII"'(0"'I pIQ") (3) It is clear that the form of the operator F„

depends on the stationary state considered. The
energy of the system is, in the present approx-
imation, given by

where the matrix of p is defined by where D denotes the diagonal sum. The corre-
sponding wave function for a stationary state of
the whole system is an eigenfunction of the
operator
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where by F„('& is meant the operator Ho+B„A„—
(or F„) operating only on functions of the coor-
dinates of the ith electron. We have

in which

From (7) it follows that

theory. The deviation, I'„, of the Hartree-Fock
operator H„ from the exact operator 3C is here
regarded as a small perturbation; and it is
evident that the form of this perturbation term
depends on the stationary state considered. We
develop the exact eigenfunction 4„, which is
supposed to lie near the Hartree-Fock solution
4„', and the exact eigenvalue S'„, which is sup-
posed to lie near the corresponding TV„', in the
following series

&
(»)+. F & (»)d(f g&„=g&„~+@(i)+@ (2)+. . .

W„= W„'+W„("+W„('&+

(17)
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n
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If these expansions are introduced into the exact
equation (H»+I'»)4»= W„C„ it is found on coi-

f lecting terms of the same magnitude in the
(a'I p. la)(alF. la')dada'=D(p. F.) (»)

Comparison of (12) with (9) gives

X»= W'„'+-', D{p„(B„—A„)}. (13)

H„4„'=5„'4„',
{H„W„'}C„('&=—{W„('& —I'„}C„';

(19)

(20)

We may now write (11) as follows

H„C„'=LG„——,'D{p„(B„—A„)}]C„
= W„'C „'. (14)

so that the operator II„has the eigenvalue W„'
and the eigenfunction 4„'.

We now wish to compare the above equation
with the exact one in order to determine the
degree of accuracy of the Hartree-Fock approx-
imation. If V;& denoted the interaction energy
between the ith and 0th electron, then the exact
equation for the eigenstates of the system is

n n

KC —= +HO('&+-,'p V,i C = W'C.
i=1

(15)

It is, of course, understood that only antisym-
metrical solutions of (15) are to be considered.
We now compare the operators occurring in
(14) and (15) and define a new operator I'» as
their difference,

II„4„„',= S"„„'4„„', (22)

where W„„' are the corresponding eigenvalues,
and where we choose v so that 4„0'=4„'. The
functions 4„&", 4 &'), ~ may be developed in
terms of the complete set of functions 4„„',
that is,

C (i) =p(i (i)C, (23)

(p
(2) = Q(i „(2)cy

{H —W }C (' =W('&C '{W(')—r }C (& (21)

Eq. (19) is of course fulfilled from the definition
(14) of the zero-order approximation; (20) and
(21) are the equations determining the first and
second order corrections, respectively.

Let us consider the complete set of eigen-
functions 4„„'of the Hartree-Fock operator H„
associated with a definite zero-order state p, ,
we have

Substitution of (23) into (20) and application of

+ lD {p»(B» A») } (16)—
It is now proposed for the succeeding develop- ZA» "'(W W» )C'» = {W '" I'»}C'» ~ (25)

V

ment to take the Hartree-Fock-approximation
as the zero-order approximation to the exact If the right side of Eq. (25) is expanded in terms
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of the functions C„,' and corresponding coeffi-
cients equated, one 'gets at once

u„,&'& ( W„.' —W„')

)t C,'" I W &') —I' Il„'dq. (26)

W '"=)
J

c„'*r„c„'dq;

and for p/0 f fC „„'*I'„C„'dq
a„,('~ = -—

8"„'—8'„,'

(27)

Let us for simplicity suppose that W„„'Q W„ for
v+0; the alterations in the procedure which
arise in the presence of degeneracies are of the
usual kind and will not be considered here. From
('26) for ) = 0 we have

The normalization condition for C „gives
a„o('~ =0. The second order correction may be
carried through in a similar way by the intro-
duction of (24) into (21); it is readily found that
the second order correction in the energy is

f fc„'*r„e„.'dq. f fe„„'*r„e„'dq
W &2)=Q

v+0
(29)

The complete set of antisymmetric eigenfunctions in (22) may be expressed in terms of the complete
set of eigenfunctions of the one-electron operator I'„. In addition to the n functions y„~», which enter
into the determinant C„,we have an infinite set of eigenfunctions P,&»(p=1, 2, ) of F„with the
associated eigenvalues Kp. We now get all the functions 4„„'from

& i'"'(qi) &
i&")(q2) . ~i&")(q-)

&
2'"'(qi)

(30)

& -'"'(qi) &» (q' )

by replacing one or more of the functions &p&» by functions &f
&». We denote by C'&»„, ,..., , ,, ... that

C„„which is obtained by replacing &p„&&), &p,
&&) by P,&», )&t, &», respectively; the indices r, s

may take on independently all the values I n, and p, o" ~ take on all values.
It will be understood in the following that all quantities refer to a given stationary state, and the

suffix )«will be dropped. From (27) and (16) we get for the first order correction in the energy

'n

W&') = (1/(n!2)) P i" "(q'q. l Vl q''qi') Z &)) Pq, *(qi) &p~*(q2) «)„*(q„)8~.P'pi(qi) p2(q2)
skI&, 0 PP'

&o (q'') & ~(q~') .
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n—(1/ ') 2 !" .
! (q'I& —~lq'') 2 ~ P *(q) ~-*(q-)~ P'~ (q) ~*(q*')

i=i J SI~

=I+II+-',D{p(B —A) I,

~ «) (q„)dqi dq„dq, '+ ,'D {p(B A) I, (-31)—

where I' denotes a permutation of the arguments of the functions q*, b~ is +1 or —1 according as
P is an even or odd permutation, and P) includes I . possible permutations; similarly P denotes
all permutations of the arguments of the functions «. To calculate the first of the integrals in (31)
we consider that term in P». which comes from P=P, a definite permutation; a typical term, for
the given P, in g,~), is
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f

J (q'q I
UIq''q~') v."(q') v.*(q ) ~.(q'') v. (q ')dq*dq dq''dq '

e!2

,

' (qq'I Ul q"q"') ~ *(q)v."(q') v.(q")v.(q"')dqdq'dq"dq"', (32)
n!2 &

where r, s are the respective places to which I' has taken g;, q~. If now the summation over i, 0 is
carried out, we get

(qq I Ulq q )y (q)y (q)y (q )y (q )dqdq dq dqJ

Clearly, every P=I' gives this same result so that Pi I gives a factor n! and the contribution to
I is, using (5) and (3),

n

,=. J~ J
(qq'

I UI q"q"') q,*(q)p;*(q') p;(q") q, (q"')dqdq'dq"dq'"; (33)

the first term in this expression, we note, is ,D(pB). We—now consider the contribution to I arising
from the remaining permutations P '+P. On account of the orthogonality of the functions p„, for
a given P the only I' in Pi which contributes will diRer from P merely by a transposition of the
arguments of y, and q, in a typical term in P;zq, thus the analogue of (32) is

1

J"J"(q'q~ I Ul q''q.-') ~ "'(q*)~.*(qi) v» (q~') v .(q'') dq'dq'dq''dq. ',
n.2»

the negative sign enters since 8&= —8&.. As before P;~& and Pz may be immediately carried out
to give

—2D(~~)+k 2 ~ „' (qq'I UIq"q"')~'*(q) v, *(q')v*(q")~'(q'")&qdq'dq"dq"' (34)

Thus from (33) and (34)
I= 2D {~(&—~) }. (35)

In a similar way we find that II= D{p(B—A) I;—and we have finally from (31) that

w i=o. (36)

Thus, the perturbation method shows that the theory of the self-consistent field including exchange
is accurate in the determination of energy to the second approximation.

We shall now consider the matrix elements entering into the determination of the first order cor-
rection (28) in the eigenfunction and the second order correction (29) in the energy. It is evident that
those integrals, f ~ fC „'rC&'dg in which C„' has more than two of the functions y„replaced by
functions f, will vanish identically because of the orthogonality of the functions p and P. The only
integrals, therefore, which remain are of the form

(37) and . I'e'„, „.re'dq. (38)
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A straight forward calculation of the integrals of the type (37) shows that it is a special property of
the Hartree-Fock theory that all these integrals vanish; however, we get a nonvanishing contribution
from the integrals (38) of the form

Eq. (29) now reduces to

rs; po

where we have used the relations

)„+X,—scp —~

(40)

and w'„, , „=zp+a.+ Q x;——,'D{p(B 2)). —
iver, s

As we now see from (40) and (28), to carry the procedure to this higher approximation it is only
necessary to find the solutions of the equation I'„P= ~g", that is, to solve a one-body problem.

The wave functions including the first order correction are in a similar way reduced to

C'+C&»=C'y p u~»„. ..C'„.. ..
rs; po

(41)

as a'»„,. „are the only non-zero coefficients from (28). The charge distribution corresponding to (41)
1s

2

p(g) =&J )~ 4"(g& g2& g3' ' 'gr)+ 2 & rsvp pac' rs; pr(g& g2& g3' ' 'gn) dg2dg3' ' 'dion (42)
rs; po

It is readily seen that the cross terms in (42) which give the first order correction to p(g) all vanish
so that the Hartree-Fock electric density as given by the diagonal elements of (5) is accurate to the
second order.


