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Nuclear Energy Levels and the Model of a Potential Hole

HENRY MARGENAU, Yale University

(Received August 7, 1934)

Part I contains the solution of the problem of a particle
for which the potential energy V(r) is a simple rectangular
hole of finite depth, such a model being of interest in
connection with the spacing of nuclear energy levels.
Formulae are given by which a numerical determination

of energies can be carried out for any assumed depth of
the hole. In part I I the results are extended to finite holes
of different shape, and an argument is presented which
proves the inadequacy of any such model to explain the
arrangement of n-ray levels in Ra C'.

0 correlate the empirical data concerning
atomic nuclei with the theoretical proper-

ties of assumed nuclear models becomes a prob-
lem of increasing importance as the amount of
experimental material grows. The present note
is devoted to one aspect of this problem which
permits a clear solution, insofar as it establishes
the impossibility of accounting for the observed
positions of cx-particle energies by means of
simple hypotheses regarding the nuclear po-
tential, which are so fruitful in explaining n-ray
decay.

Rutherford and his collaborators' have deter-.
mined the positions of the nuclear levels in
Ra C with a precision which permits an appli-
cation of analysis. Gamow' was the first to
attempt an explanation of their arrangement on
the basis of a nuclear model consisting of an
infinitely deep potential hole within which the
a-particle moves. His analysis is intended to be
only qualitative but shows at first sight some
promising features.

There are two respects in which the model
used by Gamow may be refined: (1) the hole
should be taken of finite depth, (2) its walls
should not be vertical. In the first part of this
note we shall incorporate into the theory the
first refinement and work out the arrangement
of the energy levels of a particle for which the
potential energy U(r) is a simple rectangular
hole of finite depth (a problem which has
perhaps some mathematical interest independ-
ently of its connection with nuclear theory). In
the second part we shall consider the other
refinement and discuss the conclusions regarding
nuclear levels to which this theory leads.

' Rutherford, Proc. Roy. Soc. A131:, 684 (1931).Ruther-
ford, Lewis and Bowden, Proc. Roy, Soc. A142, 347 (1933).' Gamow, Nature 131, 433 (1933);Cf. also Solvay Con-
gress (1933).
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FrG. 1.

Our present problem is simply to solve the
Schrodinger equation for a potential energy U(r)
given by the solid line in Fig. 1. The Coulomb
potential outside of this hole, while producing
an appreciable width of the energy levels, is not
essential in determining their positions and need
not be considered in this connection.

Let us first recall the position of the levels
inside a hole of infinite depth. If we reckon the
energy 8"of the particle from the bottom of the
hole and define k'—= 8m'MW/kP Wbeing the re-
duced mass of particle and nucleus, then the solu-
tion of Schrodinger's equation, multiplied by r, is

P(r) = crl J(p)(kr),

and k must be determined in such a way that

J (~)(krp) = 0,

where ro is the radius of the hole. In this ex-
pression, l is the. usual azimuthal quantum
number.

Thus is produced an infinite set of levels, the
position of which depends on the values of 3f
and ro. In Table I we list the first few values of
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0 5.081 (1)
10.39 (2)

2 17.10 (3)
3 25.15 (5)

34.45 (7)
5 45.2 (9)

57.0 (12)

Wrp'10"

20.32 (4)
30.72 (6)
42.58 (8)
55.85 (11)
70.54 (15)

45.73 (10)
61.21 (13)
78.18 (16)
96.59

116.44

TABLE I. Values of WrP. J~+;(kro) H~+;(intro)

J( )(kro) H( )(ixro)
(2)

81.29 (17) This equation is to be used for determining k.
The right hand side of (2), for which we shall

write R&(~ro), can be expanded as a quotient of
finite sums. Thus one finds

—Ro(x) =1+x ',

—Rg(x) = 1+3x-'+3x-',

1+6x '+15x '+15x '
—Rg(x) =

—R3(x) =

i+x '
(3)i+ ipx-~+45x-2+ ip5x-3+ ip5x-4

1+3x '+3x—'

D

G

P

—R4(x)
1+15x '+105x '+420x—3+945x '+945x '

i+6x-'+ i5x-2+15x-3

If the barrier is infinitely high, then according
to (3) z~ ~, and every R(era) takes on the value
—1. In that case, Eq. (2) states: J~+y+J& q

——0.
But this is identical with J~+~(kro) =0. Thus we
have arrived at condition (1).

Let us now put kro (Ss'M——~//P) &r, =—x,
(Sx'2335/k')&ro=—b, so that (2) finally takes the
form

J(„(x)/J(,(x) =R, (b' —x') ~. (4)
(b)

FrG. 2. (a) Arrangement of levels in an infinitely deep
hole with spectroscopic designation of l-values. (b) Ar-
rangement of levels in a hole of depth B.

W. ro', in electron-volts&&cm', taking for 2' the
mass of an alpha-particle. The parentheses
contain the ordinal numbers of the levels from
the lowest upward. The corresponding levels are
plotted in order in Fig. 2a. They have already
been drawn by Gamow. ""

Let us now determine what happens if the
depth of the hole, J3, is Pnite If then we d. efine
z'—= Sm'M(B —W)/k', we obtain for the solution
inside the hole E;=c~r'J~+q(kr), and outside
Po=c2rtH~+q(i~r) Here H is the H. ankel function
which vanishes for large positive imaginary
values of the argument. These solutions, as well
as their first derivatives, must be continuous at
ro, a circumstance which leads to the relation

The solutions x of this equation determine the
permissible W's. They can be obtained with
little labor by plotting the R's (cf. (3)) as well
as the ratios of the Bessel functions. The energies,
in electron-volts, are then given by

5.148X 10-2ox /r. 2.

It is easily seen that the finite height of the
barrier depresses all the levels of Table I, as
might be expected. One can find the maximum
depression of any given level by the following
consideration.

'

For the highest level, i.e., the one most
strongly depressed, x will be but slightly smaller
than b. The depression is a maximum when b= x.
In this case the right hand side of (4) is R~(0),
which tends toward —~ for every It. Hence this
relation is satisfied when J~ ~(x)=0. Now the
root of J~ q determines the energy in an infinitely
deep hole, but of a level with an l-value smaller
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by 1 than that under consideration. Therefore the
maximum displacement of a level is from its
value in Table I to the value immediately above
it in the same column of the table. By virtue of
this fact one can circumvent actual calculations
when a mere estimate of the effect of finite
depth upon the "normal" position of the energy
levels is desired, since it permits a determination
of the quantum number of the higkest energy
state as well as its approximate position. To
show the effect of finite depth of the hole upon
the "normal" arrangement of the levels (Fig. 2a)
we have calculated graphically the roots of 4,
taking for 8 a vajue which will produce a
maximum depression of the levels assumed by
Gamow' for Ra O'. The results are plotted in
Fig. 2b. All levels above 8 merge into a con-
tinuum. Comparison with Gamow's postulated
level scheme shows that, to be sure, the finite
depth produces the desired compression, but
there is no strong crowding of the upper levels
as in Gamow's diagram. This example is now
merely hypothetical, however, since Gamow's
assignment has been superseded by the recent
determination of the levels due to Rutherford,
Lewis and Bowdeo.

lowest and, say, the nth level to be known. We
can then, by choosing rp properly, construct a
finite rectangular hole which will produce this
energy difference. To obtain the minimum v'alue

of rp compatible with the given energy difference
we will agree to place the barrier height 8 just
above the position of the nth level. It is then
at once evident (and may be shown rigorously)
that, if the true potential hole differs at all
from the assumed rectangular hole but still
produces the same energy difference between the
lowest and the nth level, its radius must be
smaller than rp near the bottom and greater
than rp near the top. Hence, if r is the radius of
the actual hole near the top, r &rp.

Let us now consider Gamow's level scheme.
It assigns to the energy difference between the
lowest and the 8th level the value 17.8 X 10' e. v.
According to Table I this difference is 37.5
X10 "Xrp ' e. v. if the hole is infinitely deep,
25.64X10 "rp-' e. v. if the hole has its minimum
possible depth. In the first case, rp=1.45X10 "
cm, in the second, rp=1.2X10 . Hence we are
led to suppose that, even with the most favorable
choice of 8,

r &1.2 X10—"cm.

The considerations of part I will be helpful
as we turn to the next question: what precise
form of the potential galls will give the arrange-
ment of levels required experimentally? This
can of course only be found by trying various
potential energy curves, such as the dotted one
in Fig. 1, with the known levels in a finite
rectangular hole serving as a guide. Given the
dotted curve, one can simply start with the
eigenvalue and eigenfunction calculated in part
I, integrate the latter numerically from r& to rp

and from r2 to rp, and see v hat change in the
eigenvalue is necessary to make the solutions
join. In doing this one is readily convinced that
very imp/alsible potential energy curves are
required to produce the spacing of the levels
proposed either by Gamow or by Rutherford,
Lewis and Bowden. The major discrepancy
which one encounters appears plainly from the
following argument.

Suppose the energy difference between the
~ Garuow, Nature 131, 433 (1933).

This is hopelessly irreconcilable with the value4
8.2X10 " cm&r&8.6X10 " cm which is re-
quired to obtain the correct decay constant for
Ra C'.

The situation is no less unsatisfactory if we
assume the assignment of levels given by
Rutherford, Lewis and Bowden. Here the differ-
ence between the lowest and the 16th level is
27X10' e. v. This, according to Table I, is at
least 61.2X10 "rp ' e.v. Thus rp~1.5X10 "
cm, and

r&1.5X10 "cm.

In view of these considerations we must regard
the model of a potential hole as inadequate to
explain the distribution of n-particle energies
within nuclei. The a-particle can not be said to
move essentially in a potential field due to the
other nuclear constituents; its potential appears
to depend strongly on its own state of motion,
in such a manner that, if the O.-particle changes
its energy, the entire nuclear configuration is
altered.

& Qf, Mott, Handb, d, physik XXIV, 1, p. 807,


