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Radiation Damping and the Polarization of Fluorescence Radiation
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If the distance between two or more energy levels is
comparable to their natural breadth, the levels cease to
act independently. The coupling between the levels is then
describable by means of a "damping constant matrix. "
The usual discussions concern themselves with a diagonal
damping

'

constant. Below a systematic treatment of
emission, absorption and fluorescence is given without this
restriction and it is shown how in general the frequencies

of emission lines are affected by this radiation coupling.
The theory is applied to the calculation of the polarization
of fluorescence radiation. It is shown that the coupling
state of the lower group of levels of the fluorescence line
does not influence the polarization. Results of detailed
calculations are given for the polarization of Hn excited
by absorption of the second line of the Lyman series.

measure the center of gravity of a wave packet in
a properly defined state even though the position
of the particle is indefinite. Let there be two
levels close together situated so that the combi-
nation frequencies to a third level, as calculated
by neglecting the coupling to radiation and give@

by the Bohr frequency condition, are v&, v2. In
some cases it is possible to prepare an atomic
state of such a kind that one will have a frequency
distribution [(v —v~)'+I'Pj 'dv emitted, and to
prepare another state the emission from which
will be [(v—vm)~+I"22/ 'dv. In such cases we may
say that the coupling to the radiation had only a
broadening effect. We are particularly concerned
with another condition which makes it impossible
to prepare such states. The general case' is one in
which the spectra that may be prepared are of the
form [(v—f,(v„vq))'+FP) ' and [(v—f2(g„vm))'
+I'22$ '. In this condition the effect of the
coupling to the radiation is not only to broaden
each line, but also to shift its center of gravity.
We shall first discuss qualitatively these effects
for emission, absorption and fluorescence.

(a) Emission. A complete treatment of the
emission of radiation from nondegenerate states
has been given by Weisskopf and Wigner. It
applies only as long as the energy levels of the
atomic system are separated by intervals which
are appreciably larger than the natural breadth
due to radiation damping. When this is not the
case one has to work with a "damping constant
matrix" instead of an ordinary "damping con-
stant. " Thus consider two energy levels p, , p'

located so close to each other that their energy

PHENOMENA associated with radiation
damping have been treated by various

authors' ' from the point of view of Dirac's
theory of light quanta. In most of the phenomena
investigated the effect of the coupling of matter
and radiation turned out to be that of broadening
the sharp line emission of frequency v=hW/It
into a band of width proportional to the damping
constant. It has been shown by Weisskopf and
Wigner' that the width of the frequency band
may be thought of as the sum of the widths of the
initial and final level. In this way the old
question of diffuse quantization has found its
quantitative treatment. One may say that on
account of the coupling between radiation and
matter the concept of the stationary state is
only partially exact and that the finite life of the
stationary states makes their energy diffuse to
the degree demanded by the uncertainty relation.
The question arises whether the effect of the
interaction with radiation is entirely that of
broadening the energy levels or may also produce
more vital effects on the quantization. In order to
discuss this one must give a definitio of quanti-
zation which applies in the presence of a damping
constant. If the frequency spectrum emitted by
an atom is of the type const &&[(v—vo). '+I"g '
we may say'that the energy difference between
the initial and final level is hvo and that the sum
of the widths of the levels corresponds to a
damping constant I'. We can thus measure vo

even though the energy is diffuse just a's we can

~ F. Hoyt, Phys. Rev. 30, 860 (1930).
~ V. Weisskopf and E. Wigner, Zeits. f. Physik 53, 54

(1930}.
~ V. Weisskopf, Ann. d. Physik 9, 23 (1931).
4 E. Fermi, Rev. Mod. Phys. 4, 87 (1932).
~ G. Breit, Rev. Mod. Phys. 5, 91 (1933).

Reference 5. See Eq. (156), p. 118. The special case of
the text above corresponds to F"'""being diagonal.
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difference is comparable with their average
natural breadth. If the atom is put into the level
p, , its coupling to the radiatioo will produce
intermediate states of nearly the same energy in
which a light quantum has been emitted and
these intermediate states, through the absorption
of a light quantum, will cause the production of
p'. Only in special cases will the radiation be
describable as a simple exponential decay of the
probability of the level p, as may be seen
without elaborate calculation by means of the
following argument. Suppose for the moment
that p, and p' are two states such that either can
emit independently of the other and suppose that
they result from the application of an external,
say magnetic, field to a degenerate level. Let
their wave functions be P„and P„.. We may as a
rule neglect the change in P„and P„. due to the
field. For the important thing about these wave
functions is their effect on matrix elements to
other levels and if these elements are appreciable
before the field is applied, we may neglect the
small change produced in them by the field.
Let now the magnetic field be removed and a
field of another type, say an electric field, be
applied. The new energy levels will be described
by +=c&P„+c2$„, P„=c3$„+c4$-„.Neither P„-

nor P„- can now decay exponentially since the
rate of decay is, in general, different for p, and p'.
This discussion applies only to very weak fields
since energy differences also, enter the exponents. '

A brief treatment of this question has been
given by Bethe' for the case of hydrogen. He
showed how the metastability of the 2s leve1 is
removed by a weak electric field and how, as the
field decreases to zero, one approaches con-
tinuously to the existence of a metastable level.
Bethe's treatment makes no explicit use of the
theory of light quanta. It is not altogether
rigorous because the form of the result is
assumed without proof. One may regard some of
the calculations which follow as substantiating
the validity of this form.

The radiation coupling discussed here is

' The fact that the damping constants of atoms with a
constant angular momentum are necessarily equal, by
spectroscopic stability, is not an objection to the above
argument because the angular momentum need not be
constant.

s H. Bethe, Handb. d. Physik, H. Geiger and K. Scheel;
Springer, 1933, 2nd edition XXIV/1, pp. 452—456.

similar, but not identical with, that treated by
Weisskopf and Wigner~ for a harmonic oscillator.
In both cases it is essential that the radiation
emitted in a jump between two energy levels be
of the right frequency to be selectively absorbed
in a transition between another pair. In our
calculations the lower levels of the two pairs are
either identical or close together and the energy
differences of the two pairs are not equal. In
these respects the coupling considered here is
different from that of Weisskopf and Wigner. In
neither case is the coupling describable as the
result of the addition of probabilities for emis-
sions and absorptions. It is correctly thought of
only in terms of additions of probability ampli-
tudes.

(b) Absorption and Puorescence rariiation A.
treatment of absorption and of the polarization of
resonance radiation has been given by Weisskopf. '
His results apply either to nondegenerate systems
or to the special case of a nondegenerate normal
level and a triply degenerate excited level with
constant angular momentum. A more complete
theory given by Breit' took into account ex-
plicitly possible degeneracies (hyperfine struc-
ture) of both levels for resonance radiation, and
applied the results to cases of constant angular
momentum as well as some closely related cases
in which the "damping constant matrix" is
diagonal. In weak magnetic fields oo ly the
splittings of the upper group of levels and their
mean life were found to be of importance. It
will be seen below' that as long as the incident
radiation has a uniform energy spectrum' this
result applies also to Auorescence radiation. The
natural breadths and the energy differences
among the lower group of levels do not matter for
the polarization of this radiation. On the other
hand, according to Weisskopf and Wigner, ' it is
the sum of the breadths of the initial and fina, 1

levels that determines the width of the emission
lines. It is thus impossible to replace the fiuo-
rescence transition by a virtual oscillator, since

' I. S. Lowen and G. Breit, Phys. Rev. 45, 120 {1934).'0 If the incident energy spectrum is non-uniform the
splitting of the normal level affects the result, as is obvious
from qualitative considerations and also appears in Eq.
{7.4) below. The splitting and width of the lower level c of
the energy level pair giving the fluorescence line is imma-
terial also in this case as follows by combining Eq. (7.4)
with Eq. (7.8).
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the damping constant of that oscillator varies
for different phenomena.

The same is found to be true if the damping
constant is nondiagonal. The lack of influence of
the lower level may be understood qualitatively
in the sense that the cause of broadening is

unimportant within certain limits. Thus if this
level is split by interaction with the nuclear spin
there is no effect on the polarization, ' just as there
is no effect if it is broadened by possible trans-
itions to levels below it.

(c) Fhtorescence of hydrogen For .purposes of
illustration of the general. theory we calculate the
polarization of the line IIO. produced by absorp-
tion of the second line of the Lyman series. The
atomic hydrogen gas is supposed to be in an
electric field. The polarization changes as the
electric held increases as soon as the Stark effect
splittings are of the order of the natural breadth
of the n=3 sublevels. No explicit calculations
were made for the influence of the nuclear spin
which must affect the polarization in weak fields.

If the experimenta1 arrangement for observing
the polarization of such fluorescence should prove

practical, we should be able to determine the
h.f.s. of the 3s level of hydrogen by measurements
of the polarization of the fiuorescentIIo. radiation.

1. GENERAL THEORY

An absorbing atom in the normal state a is
supposed to be exposed to radiation from a
distant emitting atom I, The state c as well as the
other states with which we deal is supposed to
consist of groups of sublevels such as would be
produced by applying an external 6eld to a
degenerate level. The maximum frequency differ-
ence between sublevels in the same group is
supposed to be small in comparison with the
emission and the absorption frequencies dealt
with. The same is supposed to hold for the
damping constants. No restriction on the relative
magnitudes of damping constants and the
frequency differences of sublevels in the same

group is made. The frequency vz of the incident
radiation is supposed to lie close to the absorption
frequency from a to another state b. We also take
into account the presence of two other states
c, d (Fig. 1) to which the atom may fall in
succession from b. The light quanta emitted are
called s, s', respectively. The state d is supposed
to be rnetastable. The above. arrangement of
levels enables one to generalize to most of the
other possible cases. The equations which de-
scribe the process are"

[(d/idt) + co(b') ]C(h') = p (sc') (B."')*C(sc')+p (sa') (8,"')'"C(sa')

+X~., exp {—i[ (I)+ (a) —iy(I)]t}, (1.1)

[(d/idt)+ M(c')+ N(s)]C(sc') = P(&')&,"'C(~')+ Z(d'~') (&. "')*C(»'d')

[(d/idt) +u)(d') + co(s) + o&(s') ]C(»'d') = Q(c') &, ' ' C(&c') (1.3)

Here C are the probability amplitudes for the

states considered. Thus, e.g. , C(»'d') refers to the

state in which there is one light quantum of type
s, one light quantum of type s', and in which the

atom is in a sublevel d' of the state d. We use a

and a', b and b', etc. interchangeably for the
sublevels of a, b, etc. The additive energy con-
stant is supposed to be adjusted so that the
energy is zero if there are no light quanta and if
the atom is-in an arbitrarily chosen sublevel of a, .

Also o)=2xv

g,"=(hv, V) &(Pe;r', f,)„q exp I
—ik, R} (1.4)

where

f, = unit vector in the direction of electric intensity
of light quantum s.

e; and r', =charge and velocity vector of atomic particle i.
k, =vector of magnitude 2xc/v, in the direction of

propagation of light quantum s.
R=vector from origin of coordinates to center of

atom and

E~, ——(Pe,r ;) '"'~,(er',) '"„,„;/'Rn, Itc' (1.5)

where the superscript (p) changes a vector into its projec-
tion on the plane perpendicular to the line joining the
emitter I to the absorber, and where n~, ez'are, respectively,
the normal and excited states of the emitter.

We solve these equations using the customary
approximations introduced by Dirae, Weisskopf

"Reference 5, VII )4; VI (4.
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C(sc') = Q(c)a-,a,"
exp {—i{ co(c)+&a(s) —iy(c)){, (4.1)

C(ss'd')
-(u(c)+ co(s) —iy(c) "

Qa a cQ d c (4.2)
"o)(d') + co(s) + (a(s') ..

S' where the a; are determined by

Pa-.a. ' = C(sc'), 0

and a,.', co(c), &(c) are given by

(4 3)

,a. 'Lco(c') —(u(c) +i7(c))=iP y""'a,"' (4.4)

with

Fro. 1. Energy diagram.

—e—i&t e—i&t ~

8

and we have
8 ~ 8 (8—A) (2)

+ "A
I dB = vie —'~t. (3)

The description of the emission from c to d is
obtained by solving Eqs. (1.2), (1.3) omitting
the first sum in Eq. (1.2) altogether. The solution
1S

~ -n —zr

and Wigner and by Hoyt. Thus the summations
over possible light quanta on the right side of
Eq. (1) will be replaced by integrations. These
will be performed approximately by extending
the range to —~ and by considering the number
of possible kinds of light quanta in unit frequency
range as being constant. The procedure for
obtaining the solutions is very similar to that of
the simpler case already discussed. " We intro-
duce the following abbreviations:

v""' = (~/~~(s')) E(d')(&""'")*&""'"' (4 5)

where the --- indicates averagiog over all
directions and polarizations of s'.

Eq. (5.3) gives, in general, nonvanishing values
of all a-, . It is thus not possible to have only one
level c' of the group c excited at all. times. If it is
the only excited level at t=o other levels will

become excited later according to Eq. (4.1).
If the levels c', c", etc. , are widely spaced, the
solutions of the Eqs. (4.4) will be such that a
possible c will lie close to a c' and the a,.' for this
pair of values will be much larger than the other
a, ', the emission can then take place with the
excitation of only one level c'. If, however, the
differences co(c') —co(c") are of the saine order as
the y""' then one should take into account more
than one term in Eq. (4.1) and the energy levels
lose their identity as the radiation couples them
by the matrix p""'. The quantity co(s) is, of
course, irrelevant to the discussion of emission,
playing the part of an additive constant in the
energy.

In the solution of Eqs. (1) the terms in C(b')
will bring into Eq. (1.2) terms of the type
E„.exp {—i(Q —i'I') t j . We consider this equation
with one of these terms replacing the erst sum.
We obtain the following solution of the thus
modified Eqs. (1.3), (1.2) subject to the initial
conditions C(sc') = C(ss'd') =0

C(sc') =P(Xa ') -a"
..&a(c) +cu(s) —iy(c)-

— -n —zr "co(c)+a&(s) iy(c) "-
C(ss'd') =P(Ea ') -a 8 I I I.co(d')+a)(s)+(o(s'). -a)(d')+ca(s)+(a(s').

{ &»(s) + co(c) —ip(c) —0+ii'),

(5.1)

(5.2)
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the summations being over c and where (Xa ').—.is defined by:

g(Ka ').—,a, =K„. (5.3)

This solution except for the presence of cu(s) is of the same form as the absorption solution from d to c,
and its properties have been already partly discussed. " Using Eqs. (5.1), (5.2), (3) we solve Eqs.
(1.1), (1.2), (1.3) subject to the initial conditions C(b ) = C(sc') = C(ss'd') =0 and obtain

organo

C(b') = P (b) (EA ') b.A b b

C(sc') =P(bc)(EA ')b Ab bB "'b'(a ')-"'a, '
~ Q ~r ~

~ rg 4 ~

(s —x),

(6.1)

(6.2)

C(ss d ) —g (ItA —1)b+ ,bBbc'' 'b( a—i) c"a,cB,d'c'(s x)—1

where

(' x '

x I
E. .-y-

~ rg% ~

}(u—x) ' —
I

— }(u—s) ', (6.3)
"y- ) E ..y. ..y. . i

Ab b[co(b') —co(b)+iy(b) j=igyb'b"Ab b, (6.4)

x = co(I) + co(a) —iy(I), y = co(d') + co(s) +co(s'), s = co(b) —ip(b), u = cu(c) + cu(s) iy(c—;) (6..5)

On account of the presence of 7(b) in s and y(c) in u both C(b') and C(sc') vanish when t b ~.The
only terms in C(ss'd') which do not vanish are those due to y in the II' }}.Thus for sufficiently large t

C( 'd')=r, (b:)(&A ') (AB ') -'( B) '[&— ()— (')3 '[Z(b) — ()— (')j '

X[V(c)—co(s')]-' exp } i[co(—d')+cu(s)+cu(s') jt}, (7.1)

&= ~(1)—~(d'a) —iv(1) ' &(b) = ~(bd') —iv(b) ' &(c) = ~(cd') —iv(c). (7.2)

The above expression (7.1) gives the final values for the probability amplitudes of states in which,
light quanta s, s' were emitted, respectively, in transitions b-+c, cmd and the atom fell into state d'. In
order to obtain the probability of 6nding simultaneously a photon s with a given polarization and
directional property and a photon s' with another po1arization and directional property we mUst
calculate

I
C(»'d')

I

'= [1/~~(s) t1~(")j 1 I
C(»'d')

I
'd~(s)d~("),

tc(8) tc(s') '0 0

(7,3)

where 1/Dco(s) is the number of photons of the type considered in the unit frequency range of cu(s).
Using Eqs. (7.1), (7.2), we have

I
C(ss'd')

I

' =
tc(s) cc(s') 4'

27r2 (b'c'I GI bc)
P (b'c'bc:)

iv(1) ~~(s) ~~(s') [~(cc') —i(v(c')+ v(c)) ][~(bb') —i(v(b)+ v(b')) j

(7.5)

For large y(I) the general Eq. (7.4) simplifies to

+ — —, (7.4)
~(b'a) ~(I)+i—(p(b') yy(I)) ~(1)—~(ba)+i(p(I)+p(b))

'

(b'c'I G
I
bc) = p(XA —')b. *(AB a—')- b'*(aB, ) o *(aB,.).& (AB a—')-b(EA —')-

2 I
c(»'d') I'=

4m' (b'c'I GI bc)
Q(b'c. "bc) — — . (7.6)

y'(I)hco(s)hco(s') b(c')+y(c)+ico(cc') j[y(b)+y(b')+icu(bb')5
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From this Eq. (7.6) one can obtain the properties of the radiation s emitted in jumps from f/ to c
or the properties of the radiation s emitted in jumps from c to d by summing, respectively, over all the
directions of polarization and of propagation of s and s, respectively. We make the calculation for s
and we must thus average (b'c'IGIbc) over all possible polarizations of s'. We have by Eq. (4.5)

(7r/Aco(s'))P(d')(aB, )"&'*(aB,) &' = P(c'c")a,. '*p"'"av

But it follows from Eq. (4.4) that

(7.7)

Hence

where

2("~")a""*7""a""= (1/'2)LV(c)+7(a')+f Y'a') jZ(b)a ""'a ".

2 I

~(»'d')
I

' = (2~/v'(1)»(~)) Z(bf ') P(t '~) K(f b')/Lv(t )+v(~')+~~(~f ') 1,

(7.8)

(9)

P(b'6) =P(c)(AB,) b'*(AB,).b . (9.1) K(bb') =Q(a)(XA ')b.'(E'A ')T,. (9.2)

It is seen from Eq. (9) that the frequency diA'erences among levels c do not matter for the intensity
of Huorescence radiation due to light quanta s. Neither do the damping constants p""' enter the
result. Thus the breadth of the lower level has nothing to do with the polarization of the fluorescence
radiation.

In the above calculation we considered explicitly only the level groups a, b, c, d. The presence of
other level groups introduces no essential difference. Thus the matrix p"' is given by a formula
similar to (4.5):

yb'b" = (327r4e'/3hc') [P (d) v'(bd) r(b'd) r(db") +Q (c)v'(bc) r(b'c) r(cb") +Q (a) v'(ba) r(b'a) r(ab") j.
Similarly there is, in general, a like term for every group of levels below b to which a transition is
possible.

Eq. (7.1) is more general than the formula derived by Weisskopf' inasmuch as it includes non-
diagonal damping terms. It is more special inasmuch as it does not consider chains of more than two
successive reemissions and because it does not include the different permutations in the order of
emission of the light quanta. An obvious extension of Eq. (7.1) can be made by including in it the
extra terms of Weisskopf's formula.

2. APPLICATION TO HYDROGEN IN AN ELECTRIC FIELD

We consider an atom of hydrogen in an electric field. We suppose the field to be weak enough to &

have the Stark effect small in comparison with the distances between levels with different j.We may
then approximate the wave function" by considering it as a linear combination of wave functions
with the same j, m and different I. We calculate the contribution to p

' " due to a level of total
quantum' number n'. In terms of (32m 4v(nn')'e'/3hc') this contribution is

2j+3 n„j+I/2 ' 2j+ 1 n, j+I/2 2j+ 1 n, j—I/2 2j
(+n', /+3/2) + (+n', / —1/2) + ( ) (+m', /+1/2) + (+n', / 3/2) ~ (—10)

8(i+1) 8(i+1)

Here n is the total quantum number of the state t), R„.&.
" ' is the radial integral of r, referred to the

states n, I and I', I', for a'=0, 1 the state b' is, respectively, symmetric and antisymmetric, its wave
function being supposed to be:"

'~ V. Weisskopf, Zeits. f. Physik 85, 451 (1933)."R. Schlapp, Proc. Roy. Soc. A119, 313 (1928);
Rojansky, Phys. Rev. 33, 1 (1929).

'4Since the result depends only on a+a' and not

V.

on

n, n individually, the choice of signs for the wave functions
(n, l, j, m) is immaterial for the present purpose. The radial
and angular parts of the wave functions are supposed to be
normalized to 1 separately.
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Expression (10) has values for the states of interest to us given in Table I.

TABLF. I.

3
3
3
3

n'

3/2
3/2
1/2
1/2

(3hc /32m s (nn')'e')y~' "
(1/5)(R2„3d)2+( —) + '(1/6)(R, »)2
( —) '(1/6) (R.'")'
(1/6) (R,»)'+( —) + '(1/2)(R2p")
(1/6)(R ' )'

The second and fourth lines give also the values for n= 2, n'= 1 on changing 3p into 2p and 3s into 2s.
The Eqs. (4.4) are now

(I' —I'i) A i ——gA 2., (I' —I'g) A g
= gA i,

= ++ZAN)) Py = p+zMy) I 2 = ++AD%2) 711 ~22 (11.1)

and by 1,2 are meant, respectively, the symmetric and antisymmetric states. There are two roots for
I' which satisfy Eq. (11).We call thein I'i, I'-,. We may take

and we have
~,'=~,2=g, 2' ——r& —r&, A2' = I'- —I' (11.2)

(r, r,) I (1/2)(r, +r,) ~Lg2 (1/4)(„, (11.3)

If
~

a&i —cd2 ~)&7, g the two values of I" are I'i, I'2. In this case the nondiagonal matrix element g has
no effect. For

~
cubi

—co2
~

& 2g the imaginary parts of I'&, I'2 are equal to each other. In this case one has
no effect of the electric field on the emission frequencies cdi/2~, cd&/2'. Since cubi ——co&= (coi+co2)/2. If
finally

~
ca& —co2

t &&2g we may take in addition 7i =7+g, 7s= 7 —g, For n = 2, j=—', in accordance with
Table I we have y= g so that y~=27, p2=0. This corresponds to the fact that the 2s level is meta-
stable. The first effect of the introduction of a weak field is to make

72 7 L7 (~i F02) /4] =(~l ~2) /87

7i = 7+L7' —(~i —~2) '/43"' =27.
(11.4)

Thus, in agreement with Bethe, the presence of an electric field destroys the metastability of the
2s level gradually and at first in proportion to the square of the electric field.

It is of interest to note that for
~

co& —co2
~

&2g the observation of radiation from the n = 2 state does
not show the presence of two distinct frequencies id&, s». Instead there is only one frequency ~= (cubi

+ cv&)/2 and two damping constants given by Eq. (11.4). We may say that in this case the coupling of
the atom to the radiation is so strong as to make the distinction between the different Stark effect
levels meaningless. The state which radiates in accordance with the simple formula exp I

—i(co
+z7)tI is in this case not a stationary state of the matter but a linear combination of two stationary
states approaching as a limit either the 2s or 2p state for

~
idi —cd2

~

m0.
In the calculatioo of the polarization of fluorescence radiation we may neglect a factor common to

all intensities. We may thus use for the values of X the matrix elements of the coordinates of the
absorbing atom instead of the complete expression (1.5). We also omit the factor (Ri, '&)'/9 which is
common to the squares of all the matrix elements. Similarly, instead of the complete B, entering Eq.
(9.1) we use the matrix elements of the coordinates. We calculate first the polarization for the case in
which the incident light is polarized with its electric vector parallel to the electric intensity of 'the field
applied to the hydrogen atom. The calculation is conveniently performed separately for

~
co& —

cubi
~
)2g

and
~

co2 —
cubi ~ &2g. One obtains the same formula for the final answer. We indicate an intermediate

step for x &g, x= (co2 —co&)/2 and for the polarization of the fluorescence radiation parallel to that of
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the incident radiation. %'e have

(«(11), «(12)q z, l, —z,*z,)
[
=54''(g' —x')3 '(

0 K(21), K(22)) 4 —Z2*Z„ iZ, i')

(p(TT), p(T2)q 51 (iz, ~2, z,*z2~ 1 (~z2~2, z,*z2~
I+—(&„' }'I

KP(21), P(22) j 450 (Z2*zi, iZ2i'j 9 E.Z2*Z„ fZ,
i

2//

where
Z —g+ (g2 x2) 1/2+2x g 1++ 1 —(g 2 g 2) 8

Z —
g (g2 x2) 1/2 2x —g 2+/ 2 —(g 1 g 1)8

x = (&d 2
—~1)/2, (n,j, m) = (3, 3/2, 1/2).

(12.1)

(12.2)

(12.3)

(12.4)

(12.5)

Using Zi, Z2 as defined by Eqs. (12.3), (12.4), (12.5) but with different values of g, y, x we have for

(I, j, 2/2) = (3, 1/2, 1/2),

(«(1T), «(T2)q (iz, ~, —Z2Z, )
I
= E4g'(g' —x') 3-'(

E «(2T), «(22))

(P(11), P(12)) 1 (~Z, i', Z,*Z2) 1 (iz2~', Z,"Z2)
+-(~..")

4/3(21), P(22)i 18 EZ2*zi, iz2i 2) 6 EZ2*zgi, izii 2)

(13.1)

(13.2)

(13.3)

Substituting these values into Eq. (9) we obtain I, the intensity of the fluorescence radiation polarized
along the s axis which we suppose to be parallel to the electric vector of the incident radiation.
Similarly one may calculate I=I,+I„+I.and hence I as (I I,)/2. For—the degree of polarization
P= (I, I,)/(I. +I,) w—e find

where
I'=A/(8+C), (14)

~ = IH&/50)(& .")'x'+(1/6)(2~'+2va+x')(& .'")'jv '(7' —g'+x') 'I = /2, (14 1)
8 =

I [(141/450)(R2 2~)2x2+(5/18}(2y'+2yg+x2}(R2 ")2jy '(y' —g'+x2) 'I =2 2 (14.2)
~=

I L(1/9) (2v' —2vg+x') (&2.")'+ (1/3) (&2 ")2x'jv '(v' —g'+x') 'I = /2 (14.3)

4[
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As already mentioned, this result holds for g&x as
well as for g)x. The fact that the same analytic
expression applies whether Eq. (11.3) gives different
values of co or not is due to the contivuity in the
variation of the radiated spectrum with the electric
field. The way in which I' depends on the electric

/oP field is shown in Fig. 2.
It should be noted that in the geometrical ar-

rangement to which Eq. (14) applies the «(/M') are
diagonal with respect to m and that we have neg-
lected the matrix elements between states with same
sn but different j. We are justified in doing so be-

g g 4 Q 6 7 Q s i o cause the l evels with di fferen t j are separated by
appreciably more than the natural breadths. The
values of the separations 'and half value widths are:

W(5/2) —W(3/2) =0.036 cm '; W(3/2) —W(1/2) =0.108 cm '; y(5/2)/ir= 1/22rr(5/2) =0.00018
cm ', 7(3/2)/2r=0. 00068 cm ', .y(1/2)/m-=0. 00053 cm '. The change in polarization with the field
calculated here is thus due entirely to the radiation coupling between Stark effect levels with the same
mand j.


