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The present work represents an extension to a previous
development by the same authors, on the theory of metallic
sodium. In the first part of this paper a completely self-
consistent solution of Fock’s equations for the sodium
lattice is carried through indirectly, this being the approxi-
mation in which one-electron functions are employed.
The question of the correlations between electrons with
parallel spin is investigated quantitatively and the Fermi
“‘zero-point energy’’ is calculated using the proper effective
field. The results show that the electrons behave almost

exactly as if they were entirely free, the binding energy
being 9 kg cal and the lattice constant 4.86A, as compared
with the observed values 26.9 kg cal and 4.23A. To com-
plete the picture, the correlations between electrons with
anti-parallel spins are investigated in the latter part, since
these are not included in the Fock picture. A general
discussion of this question is presented and a quantitative
treatment of its effect is made which yields a new binding
energy of 23.2 kg cal and a lattice constant of 4.75A. The
source of the remaining discrepancy is discussed.

I. THE PoTENTIAL INSIDE THE LATTICE

In a previous paper by the same authors a
method of calculating the binding properties of
metals was developed! and applied to sodium.
The procedure employed was essentially one of
solving the Fock system of equations? for the
valence electrons (i.e., the system of equations
to which the Schrédinger equation reduces when
one electron functions are assumed). This solu-
tion did not proceed from a formal investigation
of Fock’s differential equations, but was devel-
oped indirectly under the guiding principles of
the picture afforded by the free electron theory.

To begin with, the lattice was subdivided into
polyhedrons of equal size and form, which we
shall call s-polyhedrons, each of which surrounds
one ion lying in its center, and is bounded by
the planes which bisect, perpendicularly, the
lines connecting the corresponding ion with its
14 neighbors (the alkali metals form body
centered lattices). Since these polyhedrons
closely resemble spheres, they may be replaced
by spheres of equal volume for many purposes
and these we shall designate as s-spheres, their
radius being 7,= (3vy/47)}, where v, is the atomic
volume.

Concerning the nature of the electronic states
of the lattice, we know that there will be bands
of allowed levels, no more than two electrons

LE. Wigner and F. Seitz, Phys. Rev. 43, 804 (1933).
2 J. C. Slater, Phys. Rev. 35, 210 (1930); V. Fock, Zeits. f.
Physik 61, 126 (1930).

occupying each level because of the restrictions
imposed by the Pauli principle, and that the
lowest state in the lowest band will possess the
symmetry of the lattice. From this it follows
that its normal derivative will vanish on the
boundaries of the s-polyhedrons and to obtain
its wave function, it is only necessary to solve the
Schrédinger equation within one polyhedron, by
using a suitable effective field and this boundary
condition. Approximate wave functions of other
electrons may be obtained from this by multi-
plying it with factors of the form

eri(l'lr-Fsz'f-Vsz)/L’ (1)

where », vy, 3 are positive or negative integers
and L is the length of the crystal-edge, corre-
sponding to free electrons with nonvanishing
eigenvalues of momentum.

In order to find the effective potential field
inside of an s-polyhedron, we first replace them
by s-spheres, correcting later for the small error
arising from this. For an electron at a given
point the field consists of three parts: first, the
potential arising from the ion at the center of
the s-sphere, second, the potential of the other
ions; and third, the potential arising from the
other free electrons. Instead of making a direct
calculation of each of these in the order given it
is found far more advantageous to begin with
an investigation of the third for it happens that
simplifying assumptions concerning the nature
of this interaction may be fully justified at a later
stage and allow a simple treatment of the first
two.
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The potential of the electron under considera-
tion arising from the other electrons is equal to
that arising from a continuous electron fluid of
density which is e times the probability of having
an electron at the corresponding point of the
lattice. If we assume that all wave functions
arise from one by multiplication with a factor of
the form (1), the probability distribution will be
the same for each. Moreover, since it will be
spherically symmetric within each sphere the
effective field of each ion will be neutralized
outside of the sphere in which it is contained, and
the only field which remains to be taken into
account for our chosen electron is that arising
from the charge within the s-sphere which-con-
tains it. Since this will give rise to a spherically
symmetric field and a spherically-symmetric
wave function, the assumption of spherical sym-
metry is completely self-consistent. The error
introduced by replacing the s-polyhedrons by
spheres is calculated in appendices 1 and 2 and
turns out to be negligibly small.

In the previous work only the field arising from
the ion in each s-sphere was taken into account
and it was assumed that correlations were such
that other electrons did not penetrate the given
sphere. Under this assumption, the wave function
turned out to be practically constant for more
than 90 percent of the volume of the sphere
(cf. Fig. 1), a fact which allows us to take the
other electrons into account very simply and
correct for the inaccuracies involved. For if we
now introduce the assumption that all of the
electrons have the distribution given by g0 of
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F1G. 1. Metallic wave function for lowest electronic state.
The corresponding energy is —0.6 Rydberg units and the
proper boundary condition is satisfied at 4.04 Bohr units.
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Fig. 1 (with factors (1)), it is found that this set
of one-electron functions forms a practically self-
consistent solution of Fock’s equations for the
lattice.

The potential V(x, y, 2) which enters into the
wave. equation of an electron in Fock’s system
is not the ordinary average of the potentials of
the other particles for all configurations, but the
average of the potentials with each configuration
taken with the weight it has under the assump-
tion that the considered electron is in the point
x, ¥, 2. We have seen Eq. (6) that there is a hole
in the otherwise uniform electron fluid around
every electron because the probability of two
electrons having parallel spin being very near is
very small. We shall call this the Fermi hole.
Its effect is such as to make the potential more
negative than it would otherwise be. Since its
shape is practically independent of the position
of the electron, the change of the potential
arising from it is constant and it alters the energy
but not the wave function. The previous work
merely gave an estimate of this change and we
shall give a more accurate calculation here.

Because the wave functions of electrons of
higher energy are given by multiplying ¥ by
(1) only in the case of free electrons (i.e., when
Yooo 1S constant), we have investigated this very
important point in more detail (cf. Section II),
and have found that the energy differences
between the different states is the same as that
obtained when the electrons are free. The wave
functions are not simply ¥y multiplied by (1),
however, but each is multiplied in addition by a
factor which is nearly constant within a sphere
one Bohr unit in radius but becomes exponential
outside.

In all of the work sketched in the previous
paragraphs we have been able to restrict our-
selves to the one electron picture, that is, the
wave function for all of the electrons may be
assumed to be a determinant of single electron
functions. This leads to correlations between
electrons of parallel spin of the type expressed
by the Fermi holes and to none whatever
between electrons of antiparallel spin. There are
such correlations, however, arising from the
mutual repulsion terms, but they lie beyond the
scope of Fock’s equations. We shall call these
holes ‘‘correlation holes” and the corresponding
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energy ‘‘correlation energy,” and shall attempt
to handle them in Section III.

2.

Under the assumption of a uniform charge
distribution the potential within the s-sphere at
the distance 7 from the ion is

V(r)+(3¢2/2r,) — (2220 9), (2)

where the first term arises from the ion, and the
other two from the electron fluid inside the
s-polyhedron. In reference 1 the wave equation
for the potential V(r) alone—which was taken
from Prokofjew’s work®*—was solved and the
corresponding characteristic value determined.
The correction for the fact that this is not exactly
the energy of the corresponding wave function
is taken care of in Appendix 1. The second term
in (2) is independent of 7, leaving the wave
" function unchanged, and gives a positive contri-
bution

E]_1:362/47'3 (3)

to the energy. A factor 1 enters, since the inter-
actions between electrons have to be counted
only once. '

In order to take into account the last term,
the Schrodinger perturbation theory may be
applied and this yields

&2
Ei, =%(_—— f‘/’27’2dv
273

et 2dv)?
iy
478 « E—E,
up to the second approximation where ¢ and E
are the solutions of the wave equation with the
potential V(r) alone, which we know from
reference 1. The factor % arises for the same
reason given before. To determine the first part
of (4) we have numerically evaluated the integral
over ¢%2 for three different values of the lattice
constant, i.e., 7; and the corresponding energy.
The results are tabulated in Table I, the energy

TaABLE I.

E 7s S yrridy f
—0.60 4.05 9.90 0.994
—0.55 4.74 12.95 0.962
—0.50 5.48 16.50 0.916

3 W. Prokofjew, Zeits. f. Physik 58, 255 (1929).
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being given in Rydberg units, 7, in Bohr units,
and the integral in squares of Bohr units. For
the actual lattice constant 7,=4, the integral
has the same value that it would have if ¥ were
a constant. The last column gives the ratio f of
the numerically calculated integral to that calcu-
lated with a constant ¢ for the other cases.

In the second part of (4) the denominator may
be replaced by a mean value E—E; and the
summation .in the numerator gives S Y*ridy
— (S ¥*%dv)? in the usual way.* By taking ¢ to
be constant for this small term one obtains

) (3 %) = —0.005/r.. (5)
— (e*/rd)-{ ————) = —0.005¢*/7..
E.—E 56 200

The mean value of E; has been estimated to be
-+0.3 Rydberg units. The effect of the perturbing
terms in (2) on the wave functions can safely be
said to be extremely small because of the small-
ness of (5), and theéir total contribution to the
energy is

Ep=(—0.15f—0.005)¢2/7s. (6)

The fact that we must deal with the s-polyhedron
instead of s-sphere is taken into account in Ap-
pendix 2.

3.

In the preceding section we have calculated
using the ordinary average potential. We know,
however, that in order to calculate the potential
of an electron at a certain point we should aver-
age over the configuration of the other electrons
with the weights which they would have if the
electron under consideration were at the given
point. It was shown in reference 1 that if there is
an electron at a given point the probability of
another electron being at a distance 7 from it is

o =y

The factor 3 expresses the fact that only the
distribugion of charge with parallel spin is af-
fected, v, is the atomic volume and d’ = (v,/37%)3.
(7) was derived under the assumption that ¥
is constant and that the higher ones are obtained
from it by multiplication with (1). Both as-
sumptions will be shown to be practically correct

A, Unsold, Zeits. f. Physik 43, 563 (1927).
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insofar as energies are concerned. The total
amount of charge removed because of the hole
expressed by (7) is exactly ¢ and may be viewed
as being concentrated in the electron at the
center of the hole. To this approximation it has

2 o r (7’/d’)3

Since this energy® does not depend on the
position of the electron, it is to be carried
forward at once as an energy with a factor %, in
order that the interactions between pairs of
electrons is taken into account only once. We
have, therefore,

Ey=—0.458¢/7s. 9)

If the wave function were not entirely flat in the
lowest state, (7) should be more rigorously
multiplied by oo The integral (8) will hardly
be affected by this, however, because the regions
in which g0 changes appreciably are small
compared to the distance in which (7) has
appreciable variation and the mean value of (8)
for different positions of the electron will differ
from the calculated value by even a smaller
percentage. ’
The sum Eyj-+FE;p+E; from the viewpoint of
Fock’s equation, gives the effect arising from the
fact that the potential at any point is not exactly
V(r) (where 7 is the distance from the nearest
ion), as it would be if the hole in the electron
fluid of the other electrons extended exactly over
the s-sphere. It really surrounds (cf. Fig. 2) the
electron under copsideration spherically in such
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been assumed that all of this hole is in the
parallel charge distribution—an assumption not
exactly correct, however.

The decrease in the potential energy of the
electron at the center of the hole is

35/3 82 2

34/3¢2 e
—=0.916—.

27{'1/87101/3 25/377'2/3 7 7e

(8)

a way that part (4) of the s-sphere is left
uncovered. On the other hand, it extends over
regions (C) outside the s-sphere. Now E, repre-
sents the effect of the entire hole (B+C), while
E+E;; represents the effect of the lack of hole
in the regions 4 and B. The fact that we made
all calculations under the assumption that the
electron density is constant, will not greatly
affect our final result, since in the largest region,
B, it does not matter which density we use, as
long as we use the same density in both cases.

Fic. 2. Schematic diagram of prominent regions in the
unit cell. ,

An error will be introduced only by using an
improper density in 4 and C—but here g is
very nearly constant.

1I. TuE FErRMI ENERGY

4.

Our next task is the calculation of the zero-point energy of the free electrons. First of all, an
error in reference 1 should be corrected, for it was stated there that the zero-point energy is actually
smaller than it would be for free electrons. It was observed that Y %ivws=oo exp [2mi(pix~+rpy
+;2)/L7] possessed the proper transformation properties for a state with the quantum numbers
v, vs, 3 (the ‘“‘components of momentum” being® 2x/vi/L, 2rhvs/L, 2whvs/L). Moreover its mean
energy was higher than that of Yo by the amount 272%#2(v®+»?+4?) which is just the Fermi cor-

5 This formula was first found by F. Bloch, Zeits. f.
Physik 57, 545 (1929).

8% in this paper is Dirac’s %, namely, Planck’s constant
divided by 2x. We would like to correct another error of
reference 1 here. The subtraction of 2500 cal. from the
binding energy at the end of Section IV is incorrect. The

fact that the binding energy of the inner shells decreases
with increasing binding of the valence electrons does not
appear in the Prokofjew picture because the potential
energy of the valence electron is taken to be pV instead of
1,V, so that it is not necessary to consider the change
of the potential acting on the other particles.
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rection for an entirely free electron. As the real Y, is the solution of a minimum problem, it was
concluded that its energy is even lower than that of ¥%.;.

This argument is not correct, however, since y»»w; has the lowest energy of only those states
which are orthogonal to the states of the K and L shells. This is correct for yg but not for ¥%yw;
and the real Ysvo; should be calculated just as o was—by solving a differential equation.

At any rate, it can be assumed from the transformation property of ywwws that it has the form

¢V1V2V3 = Xrvivarg €XP [Zwi(le—f— V2y+ ng)/L], (10)

where xw»; has the translational periods of the lattice. By inserting (10) into the Schrédinger
equation, one obtains
2wk i) i) d
}IXV1V2V3+"'“" V1-‘+ Vz-‘+ V3_‘) Xrivery = Fuwzv;;)(u]ugvg,
mL dx Jdy Jz
(11)
Ev11/2y3 = FV1V2V3+ (2 7r2ﬁ2/mL2) (7}1’2 + V22 + V32) .

If we neglect the second term on the left side to begin with, the equation is identical with the equation
for Yoo, which we shall denote by y, in this section, the other solutions of (11) with y;=r=1;=0
being designated by y,. To this approximation Euwws=FEop+ 2% /mL*(»2+ v+ ) which is just
the result of reference 1.

We shall take into account the second term of (11) by the Rayleigh-Schrodinger perturbation
method. The first approximation gives zero, since S yod¥,/dx vanishes, and the second approximation
will be proportional to the »’s. From considerations of the s-polyhedron, the boundary conditions
were found to be such that the value and derivative of the wave functions should be equal in the
two points at which a line perpendicular to the boundary plane cuts the boundary. We know further-
more from group theory that all solutions ¢, of the unperturbed problem are either even or odd
functions of «, y, z. Now if we calculate the second approximation for the energy, we need integrals
of the type SWdy./dx, and since ¥, is an even function of the coordinates, ¥, must be even in Y, 2
and odd in x, or the integral vanishes. Therefore, all three perturbing terms in (11) will give non-
vanishing matrix elements only with different ¢,. The second approximation for the energy is,
therefore

amit S /0
Fvlvgva—%I?(Vl +V2 +V3 )ZK: —EOTEK—, (12)

since the integral with the y and z-derivatives can be replaced by integrals with x derivatives, E, is
the energy of the state y,. The sum in (12) contains one positive term (arising from the 2 level)
and all other terms are negative. Since the value of the positive term is very sensitive to the actual
shape of the wave function v, we tried to transform (12) in a form more suitable for the calculation
in the following way. .

If Yo and ¢, were the characteristic functions of an atom, (12) could be evaluated by the Thomas-
Kuhn sum rule and would give just the negative Fermi correction, so that the sum of the first and
second approximation would be zero. In the present case of periodic boundary conditions, however,
the partial integrations cannot be performed in the same way. We obtain from the Schrodinger
equation for ¥, by multiplication with xy, and subtracting the corresponding equation for ¥, multi-
plied by xy,

. R 72 I
(fix*Eo)foPoll/x— ‘E;;f[x%mﬁx—l//A@‘Po)]‘;f‘/&g;- (13)

The first term can be transformed by Green’s theorem into a surface integral and we have

o m(Ey—E,) e 9(xyo) '
K e — L4 _% 0 — Yk ) 4
f¢ 6xdv n? fxlp vodv f(xxﬁ on v n )df (19
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where 9/9n denotes the normal derivative. For the usual boundary conditions, the last term in
(14) would vanish. After replacing one of the integrals in (12) by the expression (14), the summation
over « can be carried out in the first term by the completeness-relation? and yields

(4n22 fmIL2) (v 2 v+ ved) f wPo(0%o/ 0x)do. (15)

Since ¥y is a function of » alone, we have

atﬁo 27 s 6¢02
fx\lxo—dv =— f 7
dx 3 J, ar

The —3% gives the negative Fermi correction and cancels the first approximation. The first term,
however, gives an expression very similar to the Fermi correction, namely

2mh?

=3v0¢0(7,)? — 3.

(v v 4v)vedo(rs)?, (16)
m 2
the difference being that the value of ¥y at the boundary enters instead of the mean value.
The second term of (14), inserted into (12), gives
2wkt S (Y, 9o/ dx)dv I
(V12+V22+V32)Z/ - fxlpo dfy (17)
m2L? « E.—E, on

since all odd ¢, vanish at the boundary. To this sum the 2p state does not contribute anything
more, because its wave function is practically zero outside r=3. Similarly we found upon direct
computation, that the integral S y.dy,/0xd?¥ vanishes ‘‘accidentally’’ for 7,=4 for the next higher
odd state. The energy of the next is of the order of magnitude +5 Rydberg units and we have
replaced E, in the denominators of (17) by a mean value E, of this magnitude. Now /¢, d¢0/dxd
is the expansion coefficient of ¥, in the series for dyy/dx so that the summation can be carried out
in the numerator and gives S x(9/0n)(0¢/9x)df. Since y, is a function of 7 alone, (17) can further
be transformed into
2mw2ht
_‘——(V12+ V22+V32)_f'33¢0(7’s)

mAL

a2 (7’3) (18)

Here 3%,/07% can be calculated from Schrédinger’s equation and we obtain for the entire zero-point
energy the sum of (16) and (18)

Evypavs— Eogo= (27212 /mL2) (v2+ v + v2)voho (r o) 2L 1+ 2(Eo — V(rs) /(Eo— E) . (19)

This equation shows that the ratio of the actual
zero-point energy of the electrons to the zero
point energy of free electrons is

voyo(7s)? [1 +2(Ee— V(r )/(EO“Ek)] (19a)

can be larger than 1. It approaches zero for
very large 7, but increases greatly with decreasing
rs when the pressing of the valence electrons
into the inner shells becomes appreciable. The

7 This is exactly London’s reasoning (Zeits, f. Physik 39,
322 (1926)) with the only difference that the partial inte-

gration must be carried through more carefully than in his
case.

second term of (19) is negligible, and several
values of the first are given in the table below:

3.67
1.08

4.05
0.99

4.74
0.89

5.48

Vs
voyo(7s)? 0.76

Once again, it is found that g behaves at r=4
as if it were constant. Moreover it is remarkable
that the second term in (19a) increases the
Fermi energy over the classical value by a very
small amount, if the potential is taken as arising
entirely from the ion, and it decreases it some-
what below that value if ¢, is supposed to be
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the solution of a Schrodinger equatlon with the
potential (2).

5.

If one plots the Fermi energy against (v?
+?2+v2)} Eq. (19) should give the curvature
of the plot at the zero point. It would not be
right, however, to assume that it is correct for
all ». As a matter of fact we know from the work
of F. Bloch? that for higher » it may depend upon
the ratios »; : v, : »; and from the work of P. M.
Morse, R. Peierls® and especially L. Brillouin®
that it is not a continuous function of the »'s
everywhere but has discontinuities corresponding
to wave-lengths for which the Bragg-Laue con-
ditions of x-ray reflections are fulfilled.

According to Brillouin this discontinuity in
the space of the v’s is on the rhombdodecahedron
V1:l:V2=:!::L/d, V1:5:V3=:EL/d, V2:l:V3=':|:L/d
where d is the lattice constant in the space of the
v's. In order to obtain an idea of the size of these
discontinuities, we have taken three points of this
rhombdodecahedron, corresponding to the three
directions (100), (110), (111) and tried to obtain
the two energy values for each of them, the
transformation properties of the corresponding
waves being determined for the symmetry ele-
ments of the space group.

It was an easy matter to find a function which
had the proper transformation properties within
the s-polyhedron but it seemed difficult for us to
satisfy the continuity conditions at the boundary.
The procedure finally adopted possesses no
rigorous justification, but it was decided most
reasonable to select wave functions which were
continuous only at the midpoint of the fourteen
boundary planes, with linear combinations of s,
p, d, f and g functions. For the point »;=yw,
=L/2d, vs=0 ((110) direction) it was sufficient
to take a linear combination of the s; d and g
functions for the lowest function at the discon-
tinuity and a $ function for the upper. For the
(111) direction the lower was represented by a
linear combination of p and d functions and the
upper by a combination of s, f and g while for the
(100) direction the lower part was a linear com-

8 F. Bloch, Zeits. f. Physik 52, 555 (1928).
9P. M. Morse Phys. Rev. 35 1310 (1930); R. Peierls,
Ann. d. Physxk4 121 (1930).
28110 Ii] Brillouin, Die Quantenstatistik, Berlin 1931, p.
6.
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Fic. 3. Graph showing the energy as a function of
(12 4pe? +u32)‘d/L for wave functions of electrons “moving’
in three prominent crystallographic directions.

bination of $ and d functions and the upper was
a d function. The results for the observed lattice
constants are shown in Fig. 3 in which the
abscissa is (¢4 2+ 1?)¥d/L and the energy is
in Rydberg units. The parabola corresponds to
free electrons; the heavy section representing
the extent to which electrons would occupy the
levels, and the other three curves correspond to
the designated direction »; : v : »;. In accord
with the remarks in previous paragraphs that
the electrons behave almost as if free, the
discontinuities are not very pronounced. The

-calculations leading to Fig. 3 do not justify an

accuracy greater than 0.05 Rydberg units for
absolute values of energy, although the energy
differences at the discontinuities are probably
more accurate.

In a recent paper which has appeared while
this manuscript was in preparation, Slater!! has
investigated this phase of the problem from a
viewpoint similar to that presented here. He
has made a formal solution satisfying the proper
boundary conditions at the centers of the eight
hexagonal faces of the s-polyhedron, which
"], C. Slater, Phys. Rev. 45, 794 (1934). Cf. also H.

{ones,) N. F. Mott, H. W. B. Skinner, Phys. Rev. 45, 379
1934).
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requires a general function with eight arbitrary
parameters that he chose to be a linear combi-
nation of one s, three p, three d and one f
function each with arbitrary coefficients. This
yields a secular equation of the eighth order
which he solves in a degenerate case, namely,
when the wave is traveling in a direction or-
thogonal to one of the coordinate axes. For the
case of the (110) direction, which he considers
in detail, the results agree, essentially, with those
we have obtained and bear out our conclusions
completely regarding the accuracy with which
the free electron picture represents facts.

6.

The unsatisfactory feature of the previous
paragraph is that the wave functions employed
are not continuous so that they do not possess
an energy-value in a strict sense. It is evident,
however, as Slater points out, that a continuous
wave function would be obtained by superposing
an infinite number of wave functions with differ-
ent angular factors, which is also possible in the
case of a constant potential, though it would be
a rather awkward procedure, since we know the
wave functions accurately. This would corre-
spond to a development of ¢27%**/Z into a series

el =fo(r) + P8, o)fi(r)+Pa(0, @)fa(r), (20)

where the P; are the spherical harmonics and
the f; depend only on the distance from the
center of the s-polyhedron and are essentially
Bessel-functions. If we determine (20) in each
s-polyhedron, the resulting functions will join
each other continuously, since they all represent
the same function €?7*#/Z, For the energy value
of 0.15 Rydberg units which in the case of free
electrons corresponds to »d/L =%, the quantities
f /f1 are given at the surface of the s-sphere
in the first line of the table below:

s P d f

I 0 1 2 3
Free electron —0.9666 0.049 1.647 2.7
Electron in lattice —1.00 0.044 1.674 2.8

The last line gives the same quantities for the
Prokofjew-field of Na for the distance r,=4 and
the energy value —0.45 Rydberg units, which
lies 0.15 above the energy value —0.60 of the
electron with the lowest energy. The first two
numbers were obtained by graphical integration,
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and the others are those for a simple Coulomb
field, since the field of the Na ion does not give
different values from those of a simple Coulomb
field for d, f and higher terms. It is seen that the
deviation of the two sets of numbers in the table
are very small. Hence, if one adds the s, p, d,
etc., solutions of the Prokofjew field with such
coefficients that the value of each function at
7=7, is equal to the value of the corresponding
function f; in (20) for the same radius, one
obtains a function within the s-polyhedron which
will join similar functions in the other s-poly-
hedra continuously and even with practically
continuous first derivatives. This shows that the
energy of the waves for (v2+w2+r2)id/L=1 is
higher than that of the wave yy=»=;=0 by
the same amount (0.15 Rydberg units) in both
cases. The same is true for'all »’s which character-
ize states occupied by electrons.

If the numbers of the first line were smaller
than those of the second, the Fermi energy would
be smaller for free electrons than in the actual
lattice. A more detailed numerical consideration
shows that this is actually the case, though only
to a very small extent. The situation seems to
be opposite, however, if one takes into account
the perturbation given in (3). The difference
does not amount to more than 1 or 2 percent in
either case, however, and we shall employ the
numbers corresponding to free electrons in the
following.

Of course the coincidence of the two sets of
numbers arises simply from the fact that the
electrons in our picture behave very nearly like
free electrons. We know that the optical proper-
ties of metals can also be explained very well on
this assumption,”® so it possesses additional
backing.

When all the energy terms calculated in
section 1 are added, one obtains the lower curve
of Fig. 4 for the energy of the bottom of the
Fermi distribution as a function of the lattice
constant, which is represented by the radius of
the s-sphere. The upper curve contains the Fermi
energy and gives the total energy of the electrons
in the Fock picture. It yields a lattice constant
of 4.76A and a binding energy of 9.0 cal.

12 C, Zener, Nature 132, 968 (1933); R. de L. Kronig,
Nature 133, 211 (1934).
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F1G. 4. Energies as functions of 7,. The lower curve is
the energy of the lowest electronic state while the upper
curve represents the energy of the entire lattice computed
on the basis of the one-electron picture.

I1I. CORRELATIONS BETWEEN ELECTRONS WITH .

ANTIPARALLEL SPIN

7.

In proceeding with a generalization of the
foregoing sections to include electron correla-
tions more general than those allowed by the
one electron picture, we no longer have at hand

l/’l(_xl)
W (%1%, Y1+ ya) = (1/n1) :
‘Pn(xl)
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guiding principles that are as definite as those
which we had there. Since the energy is to be
minimized, the extensions to be made rest
principally upon the possibility of forming a hole
around every electron in the charge distribution
of the other electrons. This possibility is, of
course, given by the multi-dimensionality of the
wave function, which allows a different proba-
bility distribution of the other electrons for
different positions of the one considered. Since
such a hole is already present in the charge
distribution of the electrons with parallel spin,
we have principally to consider the possibility
of a similar hole in the distribution of the elec-
trons with antiparallel spin. These holes are not
included in the one electron picture (cf. refer-
ence 3), but we know them to exist in atomic
eigenfunctions from the works of Bethe!® and
Hylleraas.!* They seem to play an even more
important rble in metals than in free atoms.!®

The wave function employed in the previous
sections for 2z electrons, may be written under
neglect of the spin part, as'é

ll/l(xn) Wl(-j)h) 1//1€yn>
. (21)

¢n(xn) l//n(.yl) ‘Pn(.y")

Here x;, represents the three Cartesian coordinates of the kth electron with upward spin and the y

refer in a similar way to the electrons with downward spin. The functions 1,

«++, ¥y, previously

designated by ¥»iws are the # lowest energy wave functions for an electron in the field of all the
ions and the other electrons, regarded as a charge distribution. The task of the previous section,
which we believe to be solved to a sufficient degree of accuracy, was to calculate the functions ¢
and the energy of the total ¥ of (21) as functions of the lattice constant.

A natural suggestion for the generalization of (21) is to include the coordinates of all
electrons of antiparallel spin in y,(x;) as parameters. This function will then be a different
function of x; for different values of yy, + -, vy, and will have a minimum around every value of
the set. We shall consider the effect on the function ¢, and the energies if we replace the continuous
charge distribution of the electrons by point charges at y;- -y, This replacement will alter the
field acting on the electron x and we shall use a perturbation method to calculate its consequences.

We shall set '

\//1(3’1, . y Yy xl) te 1#1(3’1, . ,yn; xn) \,h(yl) ce \//lgyn)

\I/(xly""xﬂ;yh °

©ya) =(1/n!)
\bn(yh ‘

13 H. Bethe, Zeits. {f. Physik 57, 815 (1929).

4 E. A. Hylleraas, Zeits. f. Physik 48, 469 (1928).

% We are much indebted to Professor Slater for the re-
mark that possibly the disagreement between experiment
and his theory for the order and distance of atomic terms

(22)

'."yn;xﬂ) s (v, ".'»yn;xn) lﬁn&)ﬁ) \[/n(.yn)

due to the same configuration, also arises from the fact
that the correlation energy is greater for singlets than for
higher multiplets.

( 16 IV§ Delbriick, Proc. Roy. Soc. (London) A129, 686
1930).
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and denote by

‘IIO(xly Sty xn;yly M

the part of (22) which is not yet antisymmetrized
in the «’s, where |y| is the second determinant
in (22). When no ambiguity arises, we shall
designate y,(y1+ * “ya, x) by ¢,(x), in which it is
to be understood that both x and » correspond
to sets of three numbers. In addition, it will be
assumed that both ¢, (y:+ - - ¥, x) and its complex
conjugate appear in the first determinant of (22)
when this function is not real, that the same is
true regarding ¥,(y) in |y|, and that the ¢,(n
-+Ya, x) as functions of x are solutions of a
characteristic value problem so that

f‘pv(yl’ ety Yay x>*¢1"(y11 cctty Yas x)dx

=38, (23)
for all values of y.
It is well known that the total energy of ¥

can be written in the form 7
f f V(K oKy Vot V) Wodady,

where K, and K, are the operators for the
kinetic energy of the electrons of upward and
downward spin respectively, 7, is the old po-
tential function calculated from the viewpoint
in which the electrons are regarded as smeared
out over the entire crystal, and V is the potential
function required to account for the change
incurred by viewing the y-electrons to be point
charges with regard to their interaction with the
x-electrons. The first three terms are those dealt
with in the previous work and yield the wave
function (21), while the last is a perturbing
term and will yield a perturbation energy. If
we retain the old wave functions in the neighbor-
hood of the ions and replace them by a more
general solution of (22) in regions where they
behave like ¢?7#+/Z the expectation value of Vo
will be left unchanged since the electron density
is changed nowhere, and in addition, it may be
seen that (7) remains essentially true. The sum
of the energy correction E and the Fermi energy

17 Cf. e.g. E. Wigner, Gruppentheorie und ihre Anwend-
ung. Braunschweig 1931. p. 323.
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Yalyy, v (22a)

.ry";xﬂ).ly]i

F will be given, therefore, by the integral
p+p= [ [w@wAkANG @8

taken over the part of the configuration space
in which the wave function is changed and
which we shall assume to be the entire space.!®
It is to be noted that for an entirely flat wave
function the expectation value of V, namely

[ [ viypasiy

is zero. We shall proceed with a calculation of
the energy correction E.

(25)

8.

To begin with, we shall transform the three
terms of (24) to a more suitable form. In calcu-
lating the expectation value of #2/2m-A,, we
can use (23) to carry out the integration over
all of the remaining x's and obtain

ff\If*K \Ilgdxdy———mgzyff%*

XAz |y|*dxdy.  (26)

If the same is done for —72/2m-A,, the terms
arising from the second derivative of the de-

terminant are

(4n2h2/2m) T o2, (27a)

Those terms containing the derivatives of the
Yu(yi+« *yn, x,) and of the determinant may be
integrated over all of the x's except x, and lead
to expressions of the form

INESE] wa;x

K

) 9
-—|y|dwdy.
0y«

If this is added to the similar term containing
the derivative of ¢,* it follows from (23) that
the sum will vanish upon integration over x,.
Finally, those terms which contain the second
derivative of ¥, are of two types, namely,

18 The difference of the two volumes is negligible.
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— (2/2m)(1/n )T, f f V() * Ayt () |y "y (27b)
and

—#/2m)(1/n}) 14: ffl:‘»bv(xV)*‘Pn(xn)* —¥(x,) ¥ () * - gradw ¥ (x,) gradyu(x,) |y | dux,dx,dy.

If Y,5#¢y,* we can add to the latter the term in which ¥,* replaces ¢, and the sum will vanish upon
integration over x. Hence the only terms resulting from the first term in the bracket are

2
—/2m)(1/n)E [ ) [t gradun wwaan 1ylay (27¢)
and those from the second are such as to yield
. 2
—e/2ma/n) E [ | [t eradus vuteas 1y 1203, (27d)
et ,

If u=vin (27d), we obtain (27c), so that the sum of (26), (27a, b, ¢, d) and

(1/n!>sz|‘//v(yh Y D) PV, e vy X)dx |y |2y

leads to

1 h? 472p?
— [ ¢,<x>*[ Vo e ¥ui ) — (AE+AM+- o b ]-¢,<x)dx| y|dy
n.

m

—#/2m)1/n )Y > f|f¢,(x) grady, ¥,*(x)dx 2Iy[“’dx=E (28)

K [,V

for the change in energy since
' F=h2/2m)23" (4=2»2/L?)

is the Fermi energy. The summations over u and » are to be extended over all occupied states.
In the following it will appear from the form given ¥,(y1* -y, x) (i.e., see (29)) that the last ex-
pression in (28), which could only lower the energy, vanishes.

We shall proceed under the assumption that ¢,(y:+ « ¥, x) has the form

Yoy, v o0, Yy ) =@ Ay (x—y1, 00, X —Y0), (29)

in which x, to the approximation considered here, is a constant plus a sum of functions, each of
which depends on one argument x—y;. When substituted in (28) this yields

> f f oLV, + Y 1) — (32 2m) 20 o+ (Ari/L)v-grad) o |y |%ddy.  (30)

In order to minimize this x, must satisfy the equation
— (B2/2m)Ax, — (2mik2/mL)v-grad x,+V (1, ) a1 %) X = &xX0(¥1, * * * Y} ). 31

Eq. (31) is much the same as (11), the principal difference being that the relative mass im
appears instead of m.
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9.

The characteristic values ¢, of (31) will depend
on the position y;---v, of the electrons with
downward spin, and we must average this
characteristic value using |y|? as a weight-
function to obtain a final value. It is possible to
perform this general calculation to a sufficient
degree of accuracy using a modification of the
usual Rayleigh-Schrédinger perturbation process,
since it does not converge in its usual form,
but this involves a rather lengthy computation,
so we shall content ourselves here with an
estimate of the solution to (31) and present the
more general solution at a later time.

It is evident that if the y’s are to be most
favorable for a large negative value of the
correction energy we shall want the regions in
which no y occurs to be as large as possible.
In these regions x,(yi* ¥, %) will have large
maxima and the electron x will have the greatest
probability of being as far as possible from the
electrons of opposite spin. A secondary effect
resulting from this will be an alteration of the
original Fermi distribution |y|?, and, as a
consequence, (8), but we shall not take this
into account in the present calculation.!?

The most disadvantageous configurations for
the ¥’s, that is those giving the smallest —e,(y
-+ +¥,), are the close-packed lattices, while the
most advantageous is one in which all of the y
electrons are at one ‘corner-point of the lattice.
This latter is practically impossible for the Fermi
distribution, however, while the former possess
the greatest probability. A graphical integration
of (8), however, shows that the mean distance of
the nearest electron with parallel spin to a given
electron is 1.17, in contrast with the nearest
distance of 2.37, for close-packed configurations.
For this reason it seems reasonable to us, as far
as energy is concerned, to make use of a “‘mean
configuration” of the electrons with downward
spin in which pairs of electrons form a body-
centered lattice. In this the nearest electron will
be much closer than it should be but there are

19 It cannot be taken into account without also replacing
the effect of electrons with parallel spin on each other by
point charges in a similar way to that carried through here
for the electrons with antiparallel spin. If this is not done,
the two kinds of electrons will push each other into different
parts of the crystal, thus invalidating the ‘assumption
under which we have calculated their mean effect.
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no clusters of more than two electrons present,
which compensates the fact that the pairs are
at the most disadvantageous position.

The energy €,(y1* * * v,) of this mean configura-
tion can be calculated very simply by the
method employed in reference 1; the radius of
the sphere surrounding every electron is (4)¥,
and the potential energy within the sphere is

V=2e&/r+e?/r3—3.6¢%/r, (32)

in which the last term has been introduced in
order to satisfy (25). We shall designate x,(y,
“**, Yay X) by x,(x, v, 2) when the configuration
of the yi, « -, y, introduced here is implied.

In order to determine the x, associated with
the lowest energy, we shall regard 7 in (31) as
a perturbation, for which the unperturbed prob-
lem is

— (B/m)Ak(x, y, 2) = n(x, y,2).  (33)

Each of the solutions of this possess an ‘‘azi-
muthal quantum number” [, these for /=0 and
=1 being of the form 7%= S mwr, and r&,
=9/dx sin w,r, etc.,, where the w, are to be
determined from the relation tan w,; = w7 arising
from the boundary conditions. The normalized
solutions for /=0, are, to a sufficient degree of
accuracy

) 1.024 sin 1.437r/r
£oo=(3/4mr%)%;

(27r)? 7

sin (2k+1)7r/2r,

to=

n w7

E()K= (1/21!'1’1)%

1/271’7’1);‘

¥

for which the corresponding unperturbed energies
are
(34a)

170():0, Mok = ﬁzw,?/m.

The matrix elements Vi, of ¥ may be obtained
as follows. We have

Vo= f foVEod V
— (34 (1 i) f VatdV, (35)

in which the Laplacian may be made to operate
on the V by use of partial integration. From
Poisson’s equation AV is —8me?(6(r) — 2n7®) in
which the last term gives rise to a vanishing
contribution since it, like &, is constant and the
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integral over it vanishes in (35). The first term
yields

Vo= (24)%2/ w,1® (36)
so that the solution of (31) for »=01is
xo0= (3/4mwr)i—=3"" J——‘SOK (37)
C Rod/mA Ve
and the corresponding energy is?®
1/(16.2+3.077,) +0.005. (38)

Although this is given in atomic units, the
correction is true for only half of the electrons
and must be taken in Rydberg units. The
solution (37) has also been obtained by use of
numerical integration and is illustrated in Fig. 5.

| 1 | 1 I (
2

3
r (Bohr units)

Fi16. 5. Wave function corresponding to a solution of (30)
with »=0 and 7;=4.

The wave function of an electron has only about
30 percent of its mean value in the region where
two other electrons are situated and only 50
percent in the region where there is an electron
with antiparallel spin.

For » other than 0, we shall have greater
energy gains because the Fermi distribution will
be narrower as a result of the presence of the
field arising from the y;-- -y, electrons than it
would be without this field. In this case we can
take the second term of (35) into account as a
perturbation, the calculation being very similar
to that employed in Section 4. The first approxi-
mation is zero, while the second, namely

4t /m* L) vy | S (0% o0/ 3x) x|/ — Ex (39)

is evidently negative, and would vanish if xg
were entirely flat. Because of the selection rules,

20 The Vix must be calculated graphically. We obtained
Vu =2.4 82/7’1.
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it is sufficient to take wave functions with /=1
for x., which are simply derivatives of the func-
tions (34) to a first approximation, while xoo
must be taken from (37). The sum (39) may be
conveniently compared with the Fermi energy
of free electrons and a simple calculation shows
that it is 4 percent of this quantity.

If this result and (38) are subtracted from the
upper curve in Fig. 4, one obtains Fig. 6 which

0301
£
[~
=1
g-0.40~
F ~—
°
&0.501~
&
9-0.60
C
w
I 1 1 ] 1 1 1
0 [ 2 3 4 5 6 7 )

rg (Bohr units)

F1c. 6. The upper curve replaces that of Fig. 4 and
contains the results arising from the correction to the one-
electron picture.

yields 7,=4.40 or a lattice constant of 4.75A,
and a heat of sublimation of 23.2 kg. cal. The
experimental values are 4.23A and 26.9 kg. cal.,
respectively. For the observed lattice constant
the calculated energy is 18.6 cal. It may be men-

" tioned at this point that the preceding calculation

of the correlation energy is valid only in the
neighborhood of 7,=4.

It is to be noted that the actual x, will not
have, in general, forms such as those we have
calculated here. For irregular configurations of
the electrons with downward spin they will be
rather complicated linear combinations of these
functions, possessing energies that are nearly
the same, however. Each function ¢, going with
an energy ¢, will have a maximum in that region
in which the potential has a trough allowing
such a characteristic value and will be small
everywhere else as a result of interference of
the superposed waves.? This does not affect
the actual wave function (22), for all of the
electrons, however, since this is a determinant
of the ¢, and does not change upon taking such
a linear combination.

21 Cf, the discussion of a very similar problem by F.
Hund, Zeits. f. Physik 40, 742 (1927).
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10.

It is hardly necessary to mention that the
calculation of the last section must be regarded
only as an attempt to find the correct wave
function for the electrons in the metal, and we
are well aware that we could guess its form only
roughly. We should like to mention that the
deviation of the wave function from the determi-
nantal form (21) using plane de Broglie waves is
much more pronounced here than in the one
electron picture (cf. Fig. 5) in which the plane
waves were a surprisingly good representation.
They still form a reasonably good approximation
to the true state of affairs, however, and for
this reason we believe that the fact that (22) is
not symmetric under interchange of x and y is
not of extremely great importance. The function
(22) still possesses this property if we consider
the differences of the ¢, from the de Broglie
waves as small quantities and neglect the second
order terms. ,

The remaining discrepancy of 3.7 kg. cal. we
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believe to arise from two sources. First it is not
evident that the Prokofjew field is completely
suitable for calculations of this kind and, in fact,
it is surprising that the atomic levels are as
good as we have found them to be. Rigorously
the exchange terms between the valence electrons
and the closed shells cannot be transformed into
the form of potentials because they are repre-
sented by more general operators, and there is
a possibility that the effect of these is not
described accurately enough for the states oc-
curring in the crystal by an effective potential
field. This important point is being more accu-
rately investigated in connection with a treat-
ment of Li to appear shortly and it is hoped that
more light may be thrown upon it.

On the other hand, it is also possible that the
actual wave function is not represented to a
sufficient degree of accuracy by a wave function
of the form (2). It does not seem to be easy to
use wave functions of a greater generality,
however.

APPENDIX 1

It is possible to continue the wave function with the same spherically symmetric potential over
the whole volume of the s-polyhedron. If one assumes this ¢ to be valid in all the s-polyhedrons of
the lattice, the resulting wave function will be continuous everywhere, but the derivatives will be
discontinuous at the boundary planes. The energy, therefore, is not the characteristic value of the
differential equation, but must be calculated as the sum of kinetic and potential energy. The cor-
rection for the potential energy will be given in Appendix 2, while the correction for the kinetic

energy is

<ﬁ2/2m){ fv (grad o~ | (grad wcw}, (1)

where V7 is the region of the s-sphere outside of the s-polyhedron and V, is the equally large volume
of the s-polyhedron outside of the s-sphere. In the neighborhood of the s-sphere, we can set

2 B @)
—grad y=— (r—re) =(V(rs) —E)Y(rs)(r—rs), (2)
2m 2m  dr?
so that (1) becomes
N (V(r) —EP9(r,)? —r)dy— ).
@m /1) (V(r.) )W){fm(r o fvf’ ") } 3)

Now the mean value of r—7, is certainly smaller than 7,/20, V1 is smaller than v,/10, and ¥(7,)%~1,
so that the first part of (3) is

(2mr 2 /12) (V(r,) — E)? /4000 = 0.0004 Rydberg units.

In additipn to this, the second term of (3) essentially cancels the first, so that the total correction
really is negligible,
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APPENDIX 2

It is necessary to calculate the potential energy of a body-centered lattice of positive point charges
in a fluid of negative charge of density p=y? and then to compare this energy with the electrostatic
energy of the s-sphere.

To begin with, we can draw s’-spheres around each positive charge which are smaller than the
s-spheres and just touch one another. Outside of these s’-spheres we may assume the density to be
uniform and of magnitude p. Relative to the regions of space outside of the lattice, the energy of the
s’-spheres is as large as if the negative charge had a constant density within the sphere. This is
because the potential outside a sphere arising from a spherically symmetric charge distribution is
independent of the radial distribution inside of the sphere.

The total electrostatic energy of the lattice may now be divided into two parts: first, the energy
E; of a body-centered lattice of positive charges v,0 =¢ with a uniform negative charge-density and
second the difference, E,, of the inner energy of an s’-sphere with the actual s’-sphere on the one hand
and an s’-sphere with uniform charge distribution on the other. Since the density is actually p outside
of the s’-sphere, the second energy is equal to the difference in energy of the actual s-sphere and one
with constant negative distribution p. This second part is

Ey=E,— (35/271/3/5) (p%¢*/d) = E,~3.6557 p/2d,

where E; is the energy of the actual s-sphere, that is, the energy employed in the text, and .
—3.6557p%v2/2d is the energy of an s-sphere with uniform charge distribution.

If E;, were —3.6557p%y2/4d our calculation would be exactly correct. Since it is actually
—3.6391p%%/4d, as will be shown at once, the total energy is smaller than that used in the text
by the amount

0.01660%¢%/2d = 0.004¢2/7,,

which for ;=4 is only 0.62 kg. cal.

The calculation of E; is a-problem of electrostatics, we have used essentially the procedure of
Appell-Madelung. Since the proper energy of the positive point charge, which must be obtained, is
infinite, we must assume positive charges of finite size concentrated into small cubes with edges 23.

The Fourier expansion of the density is, then,

©

> aeuexp [2ri(kx+ Nyt uz)/d]

K, N, p=—00

with

2pvg sin ak sin a sin ap/d*a’k\p,
Qi

where a=278/d and the first line is valid for x+X-u even and the second for this odd in addition
to the case k=A=u=0.
The total energy per atom of the lattice is

En=d% an|?/4m(2+ N4 p2).
The density distribution of the positively charged cube may be written in the form of the Fourier

integral

fffa(x)\p.) exp [27i(kx+Ny+ uz) /dldkdNdp

with
a(khp) = pv, sin ak sin aX sin ap/d3adkiy
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and the corresponding energy is
Ep= (d"'/Zr)fff la(knp) |2/ (24 N+ p?)drdNd p.

The energy E; is now simply Ei;—Ey,. If we put §=0 both Ey; and Ej, diverge, but if we take the
difference before passing to the limit and then set § =0, we obtain

N ds lak)‘[:a (N+31) IG(K)‘I‘)IQ
E{=limlim > —_— fff ———————dxdNd
Nooo 60 &, A, p=—N 477 K*-}—X"—{—,u (—N—1 24N+ pu?

P2 (N 1 N+D  drdNdu
=lim {Z -1 f f f ~———}
Now gd | —N 24N+ u? (—N=1 24N+ u?
In 2/, the values for which k+X+u is odd and the case k=A=u =0 are to be omitted.
The summation and integration over u were carried out directly and yield

nIenie 3 () e e [
t tgh — L
{K-}—)\cdd(K?-{—)\z) & (K ) +K+)\ even(K2+)\ ) <8 ‘ (K2+)2)§

which was then calculated directly. The tgh and ctgh may be replaced by 1 when either «x or X
is greater than 3. For « or \ greater than 9, the bracketed difference is 1/24(x*42?)! with sufficient
accuracy, and the integration over ¥ and \ was carried out in this region. The terms for which x=
A=3 yielded —3.57221, while the second sum gave

E1=—3.6391p%/2d.

E,=

The van der Waals attraction of the ions is —0.12 cal. per mol.

Note added in proof. In Fig. 3 the upper point of the (110) discontinuity, given by a pure p function,
lies at —0.33 Rydberg units in place of the value shown. The lower is at —0.34. Although the first
lies below the parabola, this is undoubtedly of no real significance.



