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tend to coalesce. In an intermediate case, as
shown by the calcium hydride diagram, the
branches start out as in case a and then with
increasing J values, tend toward case b. The
beryllium chloride bands appear to follow the
calcium hydride diagram and this might ex-
plain why the R& and R2 branches have the
(v'+ —', ) (v"+ -', ) coefficients that they do. The
Ri branch turns at about J=59 and therefore
should have a large coefficient, but the R2
branch must turn at a relatively much lower J
value and thus have a much smaller coefficient.
The fact that both branches have practically
the same coefficients may be due to the coalescing
effect of the case b type; consequently, the R&

branch tends to be drawn in and have a smaller
coefficient than expected and the R2 branch
tends to be drawn out and have a larger co-
efficient.

The heats of dissociation of the upper and
lower states, calculated in the customary way
from the vibrational formula for the Q~ heads,
are 3.47 and 4.33 volts, respectively. From these

values and that of the constant term in the
vibrational formula, the atomic excitation comes
out to be 2.59 volts which is in fair agreement
with the 'DmP' separation in beryllium of
2.70 volts. Hence, it is concluded that the
electronic configurations in the upper and lower
states are Be—(2s) (3d)'D+ Cl—3p"Pand Be-
(2s) (2p)'P+Cl —3p"P.

A. E. Parker' has recently reported another
'll —PZ BeCl band system which lies in the
yellow-green region of the spectrum. Neither
state of this system is common to the ones given
above but it seems quite certain that this
yellow-green system has the same final state
dissociation products and arises from the elec-
tronic transition of iS—I"in the beryllium atom.

The authors wish to thank Dean Henry G.
Gale and Dr. George Monk of the University of
Chicago for permitting one of us to use the
large grating in the Ryerson Laboratory.

' A, E. Parker, Phys. Rev. 45, 752 (1934), an/ also in
private communicatioi|.
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The nonlinear triatomic molecule of the type XY2 has
been treated and the expression for the energy of vibration
has been obtained when second, third and fourth powers of
the coordinates are considered in the potential function.
The higher powers of the coordinates have been introduced
by the use of first and second order perturbation theory. A
method has also been outlined for treating the more corn-

plicated types of kinetic energy expressions by a perturba-
tion method. Using the results of this treatment there have
been evaluated for the water molecule, from the known
spectrum, the primary binding constants and vibration
frequencies for infinitesimal amplitudes. Finally, a predic-
tion of the infrared vibration spectrum of the symmetrically
substituted heavy water has been made.

INTRoDUcTIQN

ECENTLY Adel and Dennison' have pub-
lished a quite thorough treatment of the

~

~

linear triatomic molecule of the CO2 type, and
have obtained the energy expression when higher
powers of the coordinates are considered in the
potential function. In this paper it is proposed
to discuss the nonlinear molecule of the H20
type from a similar standpoint. Some of the
results of this treatment have already been
published. ' In the present paper the method will

~ A. Adel and D. M. Dennison, Phys. Rev. 43, 716 (1933),
~ L, Bonner, Phys. Rev, 45, 496 (1934),

be more completely presented and further results
will be discussed.

The present case is somewhat complicated by
the fact that the kinetic energy expression is of
such a form that it cannot be treated rigorously.
However, it is hoped that this difficulty has
been successfully surmounted by using a per-
turbation method.

It is desired in this article to find the form of
the energy expression when the deviation of the
potential field from that of a harmonic oscillator
is considered. Third and fourth powers of the
coordinates will be included in the potential
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function. In addition, expressions will be found
for the true mechanical frequencies of the mole-
cule for infinitesimal amplitudes of vibration.

A brief outline of the method empjoyed may
now be given. First, the classical normal co-
ordinates wi11 be found, which, for infinitesimal
amplitudes of vibration, reduce the kinetic and
potential energies to sums of squares. The wave
equation will then be written in terms of three
coordinates having a simple significance iii the
molecule. The potential energy must, however,
be expressed in terms of coordinates giving
displacements from the equilibrium configura-

tion, and a transformation to these displacement
coordinates must be made. The normal coordi-
nates will next be introduced and the Hamil-
tonian separated into three parts. The first of
these will be solved rigorously, and the other
two applied as perturbations.

This leads to the desired energy expression
and to expressions for the mechanical frequencies
of the molecule. The known spectrum of water
vapor will then be used to evaluate certain of
the constants of this molecule. Finally, a pre-
diction will be made of the spectrum of the
symmetrica]ly substituted heavy water.

CLASSICAL TREATMENT

The kinetic energy expression for the nonlinear triatomic molecule has been given by Cross and
Van Vleck and is, for the present case of a symmetric molecule,

T= ', (p~ Aps'—rs' s—in' u)r'P+ ', (p~ Aps'rP—sin'—a)r s'+-', ArP'rs'(pP ps' cos' u—)u'

+ (—ps cos a+A ps'r&rs sin' a) r'~is+A psr~rs sin a(p&r~ psrs c—os a) r'qa

+Aper&rs sin a(p~rs —psrq cos a)r'su.

1/A =pq(r~'+rs') —2psr~rs cos u, p~ =m(M+m)/(M+2m), ps =m'/(&+2m).

Here rj. and r2 represent the 0—H distances, o. is the angle between these two bonds, and m and M
are, respectively, the masses of H and of O. For the present the potential energy expression may be
taken to include all terms quadratic in tbe coordinates, and may be written

V'= -', a j (&r,)'+ (&rs)'I +-', b(&a)'+c&r,&r, +d&u(&r, +&rs)

Displacement coordinates may now be substituted for the above r&, r2 and o., as follows

rg ——R+p, rs ——R+o, u=P+p,
where R and P are the equilibrium values. If, in the coeKcients of the dotted terms in T, the dis-
placements in the coordinates may be considered negligible compared with the equilibrium values,
the usual treatment by means of normal coordinates may be carried out. This gives expressions for
the X's, which are proportional to the fundamental frequencies, and also gives the substitutions
which reduce T and V to sums of squares. These expressions are given below, where the ~'s are the
frequencies and the y's are the normal coordinates.

Xl 4K Ml (pl p2 Cos p)(G C)/(pl p2 )q

h s, s 47r ~ 2, 8 =R (pl ps ) j b(pl ps cos P) +sR (pl+ps cos P) (0+c) 2dRp2 sin P}

R (pP —ps ) j j b(py —ps cos P) +&R (pg+ ps cos P) (a+c) 2dRps sin P}—
)2' is taken with the positive sign.

p =yx+ys+ys~

—2Rs(pP —pss) j b(g+ c) —2ds} g'.

—2d+) ssRps sin P —2d+Xs'Rps sm P

b —sos R (pal+ps cos P) b —sos R (pal+ps cos P)
' P. C. Cross sad J.H, Van Vieck, J. Chem, Phys. 1, 350 (1933).
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WAVE MECHANICAL

The assumption made above of constant coefficients in T introduces a certain amount of error,
and it is desired to show here how this uncertainty may be considerably reduced, and a closer ap-
proximation obtained.

We may write the wave equation for the system under consideration in terms of the original
coordinates, r1, r2 and n, following the method of Podolsky. 4 This gives:

(82$ 82fq 1 82$ g2P

p~l + l+ +2p2 cos n
4&r p ar2'& Ar, 'r2' an' Br18f2

(& ~24 & ~V i—2p2 Sm nl +
Erg Br1BA f1 Br2&O,')

A BP A elf+ (p pr2—' 2@~p2r—~r2 cos n+I32'r p) + (p pr—p 2I3~p2—r~r2 cos n+ p2'r2')
r1 Br1 t3r2

83-'(pp —p2')
+ (W—U)/=0.

If, as before, we substitute in this expression the equilibrium positions plus the displacement
coordinates, we obtain expressions involving (R+p), sin (p+32), etc. Although a rigorous treatment
of this wave equation is impossible, a sufhcient ly close approximation to the true solution may
probably be obtained by expanding these expressions in powers of the displacement coordinates,
and neglecting all powers higher than the second. The justification of this procedure is that, at
least for moderately small values of the vibrational quantum numbers, these coordinates are small
in comparison with the equilibrium distances. The expressions for the normal coordinates obtained
above may now be substituted, and another transformation made to remove multiplying constants,
after which the wave equation takes the form:

(42r2(u, cog cog ) 82$ (42r2(u2 cog cog

+—&a2x2'+ —&i3x3'
~

+ l +—c2~xp+c'22x2'+ —&23x3
f2 M2 M3 ) Bxl ( l3 (dl M3 ) Bx2

t'42r2co3 cog

+
l

+—~»xp+ —~32x2'+~33x3 l,+&»»x2
13 COy . M2 ) Bx3

g2P $2$
+513X1X3

X18X2 BX18X3

g2P
+bggX2Xg

Bx28x3

8$ elf 8$ 82r2

+c~x~ +c2x2 +c3x3 + (W—U) P = 0,
BX1 BX2 BX3

where the a' s, b's, and c's are constants involving the equilibrium positions, the binding constants,
and the cv s. Analytical expressions for these constants will not be given, since they are quite compli-
cated and their contribution to the energy in the present case, is small. All other powers of the x's
are rejected in the coefficients, and those given are the only ones which have nonvanishing diagonals
in the Hermitian matrix. The advantage of the normal coordinate substitution is that this reduces
to second order magnitude the contributions of terms such as 82$/Bx&8x2 which cannot be treated
rigorously and must be applied as perturbations.

We will now assume that the Hamiltonian, IZ, may be expanded in a power series in p, a parameter
of smallness.

II=II'+&IP+&~III'
corresponding to the expansion

8 = m"+&W+&~W'.

In II' we will include V' and those terms from the wave equation which have constant coefficients.
II' contains all possible terms of V cubic in the coordinates, and II" contains, in addition to the

4 B.Podolsky, Phys. Rev. 32, 812 (1928).
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quartic terms of V, the terms from the wave equation containing the coordinates explicitly. If
we assume the potential function to possess the same symmetry as the molecule it follows that X1,
being an odd function of the r's, may appear in V only to even powers. The terms in the expansion
of H may now be written:

k 8 8
II = — C01 +C02 +M3

2 BX1 BX2 BX3

—C01X1 G02X2 C03X3

VII'= k{ex2'+fx3'+gxPx2+ix&'x&+jx2'x3+kx2x3 },

k t COy Mg $ l9 fQ)g Q)p ) 8
'r II —

{ &nx2 +—&~ax3 } +{ +»» ++2»2 +—~2«xa
87I (Q)2 (03 ) l9xl (My M«j Bx2

(cup «««i 8 8 8
+ { G»xp+=C32x2 +083x3

~

+Aggx/x2 + b]3x/xa +b93x2x3
E GP1 G02 ) BX3' BX1BX2 BX1BX3 ~ BX2BX3

8
+C1X1 — +C2X2 +C3X3

BX1 BX2 t9X3
+k {lxl +mx2 +nx3 +PXPx2 +Ilxl x32+sx2 x3 } .

The zeroth order equation separates, and may be solved at once, leading to the energy expression

y~p2~~ k~1( Vl+ 2) +k~2( V2+ 2) +k~3( V3+ 2)

in which the U's are the vibration quantum numbers. The P's are then the regular Hermite functions
of argument x;. If S" is the first order perturbation energy, we have the expression

and for the second order energy lV"

{J PV&V2V3 I Pry'r2'T 3'd }
d~+

V1V2V3 V1'V2'V3'

Since the method of obtaining the necessary matrix elements of the Hermite functions is well known,
it need not be gone into here and only the results will be given.

For the total energy of the system we obtain an expression of the form

TVV'yV2Vg = k {Xo+Xl Vl+X2 V2+X3 V3+Xll Vl +X22 V2 +X33V3 +Xll Vl V2+X13 Vl V2+X23 V2 V3} i

where the coeAicients X;; are given by the following equations:

1 ~12 1 +13 2 +21 &2 +23 ~3 ~31 3 +32 +22 +33
Xo =

q (««i+ ~a+ &3) +—— +— + + +— +
167r2 co2 2 u3 2 co1 2 cu3 2 cu1 2 o)2 2 4 4

b12 b13 &23 11e'+g'+k'+6eg+6ek+2gk
+c&+c2+c3 + «(3l+3m+3n+p+cl+s)—

2 2 2

11f'+2+j '+ 6fi+6fj +2'
SM3

$2

1

4(20)y+ M2) 4(2GOy+ C03) 4(2%2+ M«) 4(2««3+ %2)
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h CV] M1 COg Q)g g+3e+k 2+3f+j
X1——M1+ —a12+ Q13+ Q21+ Q31 +-2, (3l+p+12) —g

16K M2 ~3 1 ~]. 2%2 2073

3i2 2

8(2M1+M2) 8(2M1 —M2) 8(2M, +M,) 8(2M, —M2)

C01 602 G) 2 (d 3

X2 = M2+ Q12+ Q21+ Q23+ Q22+Q22 + 2 (3m+ p+s)—
16' G02 M] M3 c02

15e'+6eg+6ek j '+3fj +ij
2(d3

3j'
)

4(2M1+ M2) 4(2M1 —M2) 8(2M2+ M2) 8(2M2 —M2) 4(2M2+ M2) 4(2M2 —M2)

h M] G)2 M3 M3

X2 ——M2+ —a12+—Q22+ —Q21+—a22+Q22 + 2 (322+g+s)—
16m co3 e3 co1

15f'+6f2+6fj k'+3ek+gk

2 2 k'

g g2 g2 i2
x =-t- + —+

2 2M2 2M2 8(2M1+ M2) 8(2M1 —M2) 8(2M1+ M2) 8(2M1 —M2)

2

4(2M1+M2) 4(2M1 —M2) 4(2M2+M2) 4(2M2 —M2) 8(2M2+M2) 8(2M2 —M2)

IE 3
+22+

16vr2 2

k 3
X33= Gg3+ R

16m' 2

15e2
+

4M2 2M2 8(2M2+M2) 8(2M2.—M2)

15f' k' k'
+

4M2 2(d2 8(2M2+M2) 8(2Id2 —M2)

k (M1 M2

a»+ a» I+A
82I2 KM2 M1 )

g g

M2 M2 2(21d1+ M2) 2 {2M1—M2)

k fM1 M2 ') gk 3f2 2' 2'
X12=

~

—a»+—a» I+~-——
87I. (M2 Ml ) Id2 M3 2(2M1+M2) 2(2M1 M2)

k (M2 M2

X22=
I

Q22+—Q22 I+s
Sm2 (~3 ~2 )

3ek 3fj j2 k2 k2

M2 2(2M2+M2) 2(2M2 —M2) 2(2M2+M2) 2(2M2 —M2)

In spite of the apparent complexity of these expressions, they are readily solved for the co's,

leading to the result

1 X1 X11 2 X12 2 X13) 2 X2 +22 2 X12 2 X23)

These equations for the ~'s in terms of experimentally determinable quantities are perhaps the most

important result of this analysis, since it is from these that the zeroth order binding constants in
the potential energy expression are evaluated, and it is about these constants that the greatest
interest centers.

APPLICATION TO THE SPECTRUM OF

WATER VAPoR

We have now obtained an expression .which
should fit the known vibrational energy levels
of triatomic rnolecules to a fair degree of accu-

racy. We have also obtained expressions giving
the true mechanical frequencies of the molecule
in terms of the coeScients in this energy ex-
pression. It is desirable to check the validity of
the energy formula over as wide a range as
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TABLE I. Positions of vibrational bands.

Desig-
nation

V1 V2 V3
Position (cm ')
ohs. calc.

Desig-
nation

V1 V2 V8
Position {cm ')
obs. calc.

0 0 1
0 0 2
0 1 0

0 0
0 1

1 1 0
1 1 1
1 2 0
3 0 0

1595.5
3152.0

(3600)
3756.5
5332.3
7253.0
8807.05

10613.12
11032.36

1595.5*
3152.0*
3604.6
3756.5~
5331.0
7255.0
8810.6

10613.1~
11032.5*

1 2 1
3 0 1
1 3 0
3 1 0
1 3 1
3 1 1
1 3 2
1 4 0
3 2 0

12151,22
12565.01
13830.92
14318.77
15347.9i
15832.47
16821.61
16899.01
17495.48

12149.8
12565.0*
13830.8*
14318.8*
15348.6
15832.4*
16827.4
16908.1
17464.7

+ Indicates the band centers used in evaluating the constants.

observed and calculated, together with the
designation of each in terms of the vibrational

quantum numbers.
The fundamental (0, 1, 0) is not observed due

to heavy overlying of that region by neighboring
stronger bands, but is predicted at about 3600
cm ' from combination relations. The value
given above of 3604.6 crn ' confirms this, and
gives a more reliable figure for the actual
frequency.

The check here is satisfactory, within experi-
mental error for all cases but the last two.
There is considerable doubt as to the complete

' R. Mecke, Zeits. f. Physik 81, 313 (1933).
Baumann and Mecke, Zeits. f. Physik 81, 445 (1933).

7 Freudenberg and Mecke, Zeits. f. Physik 81,465 (1933).

possible in order to determine its general useful-
ness and the degree of reliability to be attached
to the results. For this purpose the spectrum
of water vapor is at present most favorable. In
the case of water seventeen infrared and visible
vibration-rotation bands are known, and have
been measured with great care. In addition the
recent work of R. Mecke, ' Baumann and Mecke, '
and Freudenberg and Mecke~ on the rotational
analysis of these bands should give the positions
of the band centers with considerable accuracy.

The figures for the band centers have been
taken from Mecke's paper, and nine of the best

'
known bands, distributed throughout the spec-
trum, have been selected to determine the
coefficients X;;. Xo cannot, of course, be deter-
mined in this way, since the given band positions
are differences between the given energy level
and the ground level.

In Table I are given the positions of the bands,

correctness of the rotational analysis of these
two bands, which appear very weakly in the
solar spectrum. This agreement between the
observed and calculated values of the band
centers justifies the use of the coefficients X;, in
further calculation. The values of the X's which
have been calculated are:

X~=3796.0 cm —', X~~= —39.5 cm ',
X2 ——3674.8 cm —' X22 ———70.2 cm '
X3——1615.0 cm—' X~3= —19.5 cm —'

X)2———106.1 cm ',
X)3= —21.0 crn )

X23 ———18.9 cm '.

If these quantities are substituted in the
formulae of the previous section, we obtain for
the o)'s

cog =3899.0 cm —', o)2=3807.5 cm —'
co3=1654.5 cm '.

We are now in a position to calculate the
zeroth order force constants in the potential
function, from the normal coordinate expressions
given earlier. However, we have only three
relations from which to calculate the four
constants therein assumed. The reasonable as-
sumption may therefore be made that the con-
stant d is small in comparison with a, b and c,
and has, in this case, been taken equal to zero.
The values for the equilibrium positions of the
molecule have been obtained from Freudenberg
and Mecke's' extrapolation to the vibrationless
state, and were

P =104' 36' and R=0.9558A.

The equations may now be solved and we obtain

+=8.233X10' dynes/cm,
b/2R' = 0.376 X 10' dynes/cm,

c = —0.0757 X 10' dynes/cm.

b is divided by 2R' to give dimensional similarity.
The above values of the force constants are

in fair agreement with those obtained by Van
Vleck and Cross' by an entirely different, and
somewhat less accurate method. It is also of
interest to note that the constants e and b may
be obtained with fair accuracy from the relation

8 J. H. Van Vleck and P. C. Cross, J. Chem. Phys. 1, 357
{1933).
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proposed by Badger' between force constant and
internuclear distance.

Three of the nine relations given by the X's
have now been used, and it should be possible
to calculate six higher order constants in the
potential expression. However, it seems scarcely
worth while to do this, since the additional
information concerning the nature of the function
would be small. It seems desirable to leave this
until the nature of the interaction between
rotation and vibration has been studied.

PREDICTION OF THE SPECTRUM OF HEAVY WATER

It may be assumed for the present that the
equilibrium positions and force constants of the
water molecule are unchanged by the introduc-
tion of the hydrogen isotope of mass two. If
this assumption be made we may calculate the
mechanical frequencies and convergence factors
of the symmetrical heavy water. Putting the
changed masses in the normal. coordinate ex-
pressions for the co's given above, we find the
following values

~~ = 2865.4 cm ', cv2 = 2764.7 cm ',
co3

——1209.7 cm —i.

The ratios of these three frequencies to the
corresponding frequencies for ordinary water are
rather close to 1.37. Making use of this fact, it is
possible to calculate approximate values for the
X;;. It will be assumed that the force constants
1—s appearing in II" are small compared with the
higher order constants, and that the contribu-
tions of the terms from the kinetic energy
perturbation are negligible. Further, it should

be noticed that due to the substitutions previ-
ously made the coefficients e—k of II' must be
multiplied by terms of the order of co& before
the real force constants are obtained. These
assumptions, then, make the factors X~~, X22, etc. ,

but not X~, X2, Xe, homogeneous functions of the
order co'. Using the average value of the ratio of
co's given above, we see that we may expect
these X's for ordinary water to be approximately
(1.37)' or 1.78 times the same constants for
heavy water. From these six values, and the
values of the co's, X&, X2 and X3 may be readily
calculated. This gives

X~ = 2810 cm ' X~~ = —21.2 cm '
X2=2694 cm ', X2~= —37.7 cm ',
X3——1188 cm ', X33= —10.5 cm ',

X~2= —56.9 cm ',
X)3 ———11.3 cm—'
Xg3 ———10.1 cm '.

The positions of the three fundamentals so
calculated are 2790, 2655 and 1180 cm ', re-
spectively. These figures fit the band observed
by Casselman" at 4.2p very closely as being the
first overtone of v3. It should be observed that
there has been as yet no completely satisfactory
proof that the potential function for a bond
involving heavy hydrogen is the same as that for
the same bond with ordinary hydrogen. In
consequence, any prediction of the spectrum of
heavy water is a risky procedure, and the above
values are to be taken as merely provisional.

In conclusion I wish to express my thanks to
Professor Richard M. Badger who proposed this
problem and who has assisted in its prosecution
with valuable ajd and advice.

9 R. M. Badger, J. Chem. Phys. 2, 128 (1934). ' A. L. Casselmav. , Phys, Rev. 45, 221 C'1934).


