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In this paper we construct approximate solutions of the
Dirac equations for an electron in a Coulomb field of
force, which reduce at large distances to plane waves.
For very high energy electrons these functions satisfy the
wave equations to terms of the orders (a?/r)sin?6/2,
(a?/r) sin 8/2. Thus they are everywhere at least as accu-
rate as the functions obtained by first order approximation

methods, and for 6—0 they satisfy the equations exactly.
They therefore give an improved method for treating
problems in which high energy electrons are ejected in a
narrow angular range. The functions are simple in form
and quite similar to the Gordon-Temple solutions of the
Schrédinger equation in parabolic coordinates.

I. INTRODUCTION

ROBLEMS in which an electron moving in

a Coulomb field makes transitions to or
between states of very high energy present great
difficulties when one attempts their solution
with the use of exact Dirac wave functions for
the high energy states of the electron. These
difficulties have been pointed out by Hall and
Oppenheimer! in the case of the photoelectric
effect; they occur also in the problems of pro-
duction of high energy electron pairs by y-rays or
electrons, of the radiative impacts of electrons
with nuclei and of the scattering of very hard
radiation by bound electrons.

As remarked by Hall and Oppenheimer,! the
difficulties result from the fact that the system of
spherical coordinates, in which alone exact Dirac
wave functions are available, is not at all
adapted to the conditions of these problems.
This is so because the high energy wave packets
with which one has to deal are concentrated into
very small angles and could have a simple
description only in terms of wave functions
having essentially the character of plane waves.
Their resolution in terms of spherical waves
requires the use of spherical harmonics of very
high order, the order becoming infinite with the
energy of the electron under consideration. This
means that in calculating transition probabilities
one is concerned with a sum of squares of matrix
elements in which a great many terms contribute
appreciably; all these terms refer to very large
values of the angular momentum quantum

* National Research Fellow.
1 Harvey Hall and J. R. Oppenheimer, Phys. Rev. 38, 57
(1931); Harvey Hall, Phys. Rev. 45, 620 (1934).

number and the evaluation of any single term is
extremely difficult.

A knowledge of the predictions of quantum
electrodynamics regarding such processes is
highly desirable in the present state of experi-
ment and theory. Such information has usually
been sought by the use of the plane wave
functions of a high energy free electron, the
Coulomb potential of the nucleus being taken
into account by the Born approximation method
in case the binding of the high energy electron is
essential to the occurrence of the effect.? This
procedure avoids the use of an unfortunate
coordinate system and makes the calculation
reasonably manageable in most cases. On the
other hand, its approximate nature makes it
necessary to consider carefully the limitations
beyond which we can no longer have complete
confidence in the correctness of the results.

The Coulomb binding of the electron is
characterized by a certain length, the Bohr
radius a=h?/(4n*mZe*). This length becomes
infinite for vanishing nuclear charge Z; and the
ratios of other lengths appearing in the problem
to the length a are the parameters characterizing
the effect of the binding. It seems reasonable to
suppose that when these are small the approxi-
mate procedure just described gives correct
results. Now the lengths occurring are first of all
the de Broglie wave-lengths of the electron in its

2 The plane wave calculation for the photoelectric effect
is described in the first paper of reference 1. Correctly car-
ried through, it leads to the result first obtained by F.
Sauter (Ann. d. Physik 11, 454 (1931)) using a different
approximate method. Definitive results of the Born ap-
proximation calculations for production of pairs by y-rays
and for radiative impacts of fast electrons with nuclei were
first obtained by Heitler and Sauter; for preliminary notice
see Nature 132, 892 (1933).
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different states and the wave-length of the light
quantum, and for high energies these are small.
But one must consider also the de Broglie wave-
lengths corresponding to differences of the
various momenta, in particular to the momentum
imparted to the nucleus. At high energies,
hv>me? for the light quantum, this gives the
parameter

A~a(l—a?)~3, a=2nZe?/he~Z/137

for the photoelectric effect and
A~a(hv/2mc?)

for pair production and radiative impacts.® Thus
even for light elements we cannot be sure that the
results of the Born approximation treatment of
these latter problems are right for very large
hv/mc? At such large energies important contri-
butions to the matrix integrals come from the
region of space straight forward from the
nucleus; and in this region within and near the
caustic of the classical trajectories* the Born
wave functions become completely unreliable.

In the present paper we shall construct
approximate Dirac wave functions for a high
energy electron in a Coulomb field which, like
the Born functions, have a type of symmetry
adapted to the problems mentioned above and
which are superior to the Born functions in just
the respect which seems essential for the ob-
taining of more reliable answers to these prob-
lems; namely, they satisfy the Dirac equations
everywhere in space to the first power of a and
in the region of very small angles—within and
near the caustic—they satisfy the equations to a
much higher degree of approximation.

The construction of these functions follows
closely the procedure which Gordon used origi-
nally to obtain the nonrelativistic wave function
in parabolic coordinates.’ This he did by forming a
suitable linear combination of the spherical

3 By similar considerations one can determine the pos-
sible effects of screening on the results. Since the length
characteristic of the screening is Z2/%, screening can scarcely
come into account for the photoelectric effect, and for the
pair production and radiative impacts it can be important
only at energies much higher than that at which the valid-
ity of the Born approximation results first becomes open to
question,

¢ Cf. first part of Gordon’s paper (reference 5).

8 W. Gordon, Zeits. f. Physik 48, 180 (1928).
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coordinate solutions. When one starts with
normalized functions and chooses the coefficients
so that a normalized function results, this
procedure is essentially the application of a
unitary transformation; it suffices to carry
through explicitly the application of one row of
the transformation matrix, which gives the linear
combination used by Gordon. In the relativistic
case there exists a similar unitary transformation
which takes us from the spherical coordinate
wave functions of a free electron to the plane
wave functions. But the application of this
transformation to the spherical wave functions of
an electron in a Coulomb field leads to series
which have no simple analytical expressions. To
obtain the desired result we must resort to
approximations. The approximations in question
consist in the neglect of terms of the order o?/I?
compared to those kept and should not impair
the usefulness of the results for problems in
which only the contributions from large values of
I need to be treated accurately.

II. CONSTRUCTION OF THE FUNCTIONS

In our calculations we shall make exclusive use
of the system of units which is best adapted to
the problems of the high energy electron.
Energies are measured in units mc?, momenta in
units mc and lengths in units z/(27mc), where m
is the rest mass of the electron. Equations in
these natural units may be obtained from those in
c.g.s. units by setting #/27, m and ¢ equal to
unity and e, the charge of the electron, equal to
the square root of the fine structure constant; the
return to c.g.s. units may readily be made by
dimensional considerations. We use a to denote
Z times the fine structure constant and write e
and &, respectively, for the absolute values of
the energy and momentum of the electron
when infinitely distant from the nucleus. Thus
k=(e&—1)%

We take as our starting point the spherical
coordinate wave functions in the form given by
Hulme,$ writing / for the quantum-number which
he calls k. In our present units and notation, the
values of some of Hulme’s symbols are:

IB|/A=Fk/(e+1); a=Fk; b=ca/k; c=a/k.

¢ H. R. Hulme, Proc. Roy. Soc. A138, 643 (1932).
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Taking the quantum number # equal to 0, we have, apart from a constant factor in each
solution,

Yu=ik(+DPraF,  Yu=—(e+D(+1DPG,
Ya=1kPl1e' 0 F), Yu=(e+1)Pilei*G,

V' =1kiPi_F_;_4, Vs = —(e4+1)IP.G_1_4,
Vo= —ikPY 1 F_i_1, Yu'=—(e+1)Plei*G_i_s.

(1)
and

©)

The P,/ are Legendre functions of x=cos 8; we use the ordinary unnormalized functions, not those
defined by Darwin which Hulme uses. F;, G;, F—i1—1, G_;_; are real and are defined by

G.,= F,+iG,, G- 1= F_ 1 1+iG 1y,
1
Gi=[(—s)—ia(et+1)/k] Psf (I —u)s=H1(1 o) s+ideiougy, €)

-1

*1
G_i1=[a(e—1)/k+i(l—1—5)]p" j (1 — )= (1 u) o +ivgioudu,

where p= kr and, as in Hulme’s notation,
s={0H) —a)i=1, ¢'=(P-a}i-1

These functions are, apart from notation and constant factors, just those of Hulme and are exact
solutions of the Dirac equations in spherical coordinates. We now proceed to simplify these solutions
by neglecting consistently terms of orders (1/€?) or (a?/l?) compared to those kept. Then apart from

constant factors:
Gi={—i+(a/2)(1—eV)/(+1)}p'(1+1i(d/dp))Si(p),
G_11= {1+i(a/2)(1+€1)/1} o't (1+4(d/dp)) Si-1(p)
Sl(p)zsl*(p)=eipF(l+1—iar 2l+2v ~—2’ip).

39

with

Write p.Si(p) = Ri(p). Then from the recurrence formulae’

bF(a, b, x)=(b—a)F(a, b+1, x)+aF(a+1, b+1, x),
xF(a, b, x)=—(b—a)F(a—1, b, x)+ (b—2a)F(a, b, x)+aF(a+1, b, x)
we find that
ptSY ()= — (214-3) {14 /(14 1)’} Rip1— a(l+1)7'Ru.

For our present purposes the term with a?/(I+1)?is to be neglected.
If now we insert the approximate values of F;, Gi, F_;_1, G_;_1 so found into (1) and (2) and also
multiply the two approximate solutions by the respective factors

2(k/2m)em T (I4+1—1a) { 20+1) 1} He(e+ 1) (1)} {1 —d(a/2) (1 —e ) ((+1) 71}
24(k/2m)emel T (141 —10) { (2) } M e(e+ DI T3 {14-i(a/2D) (1 -}
neglecting small terms as before, we get
Yu=—NPi{ik(+1)Kip1+i(a/2) (e+1) (Ki+iKi) },
Vo= —N({+1)"1PY, ei¢{same as for Y1},
Ya=NP1{(e+1)(+1)Ki—i(a/2)k(Ki+iK 1) },

Yu= — N(+1)"1P;lei*{same as for y¥3;}
7 Derived, in a different notation, by P. S. Epstein, Phys, Rev. 28, 695 (1926).

an
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and
Yu'=N'P;_1{ikIK;_1+i(a/2)(e+1)(Ki—iKi1) },
Yo' = — N'I-\P!,_ei*{same as for ¥1/'}, @
Ya'= N'P{(e+1)IK;+i(a/2) k(K —iKi-1)},
Y/ = N'I"1Ples {same as for ys.},”
where N={8re(e+1)(I4+1)}7},  N'={8me(e41)I}~
and

Ky=21(2/ ) ke T (I+1—ia) { (20+1) }1R.(p).

Here K, is a radial function normalized in the k-scale.’ For a=0, (1’) and (2’) become correct wave
functions normalized in the k-scale. For a0, their normalization is inaccurate by factors of the form
1+0(a?/1?); this is the sort of inaccuracy which they contain in other respects, also, and which we are
neglecting. :

We now proceed to form a linear combination of the approximate solutions (1”) and (2’), using
coefficients which in the case a=0 produce normalized plane wave solutions out of normalized
spherical wave solutions and which therefore form a row of a unitary transformation matrix. These
coefficients are, respectively:

Ci=1%'(4m)"¥(+1)} and C/=¢%"'(4n)"HA

Setting?®
o= Co+3, Clyi,
=0 =1
we have
1= —N"{kS—1(a/2)(e+1)S"}, e3=N"{(e+1)S—i(a/2)RS"},
p2=—N"i(a/2)(e+1)S"e'?, o= N"i(a/2)RS" ei?,
where

N"=27n)"{2e(e+1)}3,

S= (/%Y i'(21+1)K.P,,
=0

S'= (7/2)%}5_1{% tHPY(K i1+ K1) +Ko—iK 1},
=0

§"= (/) {(14+%)3 §1(2+ 1)l (1+1)"1P 1K+ P Ko} .
=1

K _; has not yet been defined and its value is arbitrary. In deriving the form given for S”’ we have used
the recurrence formula

IPYypa(x)+ (1) Py (x) = (21+1)x P (x),

which holds for 1> 1 if we set Po!=0.
For S Gordon obtained the value®

S=em2?T(1 —ia)e'**F(ia, 1, ip(1—x)).

To evaluate S’ and S” we must use Gordon'’s relation’ ?

K= (k/2mi)e?mal T (1 —ia) ]{‘ o [ p(1—3) W[ p(1 —s) Jsia—1(1 —s)~ieds.

8 This summation is extended over the ranges of I for  be regarded as vanishing. Cf. reference 12.
which the solutions are valid. Terms containing P! are to 9 The contour is as specified in reference 5.
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Letting this serve to define K_;, we have K_;= —1K,. The evaluation of S’ and .S’/ thus depends on
evaluating the sums

5= <1r/2>*§’_;o i1 03 T 143(0) + T1mi(0) 1Pi(x),

Sr= («/2)%15'; (24 1)1+ 1)1~ 14 (6) PA(),

where 0 =p(1 —s) and on performing contour integrations. On using the recurrence formula

Jnt1(0) +Tn1(0)=2n0"1T,(0)
we have

S'=i0=1(n/2)V3 §4(2+1) =41y 4 (o) Pi(x) = io—leio;
1=0 »
and the contour integration gives
S'=em?T(1—ia)(1 —x)e?**F(1+ia, 2, ip(1 —x)).

To evaluate S”” we use the relations

1

(w/Z)*i’a—*J;+;(a)=%f ettPi(t)dt and Pi(x)=(1—x)¥P;(x)/dx.
-1

Now

—3In[1-)(A+x)]+In2—3, (<x;

—3In[(A+HA—-x)]+In 23, t2x;
being just the Green's function in the extended sense for Legendre’s equation.’® For —1+§<x<1—34,

8>0 the convergence is uniform and we can interchange differentiation, integration and summation.
Then

> (H'%)l"l(l'f‘1)_1P<1(t)Pz(x)={

S/ = (1 =) (20) (1 4x) 1 (ei7= — i) +4(20) (1 —x) 1 (eir= —ei7) ].

On carrying out the contour integration one finds that the term e’ contributes nothing, that in e~
just cancels the term P,'K,and we have

S =eral2T(1 —ia) (1 —a)teiesF(1+ dar, 2, ip(1—x)).

Being continuous in x, this result holds without the restriction — 148 <x<1—34.

Thus the resulting approximate wave function

is: An identical repetition of the above arguments,

_ starting with Hulme’s functions for u= —1, leads
¢1=—N{kf—i(a/2)(e+1)(1—cos 0)f'}, to the second function:
Q2= ——N1(a/2)(6+1) sin ael‘Pf ’ (4) ¢1/= —N’L(O{/z)(é‘*“l) sin Ge‘i‘ﬂf',

¢s=N{(e+1)f —i(a/2)k(1 —cos 0)f'},
@s=Ni(a/2)k sin Geief’,
where

N=(27)"}{2e(e+1)}~Femel2T' (1 — i),

oo = N{kf—i(a/2)(e+1)(1—cos 6)f'},
¢s'= — Ni(a/2)k sin fe—i*f’,
oi'=N{(e+1)f—i(a/2)k(1—cos 0)f'}.

) . ) The two functions (4) and (5) become,
f=e# 2 F(ia, 1, tkr(1—cos 0)), either for a—0 or for r—, the ordinary plane
f/=eitr w03 OF(1+44a, 2, ikr(1—cos ). wave functions for a free electron of positive

— ineti positive or negative spin
10 Courant-Hilbert, Methoden der Mathematischen Physik, kinetic energy ar.ld sitive . r . g . P
pp. 322-323 (2nd edition). component. Functions for negative kinetic energy

©)
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may be obtained from them by the trans-
formation

P1¢3, 2P P3O T QL PaDd T @2, A>T,

as is readily seen from the form of the wave
equations.

On substituting (4) or (5) in the wave
equations,! we obtain as the terms which fail to
cancel out in the left member quantities of orders

(a/2€) sin% 0/2, (a/2¢) sin /2, (a?/r) sin? 6/2,

and
(a2/r) sin 6/2

compared to the wave functions themselves.
Thus, for very large e we are left, as in the case of
the Born functions, with a discrepancy of order
o?; but for 8—0, in the region where the Born
functions fail, the discrepancy in the present case
becomes vanishingly small.

The functions as given are normalized in the
scale of k., k, and &,; those we have obtained here
are for k,=k,=0, k,=k. The functions for any
other direction of 2 may be obtained by a
rotation of coordinates of the type required by
Dirac wave functions.’? Apart from this the use
of the functions is similar to that described for the
nonrelativistic case by Sommerfeld.®

The set of functions thus obtained is not a
complete orthogonal set when a0, but in the
solution of problems it is to be used as if it were
such a set. This is explained as follows: In the
exact solution of the sort of problem for which
these functions are intended one is concerned
with the evaluation of a sum of the form

!
Z V n’; luVlu; ny
lu

where V and V' are interaction energies, and /,
are angular momentum quantum numbers
designating the spherical coordinate wave func-
tions; # and 7’ denote states of the electron. In

1t For the Dirac wave equations completely written out
in the form which is the basis of the present work, see for
example H. R. Hulme, Proc. Roy. Soc. A133, 382 (1931).
The equations are to be put into natural units as we have
previously explained.

12 C, G. Darwin, Proc. Roy. Soc. A118, 654 (1928).

13 A, Sommerfeld, Ann. d. Physik 11, 256 (1931).
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problems such as the photoelectric effect, pair
production and radiative impacts one has V'= T,
n'=n; in other problems such as that of the
scattering of very hard radiation this is not so.
The use of the set of functions here derived is to
be justified by the relation

ZV,n’; luVlu; nzZ(V/n’; Zu),(Vlu; n),
lu lu

= ;fdw- V,n'; fpo Vow; ne

Here (Vi »)" and (V' 1) are calculated with
the modified wave functions typified by (1) and
(2); and Vigee; » and V4, 4,0 are calculated with
the approximate wave functions typified by (4)
and (5), suitably renormalized, dw being an
element of solid angle containing the direction
(6, ¢) and ¢ denoting the two spins. The ap-
proximate equality of the first two members is
based on the fact that only very large values of [
contribute appreciably to the sums and that for
large I the matrix elements calculated from (1’)
and (2’) are presumably very nearly equal to
those calculated with the exact functions; the
equality of the second and third members follows
from the unitary character of the transformation
from the set of functions typified by (1’) and
(2) to the set typified by (4) and (5).

The approximate equality of two sums which is
involved in the above argument cannot be
regarded as established with certainty by the
physical arguments given in the introduction. On
the other hand it could be proved rigorously only
by making special considerations for each
individual problem, and in doing this it would be
necessary to overcome a large part at least of the
difficulties which inhere in the exact solution of
these problems using spherical coordinates. Thus
the type of function which we have here con-
structed is best regarded as the basis of a method
which is admittedly only approximate and
subject to possible failures, but physically
reasonable and probably reliable for the cases for
which it was devised.’

The writer wishes to thank Professor J. R.
Oppenheimer, who suggested the construction of
these functions, for much helpful advice.



