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the formula of Perard, ' which differs appreciably
from that of Meggers and Peters in the visible
and ultraviolet. Perard's equation, rewritten for
the special case of normal pressure and 15'C, in
units to correspond with the equation above, is

(n 1—) 10'= 2728.13+14.038/('A' X 10 ')
+0.3367/(X4X10 ").

If a table of vacuum wave numbers were based
on this formula it would show systematic differ-
ences from Kayser's table, amounting to about
1 part in 725,000 in the ultraviolet but negligible
in the infrared.

It will be noted that the correction to be
applied to the inverted table of Kayser is very

' Perard, J. de Phys. et le Rad. 6, 217 (1925).

small between )10,000 and the present limit of
photography, ) 12,500, at which point it reaches
a magnitude of 1 part in 800,000. For lines
whose wave-length is not known with such
accuracy the correction may be ignored. Farther
in the infrared the relative importance of the
correction increases more rapidly. The last entry
in the table is of low weight. Observations made
in moist air for spectral regions close to the
important absorption bands of water vapor or
of CO2 may possibly be affected by anomalies in
the index of refraction which are not represented
in the equation used for extrapolation.

The writer is indebted to Dr. Charlotte E.
Moore, of the University Observatory at Prince-
ton, for checking the computation of the cor-
rections listed in Table I.
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The Lagrangian and Hamiltonian expressions for the
kinetic energy of a system of N particles are obtained in
such a form that the rotational, vibrational and coupling
terms may be distinguished. The principal axes of inertia
are used to define rotation. The ordinary moments of

inertia appear in the Lagrangian kinetic energy but these
are replaced by other functions of the radii of gyration in
the Hamiltonian. This throws doubt upon all molecular
configurations assigned on the basis of empirical values of
the moments of inertia.

INTRQDUcTIoN

T is proposed to derive the expression for the
- - kinetic energy of a polyatomic molecule,
considered as a system of N particles, in such a
form that its rotational, vibrational and coupling
terms may be distinguished.

I. THE PRINcIPAL AxIs TRANsFQRMATIQN;

CooRDINATEs

It is no loss of generality to suppose the center
of mass of the molecule to be at rest, so that its
configuration is completely specified by n= N —1
vectors R, 0.= 1, 2, 3, ~ n. It is convenient to
choose these vectors so that two conditions are
fulfilled: (1) the kinetic energy T is given by

2T= pQ (dR /dt)' (1)

and (2) any other vector dimension X of the

configuration is given by

I=Q X.R„ (2)

where the I are independent of the R . These
two conditions may always be satisfied and do
not determine the vectors R uniquely. In fact
the constant p is quite arbitrary and the vectors
R may be replaced by any n linear functions
of themselves, provided that the coefficients of
these functions form an orthogonal matrix and
are independent of the R . It is convenient to
set p, = 1 for general considerations.

The length of the vector X is given by the
quadratic form

X'=Q Qp X XpR Rp. (3)

The matrix of this form is also the matrix of the
Gram' determinant of the vectors R . It is known,

' Courant-Hilbert, Methoden der mathematischen Physik,
1st Ed., p. 20.
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or may easily be shown, that this matrix possesses
ex'ctly as many non-zero characteristic values
as there are linearly independent vectors among
the R . It is therefore evident that when n~& 3,
the quadratic form will have three characteristic
values which do not vanish identically and n —3
which do vanish identically. The triatomic
molecule for which n=2 thus occupies an ex-
ceptional position in the theory' , to avoid con-
fusion, it will be discussed separately in Part IV.

With this understanding, let r~, r2', r3' be the
non-vanishing characteristic values of the form
X' and set r '= ~ =r„'=0. Then it is known
from the general theory of quadratic forms that
an orthogonal matrix c~ exists, such that

c, R Rp ——r, 'c, p.

of the vectors R may be referred. From Eq. (8)
it follows that

whence

r„a; Rp= Pa c; RaaRp=ri2c;p,

R =P; a,r,c, (9)

It is advantageous to choose the generalized
coordinates in such a manner that they corre-
spond to the various elements distinguishable on
the right side of Eq. (9). Thus the three quanti-
ties r&, r2, r3 may themselves be chosen as three
of the 3n coordinates. The axes a; may be
specified by three Eulerian angles according to
the usual formulae (1, j, k are three stationary
unit vectors):

The conditions for the orthogonality of the
matrix are k a2=sin P sin y, a3 j=sin p sin a,

Zp ap Vp aVi

Pp cpacp~= 8a~.

(5.1)

(5.2)

Again, in distinction to the X, the x~ and r~
are functions of the R . To avoid repetition, it
is convenient to introduce the convention that
the Latin indices i, j, k have the range 1, 2, 3,
while the Greek indices a, P, y, 8 have the
range i, 2, n. Next consider the three vectors
a;, defined by

r;a„=g c;.R..
It is easily seen that they are mutually perpen-
dicular and of unit length, since

Its elements will, of course, be functions of the
R, which distinguishes it from the orthogonal
matrices discussed above.

If the n quantities defined by

Xa g~ x&c&a or xa Z~ ca~X~ (6)

are substituted into Eq. (3), it becomes

X = Q ry xy = rl xl +r2 x2 +r3 x3

k a3 ——cos P.

The 3n quantities t."; are related by six equations
(Eq. (5.1)) so that they can all be specified as
functions of 3n —6 dimensionless quantities g„.
Thus the total of 3n is made up of three different
kinds of coordinates.

The further convention that the index ~ has
the range 1, 2, ~ 3n —6, is hereby introduced.

II. THE LAGRANGIAN FoRM oF THE

KINETIC ENERGY

As the Lagrangian form of the kinetic energy
depends on the time derivatives of the coordi-
nates, it will be necessary to express dR /dt in
terms of these. To avoid complicated expressions,
it is convenient to define certain auxiliary
quantities which are linear functions of these
derivatives. The first of these is the ordinary
angular velocity vector, ~, defined by

dai/dt= ~Xa, ,

ririai ' ai= 2aZ p ci ac) pR ' Rp

Pp rPCipc&p'
=r;~S;;

by Eq (4).

by Eq. (5.1)

These vectors may be used to define a rotating
set of coordinate axes, to which the components

or more explicitly by

~=+; co;a;

=a~( —p, sin P cos y+P sin y)

+a~(a sin P sin y+P cos y)

+a3(a cos P+j). (11.1)
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2- C-'=Z-ZPZv Rp Rvflp. flv-

= Q.pppvg, r 8c„pc;vQP.Qv

The second set of auxiliary quantities are by Eq. (5.1) again; the third term is
matrices defined by

On differentiating Eq. (5) it appears that both
these matrices are skew-symmetric; both are
linear functions of the j„so that, e.g. ,

8 —Q Q. y8~, 8

61P v
=Z ~ 63P v~9 ~ ~,

where the cop~ „are functions of the q„only.
Combining Eq. (5) with Eq. (12), it follows that p. A. B.=p.p; 63XR. a;y;c;.

=63 p.p; R. Xa, yc;.Zp »P Pv av Zp ap Pvr (14.1)

(13) by Eqs. (14.1) and (5.1). The fourth aiid fifth
terms vanish, since

and hence that

61»3= QPPV C»PQPVC3V (14.2)

The matrices Qp~ and cop~ are the n-dimensional
analogues of the angular velocity vector and the
q„are the analogues of the Eulerian angles. The
elements Qp~ are the components of the n-
dimensional angular velocity relative to "mov-
ing" axes (system of the X ) and the 61pv are
the components of the same quantity relative to
"fixed" axes (system of the 33 ).

The use of Eqs. (11) and (14.1) now makes it
possible to write

and

P a Ra Xaic1» = Pa (a8y8C8» &8 8C8a) Cia = 0

by Eq. (5.1); also

P.B. C.= P g pg; a; Rpy, c; Qp

=g.P pg„y, r;c;.c;PQp.

by Eq. (9),

=g; y,r;id, ;=0

by Eq. (14.2). The last term does not vanish:

p. C. A. =63 [p.gp R.XRPQp. ];
dR /dt=63XR +p;a,y„c; +pp RPQP . (15) since the ai-component of R XRP is

y8y3(C8 C3P »C8»C8P)For temporary convenience, call the three terms
of this expression A, 3, C; then the kinetic,

& E 9„
gaby Eq. j9jj, it is easily seen upon referring to

energy j.s

2T=Q» [(A '+B '+C ')

+2(A B +B C +C A )$. (16)

The six terms of this sum will be given separate
consideration; the first is

Pa Aa'= Pa (63XR»)'= /» [61'R»' —(63 R.)'j
Q»ZiZj [61i yj Cia ~iricia~jyjCjaj

by Eqs. (9) and (11.1);

[ r6'1— r6'18 "g

by Eq. (5.1), so that

A 2—ip 2(y22+ y32) + 6182(y 2+ r 2) + 61 2(r18+ y 2)

The second term is

P. r8C. 8 —P. y8

Z C . 'A 2(r8y8&16128+r3r16126181+rlr26136112).

Combining all these results according to Eq.
(16), the Lagrangian form of the kinetic energy
appears:

2T= y12+y28+y38y 61 8(y22+. y, 2)

+ 612 (y8'+ri ) +613 (ri'+r2 ) 4y2y36116388

4rsf yM2c03y 4t'yf 24)3Q) yg

+g. (yl ~1 +y2 ~2 +y3 ~8 ) ~ (17)

From the form of this expression, it is possible
to draw certain conclusions as to the significance
of the coordinates which were introduced at the
end of Part I. Since there are no terms containing
co~cv2, etc. , it follows that the vectors a; are along
the principal axes of inertia of the instantaneous
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—r3(r2~1 r8"23) r2(r8"1 r2~28) ¹3configuration of the X particles; this justifies Similarly
the title of Part I. From the mode of calculation
it also follows that

A, = r,'+ r,', etc. , (18) ¹3——Q„¹3,„p„, etc. (21.2)

are the three Eulerian moments of inertia. The
three coordinates r&, r2, r3 may therefore be
called the radii of gyration of the instantaneous
configuration, although this deviates slightly
from the usual definition of the term.

III. THE HAMILTQNIAN FoRM oF THE

KINETIC ENERGY

Eq. (17) may be rearranged into the form

On dealing with the ordinary angular velocity in
the same manner as has just been done with the
n-dimensional one, it follows that

r2(r2"1 r8—"28)+r3(r8"1 r2&v23)—= Mi, etc. , (22)

where'

Mi —— cos y( —p +p' cos p)/sin p+ pepsin y,

M2 ———sin p( —p +p'cos p)/sin p+ pecos y,

(23)

2T= rg'+r2'+r3'
+(r2~1 r8"23)'+(r3"1 r2 28)

In passing, it may be remarked that the total
angular momentum (three dimensional) of the
system can be shown to be

+(r8"2 r1~81)'+(ri~2 —r8 "31)

+(r1~3 r2"12)+(r24&8 ri&12)

+p" 4(ri'"1 '+r2"2 '+r8"8 '), (17.1)

(24)M = a.gMg+a23f2+a33f3

in accord with the well-known formula. On
solving Eqs. (21.2) and (22) for the two paren-
theses, one sees thatwhich is more convenient for the calculation of

the momenta. In case n=3 (tetra-atomic mole-

cule), the residual sum on the last line vanishes.
On calculating the momenta in the usual manner,
one finds that

r2~1 r3~23 (r2~1 r3¹8)/(r2 r32)

r8(ui —r2co28 ——(r3M1 —r2¹8)/(r8' —r2'), etc. (25)

P,= BT/ar, = r;
On substituting Eqs. (19), (21.1) and (25) into

(19) Eq. (17.1), the Hainiltonian form appears:

and on referring to Eq. (13):

p„=BT/aq„

C023, [ f3(r2~1 r8M23) r2(r3C01 r2M28)]

+~31, [ rl(r8"2 r1~81) —r3(r1~2 r8"31)]

+~12, [—r2(r1~3 r2~12) —ri(r2~3 r1~12)]

+P =4 (rl ~la"la, . a+r2 "2a"2a, g

+r82» "8...). (20)

These are 3n —6 equations; the 3n —9 quantities
r;2'; and the three square brackets may be
treated as unknowns and expressed as linear
functions of the p„upon solution of the equations.
Supposing this to have been accomplished, it
follows that

2T=I '+I '+I' '
+~1'/'1+~2'/'2+~3'/'8

2(~1¹8/Cl+~2¹1/C2+~3»2/C8)
+&23'/&1+&81'/&2+»2'/&8

+Q" 4(X1 '/ri'+¹ '/r2'+N8 '/r, '), (26)

where

'1 (r2 r8)'/(r2'+r3'), etc. , (27.1)

Ci= (r2' —r,')'/(2r2r8), etc. (27.2)

The first, fourth and fifth lines of Eq. (26)
represent the vibrational kinetic energy; the
rotational is given by the second and the coupling
by the third. It will be noted that the Eulerian
moments of inertia A;, do not enter into the

' The indices n, P, y in Eq. (23) refer to the Eulerian
angles and are not the same as those used in the n-dimen-

where the N;, „are functions of the q, only. sional geometry.
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second line as expected, but are replaced by
the coefficients B;.

In order to set up the ave equation, it is also
necessary to know the element of volume in
configuration space. This is proportional to the
square root of the discriminant of the Lagrangian
form' and a simple calculation shows that

d7 = (rm' —rs') (r3' r~') (r—P r2') (r,r—mr, )" '

sin PJ(q„)dr,drmdr3dudPdydqi dga~ —6 (28)

where J(g„) is the determinant of (3n —6)th
order whose x-th row is

a3= ay Xa2.

Eqs. (8.3), when solved for R& and Rm become

R& —— a~r& cos q+a2r2 sin q,

R~= —a~r~ sin q+a2rm cos g. (9.3)

The Eulerian angles are defined as before by
Eq. (10) and complete the total of six coordi-
nates.

The n-dimensional angular velocities are here
one-dimensional and need not be discussed
explicitly. The kinetic energy is readily found
to be

23' K) 31~ K) 12' K) +14' K 3'sy K

IV. THE TRIATOMIC CASE

(29)
2 7= y' 2+y22+ M 2r22+ %22y &+ ~82(y&2+y22)

4r~r2c—u3j+(yP+r22)q'. (17.3)

The investigation of the triatomic case paral-
lels the preceding in all essential respects. Since
n=2, there are only two vectors R& and R2,
which satisfy the same conditions (Eqs. (1) and

(2)) as before. The orthogonal transformation
of Eq. (6) is introduced in the same manner but
can be written out explicitly:

X~= x~ cos g+xq sin q,

X2= —x~ sin g+x2 cos g, (6.3)

r~a~= R~ cos q
—R2 sin q,

r2a2= R~ sin q+R2 cos q,

so that the third must be defined by

(8.3)

' A. Sommerfeld, TFellenmechanischer Ergansungsbcnd,
pp. 148, 152; A. Lande, IIandbuch der I'hysik, XX, p. 330.

where the parameter q is the sole. representative
of the coordinates g„. There are only two radii
of gyration, r& and r2, and only two unit vectors
can be defined:

The Hamiltonian form is readily derived from
this by the same methods as before and is

2T= P '+I' '+M '/r '+ &V '/r '

+F32/By+ 2M3p/C3+ p'/B3. (26.3)

The element of volume is

dy=rqr2(rP rm') sin Pd—r&drmdadPdydg (27.3.)

A more extended investigation of the triatomic
molecule was begun prior to the investigation
reported in this paper. On encountering the
unexpected form of the coefficient of 3II3' in

Eq. (26.3) it seemed advisable to examine the
general case before continuing. The present
results throw doubt on molecular configurations
previously assigned on the basis of empirical
values of the moments of inertia. These empirical
values are presumably closer to the equilibrium
values of the 8; than the A;, as has been sup-
posed.


