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The Determination of X-Ray Line Shapes by a Double Crystal Spectrometer

LLOYD P. SMITH, Cornell University
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As a result of a new mathematical analysis of the action of the double crystal spectrometer,
a method of using the instrument has been found which makes it possible to determine the
spectral energy distribution of an x-ray line and to calibrate the instrument without any
previous knowledge of the diffraction patterns of the crystals.

INTRoDUcTIoN

1
~)F Iate, it has become increasingly important

to determine precisely the spectral energy
distribution of x-ray lines and of absorption
limits. It was hoped that such determinations
could be made by means of the double crystal
spectrometer but this hope has not as yet been
satisfactorily realized. The fundamental diffi-
culty lies in the fact that it has been impossible
to calibrate a particular spectrometer, which
amounts to saying that the effect of the spec-
trometer on a strictly monochromatic incident
beam of x-rays is not completely known for any
spectrometer. Since no source of strictly mono-
chromatic x-rays exists, it is of course impossible
to carry out a direct calibration. In lieu of this,
a number of investigations have been carried out
for the purpose of determining the effect of the
component parts of the spectrometer on the
incident radiation, in particular, the alteratiori
in the radiation produced by the crystals.
Unfortunately an impasse was encountered in
this regard also, when it was shown by von
Laue' that the relevant characteristics or diffrac-
tion patterns of two identical crystals cannot be
determined in general from the experimentally

' M. von Laue, Zeits. f. Physik '72, 472 (1931).
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determined rocking curve in the (1, —1) orders.
Lacking such characteristics, investigators have
made use of theoretical characteristics developed
by Darwin, Ewald, ' Wailer' and Prins' and
certain hypothetical characteristics" ~ ' with the
hope that some one of these would give results
in agreement with experiment for a given pair
of crystals and a suitably restricted wave-length
region. The procedure has then been to use the
adopted characteristics to compute quantities
such as rocking curves, coef6cients of reAection,
etc. , which may be compared with the corre-
sponding experimentally measured quantities.
The work of S. K. Allison' and L. G. Parratt"
furnishes an excellent example of how such
comparisons have been made. In this connection,
it should be noted that in making comparisons
it is customary to compare quantities like the
widths (at half maximum) of the theoretical and
experimental rocking curves or the area under
such curves, etc. These are not particularly

' C. G. Darwin, Phil. Mag. 27, 325 and 675 (1914).' P. P. Ewalf, Ann. d. Physik 54, 519 (1917).
4 P. P. Ewald, Phys. Zeits, 25, 29 (1925).' I. Wailer, Upsala Universitets Arsskrift 1925, 11.' Prins, Zeits. f. Physik 03, 477 (1930).' Ehrenberg and Mark, Zeits. f. Physik 42, 807 (1927).

Schwarzschild, Phys. Rev. 32, 162 (1928).
9 S. K. Allison, Phys. Rev. 38, 203 (1931).' S. K. Allison, Phys. Rev. 41, 1 (1932)."L.G. Parratt, Phys. Rev. 41, 561 (1932).
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sensitive to variations in the form of the crystal
characteristics and consequently even if they
agree with those found experimentally, this does
not constitute an adequate test of the correctness
of the theoretical crystal characteristic used.
Even when the theoretical rocking curves in the
(1, —1) orders agree closely with the corre-
sponding curve measured experimentally, it can-
not be inferred that the crystal characteristic
adopted is the correct one. This fact was realized
and mentioned by Allison" when he found very
close agreement in the (1, —1) rocking curves
when the crystal characteristic suggested by
Prins' was used as the basis for the theoretical
curve. The reason for this lack of uniqueness will

come out in the subsequent analysis. It is
therefore necessary to determine the crystal
characteristics experimentally to an extent suffi-

cient for the solution of the problem of deter-
mining line shapes. It is the main purpose of
this paper to show that there exists a method
for doing this which leads to a unique deterrni-
nation of the spectral energy distribution inci-
dent on the first crystal of a double crystal
spectrometer.

THEORETICAL AND HYPOTHETICAL CRYSTAL

CHARACTERISTICS

In order to carry out the subsequent analysis
with sufficient generality, the reflected intensity
characteristic of a crystal will be defined by
means of a function f(C, P, X), where C' denotes
the acute angle of incidence of the x-ray beam
measured from the crystal surface and P is the
acute angle between the crystal surface and the
direction in which intensity of the reflected

radiation is to be measured. It is assumed for
the present that the incident and reflected rays
lie in a plane perpendicular to the crystal planes.
Physically, f(C, f, )) is the intensity reflected
from a crystal in the angular region between P
and /+de when a beam of radiation of unit
intensity whose wave-length lies between ) and
) +d) is incident in the angular region between
4 and 4+d4. It will be noted from this definition
that it is contemplated that there will be
radiation reflected from an actual crystal at other
angles than the angle of incidence; a possibility
which has not been taken into account in
previous theories of the double crystal spec-
trometer. As explicitly indicated f(C, P, X) is
expected to vary with the wave-length of the
radiation. In addition to this f will depend on
such quantities as the degree of polarization of
the radiation, the crystal temperature, etc. In
order to justify an assumption with regard to the
wave-length variation of the function f(C, P, X)
which will be made later, it will be necessary to
consider briefly the salient features of certain
crystal characteristics which have been derived
on purely theoretical grounds.

Theoretical derivations of the f(4, P, X) have
been carried out for certain ideal and special
crystals by Darwin, ' Ewald' 4 and Wailer. ' In
these derivations it was assumed that an in-
finitely wide plane parallel monochromatic beam
of radiation is incident on a semi-infinite perfect
crystal at a glancing angle C. It will only be
necessary to consider the case where the re-
flecting planes are parallel to the surface of the
crystal and the incident and reflected beams
determine a plane perpendicular to the crystal

Fio. 1. Diagram showing the tolerance angle of a perfect crystal.
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face and finally where the radiation is polarized
at right angles to this plane. For this case the
above investigations show that there exists an
angular region (see Fig. 1) POQ in which the
incident beam would be totally reHected in
contradistinction to the single direction Hp given
by the Bragg law, nX=2d sin Hp. The angle H

between the bisector of the angle POQ and the
crystal surface is the Bragg angle corrected for
refraction, i.e. , 8= 8o+28/sin 28O where 6 is the
deviation of the index of refraction from unity.
In general the half-width of POQ is less than

H —80. For this ideal arrangement the reHected
beam is infinitely wide but accurately plane
parallel, making the same glancing angle with
the crystal as the initial beam. In terms of the
characteristic function this means that f(4, P, ) )
will be zero for all values of P except /= 4 and
we have a function of one angle only, namely,
f(4, 4, X). For values of 4 in POQ, f(4, 4, X) is
unity for this ideal case. The actual form of f
as computed by Wailer for a cubic crystal with
identical diffracting centers when C is outside of
the angle POQ, is

~

8 —4 0
~

' sin' 280
f„(4, 4', X) =

$(8—4) sin 28~a I (8—4)' sin' 28o —
~

8 —40~ ' sin' 280I l]'

the plus sign to be taken when (8—4) sin 28o) 0
and the minus sign when (8 —4) sin 280(0. The
wave-length dependence is contained in H and
80. (8 4p) depends on a number of factors such
as the crystal structure and crystal temperature.
The effect of the temperature vibration of the
diffracting centers is to make the range (8—Cp)

smaller.

Darwin's expression for the characteristic
function is practically identical with the one
given above. In these functions absorption due
to quantum processes has not been taken into
account. Prins' attempted to take such processes
into account and arrived at a modified form of
Darwin's function, namely

a+ib
f„(4, 4, X)=

—,'(4 —8) sin 280 iP& {L-,'(4 —8) sin 28O —iP]' —(a+ib)'Il
(2)

The additional factors b and p which take into
account absorption destroy the symmetry of f
about the point 4 =H. This function has been
plotted by Allison. "Another extremely impor-
tant difference between f~ and f is the way in
which they depend on the wave-length of the
incident beam. As the wave-length is changed
the principal alteration of f„ is simply that of
displacement along the C-axis, while the function

f„ is materially changed as can be seen from Fig.
2 in Allison's paper. "

Since in the actual crystals used there are
surface imperfections as well as lattice structures
for which the above functions no longer apply
and the incident beam is restricted and not
infinite in extent, etc. , some investigators have
thought that one could come about as near to
the correct function by assuming a reasonable
type as by trying to use the more complicated
ones derived for such ideal conditions. Ehrenburg

and Mark' and Schwarzschild' have assumed
that the characteristic function was a Gaussian
error function, i.e. ,

f(4, 4, X) =Ae-'&'-'&'.

Barnes and Palmer" have assumed that the
characteristic function was of the same form as
that used by Hoyt" for representing the shape
of an x-ray line, namely,

f(4, 4, X) =a[1+(4—8)'/b']-'.

The above characteristic functions are con-
venient because in a two crystal spectrometer
with identical crystals the rocking curve in the
(1, —1) position calculated from them would
again be a function of the same form. While
rocking curves have been found for certain pairs

"S.W. Barnes and L. D. Palmer, Phys. Rev. 43, 1050
{1O33).

"A. Hoyt, Phys. Rev. 40, 477 {1932).
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8
FIG. 2. A schematic representation of the crystal characteristic f(C, p, X).

of crystals which agree approximately with one
or the other of the functions (3) or (4), this is
not universally the case and even if it were it
can be shown that there exist asymmetrical
crystal characteristics which would yield sym-
metrical rocking curves of the form (3) or (4).

It should be noted that the form of all of the
above characteristic functions precludes the
possibility of any radiation being rejected at an
angle not equal to the incident angle. In terms
of f(C, P, X), this means that f is different from
zero only when f—4&. This restriction is doubtless
justified for the ideal circumstances assumed in
the derivation of expressions (1) and (2) but
for an actual crystal used in a spectrometer
there is considerable departure from the ideal
conditions assumed above and it is not a priori
obvious that P should be identically equal to C.
In fact, evidence is accumulating which makes
it unlikely that all the reAected energy leaves
the crystal at any one angle. Logically, therefore,
it would seem that we should generalize one step
further and treat the angles C, and P as solid
angles, which would mean that radiation incident
on the crystal at a given angle would be reHected
to some extent in all directions in a certain cone.
Very likely this is precisely what does occur but,

due to the fact that all motions of a properly
adjusted double crystal spectrometer are con-
fined to a plane, it will be found that the subse-
quent analysis can be generalized so as to take
account of solid angles. Since this later general-
ization is possible, it will be much simpler to
carry out the analysis treating C and P as
plane angles.

ANALYSIS OF THE DOUBLE CRYSTAL

SPEcTRQMETER

Before proceeding with the analysis it will be
necessary to justify an assumption to be made
concerning the wave-length dependence of the
characteristic function. Geometrically, the func-
tion f(C, f, X) represents a surface when X is
held fixed. From our general knowledge of the
refiecting properties of a crystal this must be a
dome-shaped surface having a maximum in the
neighborhood where C and P equal the corrected
Bragg angle. This is roughly shown in Fig. 2.
In line with the characteristic functions con-
sidered above, it is convenient to measure both
of the angle variables from the corrected Bragg
angle 8. This can be explicitly indicated by
writing f(C —8, P —8, X). From experiment, it is
known that f(C' 8, P —0, X) is a—ppreciably
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CL,

FiG. 3. Crystal arrangement for rocking curves in {n, —n) orders,

different from zero only in a region of the C, P
plane in the vicinity of the point C = 8, P= 8. If
we were dealing with a function of the Darwin
type Eq. (1) then the wave-length dependence
would enter in f principally in the angle 8 and
we would have f(C —8, P —8). For this case a
change in the wave-length would merely displace
the dome-shaped surface along a 45 degree line
in the C', P plane. It is definitely known, however,
that this simple type of wave-length dependence
is untenable in general, which is in accord with
f„foEq. (2). If the change in the actual surface
f, with wave-length, aside from the displacement
along the line 4 =1t, is anything like that of f„,
then f will be a sufficiently slowly varying
function of ) so that the change in the shape of
the surface over a small wave-length interval
may be neglected. This certainly obtains for
wave-length intervals covered by a spectral line
and for certain crystals f does not change
appreciably over intervals many times this size,
as is indicated by rocking curves taken in the
(1, —1) positions for nearby wave-lengths.
Therefore, when the incident radiation is line
radiation there will be no loss of generality in
assuming that a change in wave-length simply
displaces the surface f along the line C=P. So
that we may write

where O„denotes the corrected Bragg angle in
the nth order. The subscript n attached to f
indicates that the surface f will, in general, be
different for different orders,

It will be suf6cient to compute the intensity
of radiation reflected from two crystals when the
incident and reflected beams from each all lie
in the same plane, since it has been shown by

Allison'4 that effects due to crystal alignment
and vertical divergence of the incident beam
can be made negligibly small. Let the geometrical
center of the initial beam (dotted line in Fig. 3)
be chosen as the reference line for the angular
positions of the two crystals and let the surfaces
of A and 8 make angles u~ and n2 with it.
Suppose also that a beam of radiation of unit
intensity having a wave-length between 'A and
X+dl{, falls on crystal A in the angular interval
between co and or+d~ measured with respect to
the same reference line. The total intensity
reflected from the second crystal will be

] n1 A] GD en1, ] enI

Xfn2{ & (o.~ am+ —p{)—On {f22)—On2 }d{fg)

where the + sign is to be used for the orders
(n~, —n2) and the —sign for the orders (n~, +ng)
and Af) and 6/2 denote the angular intervals
over which the function f~) and fn, are different
from zero. Since fn, and f~, are zero outside of
these intervals, the intervals can be extended
from —Do to +~. If the intensity of the inci-
dent radiation is not unity but &(&—&0)&(~)
where k(co) is the distribution in intensity with
angle and l(X —Xo) is the distribution of intensity
with wave-length measured from the wave-
length Xo of maximum intensity, then the total
reflected intensity from crystal 8 is

'4 S. K. A11ison, Phys. Rev. 44, 63 (1933).
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ap=Hn„'+28n, '+ep and taking the — sign in
Eq. (5), thus

where the ranges of integration of X and u have
been extended for the same reasons as mentioned
above.

To compute rocking curves in the (rs), —np)
orders with crystal A fixed, it is only necessary
to let e).)=Hn, p and ap= Hn, +ep where On, p and
On, ' denote the corrected Bragg angles for the
wave-length Xo and indicated orders, while
then gives the angle of deviation of crystal B
from the corrected Bragg angle. Denoting such
a rocking curve by r n„n, ( -ep) then

r, , +,(,)=f )() —) )d)f ), (p, —e,)

Xknp(Hn)'+Hnp'+ep —P) —Hnp)d))|'). (10)

Henceforth the subscripts on the variable of
integration Pq and ep will be dropped.

The analysis would have proceeded in the
same manner as the above even when C) and P
were considered as solid angles. The only differ-
ence in the results would have been in the
definition of the functions g and h above.
Eqs. (7) and (8) would involve double integra-
tions instead of single and the meaning of g and
k would be different but, since they are to be
determined from experiment anyway, the subse-
quent analysis holds for the more general case.

It is worth while to notice several important
characteristics of Eqs. (9) and (10). First, the
right-hand integral of (9) will be a maximum for
a given wave-length when e2 is adjusted to give
maximum overlapping of gn, and hn„ i.e. , to
make the common area under the curves gn,

and hn, a maximum. If n~= n2 then the amount
of overlapping remains constant for all wave-
lengths and the form of rn, (n))epis independent
of the form of /(X —7)p) and hence of the shape of
the incident line and depends only on the total
intensity. On the other hand, if n& is not equal
to n2 then the amount of overlapping decreases
as X increases and the origins of gn, and hn, are
translated in the same direction but by a different
amount. gn, and hn, therefore separate by an
amount measured by

~

Hn, —Hn,
~

so that all
curves rn, , n, (ep) wh-en neman), depend on the
line shape. Somewhat similar remarks hold in
the case of Eq. (10) except that the amount of
overlapping never remains constant as the wave-
length changes and consequently all rn, (n)ep
depend on the form of l(X —!),p). The separation
of the origins of the functions gn, and hn& is
measured by

~
Hn, +Hn,

~
as !) increases. These

considerations are important in making use of
Eqs. (9) and (10) to determine the line shape
l(X —7),p).

l(7) —Xp)d) I df)
C

rn. ..( —ep) =

X k(pp)fnq I Hnx p) On), P) —Hn) }d(pJ(

Xfn, I On, ' —On, ' ep+—P) —On„fp —On, }dip. (6)

If the angular range over which k((p) is
appreciably different from zero is large compared
with the region for which fn, is different from
zero and k((p) is a slowly varying function of (p

over the latter range, then to a sufficient approxi-
mation we may write

where $= On
' —p) —On .1 1'

The conditions leading to this relation are usually
fulfilled in practice. Letting

kn, (P) —e —On, Hnpe+ Hn)—P)

'q2 ] c O's2 O'Q2 O741 y 2 O7lg d 2 8

Eq. (6) becomes

r. .. —,(—,)=f )(1 —),)dl I g (p —e )

Xk (P) npep Hnp Onp +On) )dP). (9)

This result is very similar to that obtained
when the characteristic functions are of the form
f(C, C, X) but the functions appearing in the
integrand have wholly different meanings.

Rocking curves in the (n), +np) orders can be
obtained in a similar way by letting u&= On, and

DETERMINATION OF THE LINE SHAPE

The possibility of determining the spectral
energy distribution of an x-ray line from meas-

k((p)fn) j On)' —p) —On), Py —On) }de)

~(e )f ).-, ((, ~, e)~( a((-, e )=())—. ,
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the transform is known, the function to which it
corresponds can be found by Eq. (15).

In addition to the inversion formulae (15)
and (16) we shall need to invert a relation of
the type

X(t) = (22r)-l f(X)e""(*)dX
~ —oo

(17)

where u(x) is an odd function of x. Let s=u(x)
and the unique inverse be x= v(s); then

x(t) = (2 ) tf f Le(r))e'"e'(e)dx

f(x) = (2~)—:~f F(t) e '(.dt,
-

Using (15) and (16) we have
15

urements with an uncalibrated double crystal
spectrometer rests on the existence of a unique
solution of a set of simultaneous integral equa-
tions of the form (9) and (10) and a method for
finding it. A method of finding such a solUtion
will now be given.

In order to invert the integral equations it
will be convenient to make use of the theory of
Fourier transforms. With suitable restrictions
(fulfilled for the functions under consideration)
a function f(x) can be represented by the
Fourier integral

where F(t) is the Fourier transform of f(x)
defined by the equation

P(t)=(2 ) 'ff(x--)e"'dx (16)

Throughout the remainder of this paper capital
letters will be used to denote the Fourier trans-
forms of the functions denoted by small letters,
with the exception of the capital letter L. It
should be noted that F(t) is a complex function
unless f(x) is an even function in which case F(t)
is real. Of the functions to be considered there
is a one to one correspondence between the
function and its Fourier transform, so that if

f[v(s)]v'(s) = (22r) l)F X(t)e "'dt

or since
dv/ds = 1/(du/dx)

f(x) (2 ) x (*=)f'''x(t)e " "'«'*(18)

Eqs. (17) and (18) furnish somewhat more
general inversion formulae.

Eq. (9) may be converted into a relation
between the Fourier transforms of the functions
involved by multiplying through by e '" and
integrating with respect to e from —~ to +~.
On inverting the order of integration on the
right, the equation becomes

r, —.r( —)e '"d =f, 2(& —2,) e p(tt(e, +e,' —t, —, '))d tfe2, (tt)e "tdtt

X . h»2 ~ ~»2 ~»1 ~»2 +~»l. exP zt —E —0»2 0»1 ~»2 +0»1

Making use of Eqs. (16) and (17) this may be
written as ~here

Rte) n2(t) = 22rLnt n2(t)Gnt(t)IIn2(t)r (21)

Rnt, xt2(t) = 22rLrtt, —222(t)Grtt (t—)IIrt2(t) t (19)

where the asterisk denotes the complex conjugate
and

r.. —.;(t)=(2 ) :f t(i 2)-. — .
Xexp [it(8n2 —8n2+ 8n2 —8nt') ]dX. (20)

Eq. (10) may be converted to a form similar
to (19) by multiplying through by e'" and
integrating as before. The desired relation is

I. (t) = (2 ) f. t(2 —4').
Xexp [zt(8n2 —8n2 +8nt —8nt )]dlt,. (22)

Of all of the possible relations (19) and (21),
six will be required. In order to make the
following analysis clear and to save space, the
special equations to be used are written below:

Ri, —i(t) = 22rIG2*(t)II2(t), (a)

R2, 2(t) = 2 2rIG2" (t)II2(t), (b)
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Rl, ~1(t) =2mL1, +1(t)G1(t)H1(t), (a) Taking logarithms of both sides we have

R2, +2(t) = 27rL2, +2(t) G2(t)H2(t),

+2(t) 27rL), +2(t)G1(t)H2(t),

R2 +1(t) =2lrL, +2(t)G2(t)H1(t),

where the relations

I.l, 1(t) =L2, 2(t) = I

log Ll, +1(t)+log I-2, +2(t) —2 log Ll, +2(t)
(b

(c) = log S(t) (30)
(d)

In this equation the principal value of the
logarithm is meant so that

log Ll +1(t) log IL1 +1(t) I+2~1, +1(t) (»)
+Co

=(2 ) ~f t(X —4)dl, =aconatant,

Ll, +2(t) =I.2, +1(t)

have been used.
The immediate problem is to determine one of

the functions L(t) in the above equations. In
general I (t) is a complex function of the real
variable t so that it may be written

L», etp(t) =
I
I. . .(t) I

exp [iwt et, (t)]. (25)

Ieat,l etd(t) is real only when the line shape is
symmetrical, i.e.en l(X —'Ap) is an even function of
(X—)p). It is easy to obtain ILp, , p, (t) I. Multi-
plying (24a) by its complex conjugate we have

IR1, +1(t) I'=4~'IL), +1(t) I'Gl(t)H1*(t)G1*(t)H1(t).

Making use of Eq. (23a) this becomes

IR1. +1(t) I'/IR1. -1(t) I'= IL1, +1(t) I'/I'
or

IL1. +1(t) I
=IIR . +1(t) I/IR1. -1(t) I (26)

Eq. (30) involving three unknown functions
can be reduced to a functional equation involving
only one unknown function. To do this, we
expand the angles 8~, +8~, occurring in Eq. (22)
as Taylor's series in the wave-length ) about the
point )0, thus

8et2+ 8etl 8et2 +8etl + I d( 8t2a+8@1)/dX I )e=)ttt

&& (X—Xp) +
Use is now made of the fortunate circumstance
that for values of ) —Xo over which the function
l(X —Xp) is appreciably different from zero, only
the first two terms of the above expansion are
required to give a good approximation for
O~1On . Examination shows that this approxi-
mation holds for x-ray lines over quite a large
wave-length region. We may therefore write

8etp+ 8%1 8et2 8etl Detlet2(X Xp)

DttlA2 (d/dXt)(8et2+8etl))t=)tp ~a

Similarly Substituting the above expression in Eq. (22)

IL, +2(t) I

= IIR, + (t) I/IR2. -2(t) I (27)
and

Rl, +2(t) 'R*2, yl(t)
IL1, +2(t) I

=I (28)
-R 1, —1(t) 'R2, —2(t)-

Eqs. (26) or (27) would constitute a formal
solution to our problem if it were known that the
initial line shape were symmetrical. Since this is
not known it will be necessary to determine the
argument of the functions Lpt, p, (t). To do this,
Eqs. (24a) and (24b) are multiplied together and
the result divided by the product of (24c) and
(24d), so that

L., +.,(t) = (2~)-~jf l(X —)1,)

)& exp [2tD»p, (X—Xp) ]dX
or

g+CO

L, e,(e/D;, ) = (2 )-tJ )(X —h, },
e'"" "'dX.

The required relation between I.l, +1(t), I.2, +2(t)
and Il, ~2(t) is obtained from this equation,
namely,

L2, +2(t/D22) Ll, +2(t/D12) Ll, +l(t/Dl 1)

Ll, yl(t)L1, +2(t) Rl, +1(t)R2, +2(t)

L 1, +2(t) Rl, y2(t)R2, +1(t)
= S(t) =

I S(t)
I

e*«'}. (29)

or

and
L2, +2(t) Ll, +1(D22t/D1 1)

Ll, +2(t) Ll, +1(D12t/Dl 1)
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Making use of these relations, Eq. (30) reduces
to the functional equation

log I i, yl(t)+log I l. +)(D22t/D11)
—2 log I-~, +~(D~d/D») = log S(t). (32)

By equating the real and imaginary parts of this
equation in accordance with the relation (31)
we have

log I 1), +)(t) I+log Il), +i(D22t/D))) I

—2 log II-&, +)(» / ») I
=log IS(t) I, (33a)

C'y, +1(t) +C'1, +l(D22t/D»)
—2@y, +y(Dymt/Dyy) = x(t)' (33b)

The unknown argument of L,), ~)(t) can be
found from the second of the above equations
and the Fourier transform of the function
l(X —Xo) has been completely determined and
consequently the original line shape also.

It does not seem worth while, at the present
time, to discuss the solution of Eq. (33b) since
the method of procedure will depend on the
behavior of the function x(t). If, in particular,
x(t) is an analytic function, an expansion of x(t)
and C(t) in a power series suggests itself since
Eq. (33b) will determine the coeScients in the
power series for C(t) uniquely. It should be
noticed that if x(t) is identically equal to zero,
then so is C), +~(t) since C ~, +)(0) is known to be
zero and the intensity of the original x-ray line
is symmetrical about the point P =)0.

SUGGESTED PROCEDURE IN ACTUAL

COMPUTATIONS

Since the writer has not as yet carried out
the requisite numerical computations to deter-
mine the line shape, it cannot be said that the
method to be suggested is the best but certain
circumstances indicate that it would be a good
one to try. In order to carry through the formal
mathematical work, it is convenient to have an

analytical representation of the various rocking
curves. On account of their general form it
would appear that they could be represented by
a relatively small number of terms in a series of
the orthogonal Hermitian functions ))t „.(x) whose
generating function is

s z~/2s —(z—t)2——P (rt ))
—1P (x)tn

n=o

Another important reason for employing the
functions ))t „(x) is that they possess the property
of being their own Fourier transform except for
a possible constant. This should materially
facilitate the determination of the Fourier trans-
forms of the rocking curves.

With the function l(X —Xo) thus determined,
the functions G&(t), II~(t), G2(t) and II2(t) can be
found from Eqs. (23a), (23b), (24a) and (24b) in
an obvious manner. Since these functions depend
only on the crystal characteristics the spec-
trometer can be considered as calibrated for
wave-lengths in the neighborhood of ) 0 as soon
as they have been determined. It must be
remembered, however, that the functions g~, h~,

etc. , whose Fourier transforms are G~, HI, etc. ,

are not the diffraction patterns of the crystals
as normally defined. It is obvious that it is not
possible to determine f(C, ))t) in terms of the
functions g, h, etc. , but this is not required either
to calibrate the spectrometer or to obtain the
line shape.

The general problem of determining the
spectral energy distribution of an x-ray line and
of calibrating the double crystal spectrometer
experimentally without appealing to the theo-
retical diffraction pattern or characteristic func-
tion for the crystal has been solved. In conclusion
the, writer wishes to acknowledge the very
considerable help received from very stimulating
discussions of this subject with Professor C. C.
Murdock.


