Absorption Spectra of the Samarium Ion in Solids. IV. Absorption of $Sm(C_2H_5SO_4)_3$ • 9H₂O and Partial Energy Level Diagrams for the Sm⁺⁺⁺ Ion as It Exists in Hydrated Crystalline Samarium Ethylsulfate, Samarium Iodide and Samarium Perchlorate

FRANK H. SPEDDING AND RICHARD S. BEAR,¹ Chemical Laboratory, University of California (Received April 23, 1934)

The absorption spectrum of hexagonal $Sm(C_2H_5SO_4)_3$ ·9H₂O has been investigated in the temperature range 20° to 295°K. It is found to be simpler than that of the monoclinic $SmCl_3 \cdot 6H_2O$ previously reported. This is in agreement with theoretical conclusions that the greater symmetry of the hexagonal lattice should give rise to crystalline fields which would cause the energy levels of Sm^{+++} ion to be split apart less and to be in some cases more degenerate than would the more unsymmetrical monoclinic lattice.

I N previous papers of this series² the absorption spectra of both single crystals and crystalline conglomerates of monoclinic $SmCl_3 \cdot 6H_2O$ and hexagonal $Sm(BrO_3)_3 \cdot 9H_2O$ were described. From the temperature behavior of the line intensities and from constant energy differences occurring throughout the spectrum it was possible to show the existence of certain low-lying levels of the Sm⁺⁺⁺ ion in these solids, and energy level diagrams were constructed accordingly. This paper deals with a similar investigation of the absorption by hexagonal $Sm(C_2H_5SO_4)_3$ $\cdot 9H_2O$.

This second hexagonal salt is included in the series since the first one (the bromate) at low temperatures exhibited a phenomenon which somewhat complicated its spectrum. Though this complication could be partly eliminated in the interpretation of the spectrum, its underlying cause could not be determined definitely. It would seem desirable to have knowledge concerning a salt whose symmetry is great and whose spectrum does not have this complexity. The investigation of Spedding and Nutting³ on the absorption of gadolinium compounds has indicated the choice of the ethylsulfate for such a purpose, and this is borne out by the facts now to be reported. The ethylsulfate lines seem to be related chiefly to three lower levels, the basic one and two which are located higher on the energy scale by 55 and 65 cm⁻¹, respectively. Complete figures are given for the ethylsulfate absorption in the visible region. In addition results for the iodide and perchlorate of samarium are summarized. The lower levels found to be most important in these salts are situated at 0, 90, 107 cm⁻¹ for the iodide; and 0, 104, 160 cm⁻¹ for the perchlorate.

The spectra of two other salts were also found to indicate a greater symmetry of the fields about the samarium ion than in the chloride, but less than in the bromate and ethylsulfate cases. These are the iodide and perchlorate, whose absorption will be briefly described in the following.

Since in general the spectra of the three salts to be described at present resemble those of the chloride and bromate, we refer the reader to the former papers² for a general description of the appearance of the lines and bands, their behavior with temperature change, etc. In this report we shall treat only the points wherein the new spectra differ from the others. Just now we are content to confine ourselves to a descriptive discussion but intend at a later date, after reports on the interesting sulfate and bromide spectra appear, to make more thorough comparisons and deductions. In the meantime the data will be available to other investigators.

EXPERIMENTAL

 $Sm(C_2H_5SO_4)_3 \cdot 9H_2O$ was prepared by mixing equivalent amounts of $Sm_2(SO_4)_3$ and Ba- $(C_2H_5SO_4)_2$ in solution, centrifuging off the BaSO₄ precipitated, and recrystallizing the $Sm(C_2H_5SO_4)_3 \cdot 9H_2O$ crystals from the resulting solution by slow evaporation caused by a stream of dry air impinging on the surface. These operations were all carried out at room temperature and care was taken to avoid the presence

¹ Now National Research Fellow in Chemistry at Princeton University.

² Spedding and Bear, Phys. Rev. **41**, 58, 76 (1932); **44**, 287 (1933).

³ Spedding and Nutting, J. Am. Chem. Soc. 55, 496 (1933).

of free acid, both precautions being necessary to avoid decomposition of the samarium ethylsulfate. The compound was obtained as fairly large crystals which were hexagonal prisms similar to those observed with the corresponding gadolinium salt, described elsewhere by Spedding and Nutting³ and also by Benedicks.⁴ The samarium crystals have been described by Jaeger.⁵

In other respects the experimental procedure was similar to that described previously. Both single-crystal and conglomerate spectra were photographed at 20°, 78° and 169°K and the conglomerate at room temperature. As with the bromate, the two types of spectrum were quite similar, being less different than in the chloride. The conglomerate spectrum, as usual, contained a few more lines and emphasized faint ones. The value of the single-crystal spectrum is simply the verification that the conglomerate spectrum is the correct one and not that of different crystal forms or decomposition products.

RESULTS

As with other salts, the general presence and location of the multiplets are those typical of the samarium ion. More specifically the ethylsulfate groups of lines are situated toward longer wavelengths than the corresponding chloride ones, though remaining on the violet side of the bromate positions.

The temperature shift in positions of multiplets is slight in the ethylsulfate, less than in any of the other salts. In this case the hightemperature multiplets seem to shift slightly to the violet as the temperature is decreased, a behavior opposite to most, though there is not a marked difference. The red-most low temperature lines still shift to long wave-lengths. On the other hand the high temperature lines show a particularly noticeable shift to longer wavelengths as the temperature is lowered. The result of the two factors is a very apparent widening of the groups of lines at low temperatures, as well as a shift to longer wave-lengths. This widening seems to be caused chiefly by an increase in the difference in energy between the basic level and the slightly excited lower levels from which the high temperature transitions originate.

Table I gives the positions of the lines and bands measured with estimated intensities. As in previous studies relative positions of two types of lines designated by H and L, according to whether they increase in intensity at high or low temperatures, respectively, can be used to determine low-lying energy levels. From the data obtained it is possible to state with certainty only that two levels exist apart from the basic one. These are separated from the normal state by about 55 and 65 cm⁻¹. Other low-lying levels may exist, possibly somewhere between 90 and 130 cm⁻¹, but these cannot be proved conclusively.

Fig. 1 shows a diagram indicating in a limited spectral region the possible explanation of the lines found therein. This illustration explains most of the important high temperature lines in the regions included, which are the simplest portions of the spectrum, offering possibilities for the most certain interpretation. The two lines that are most noticeably absent from the diagram are the intense high temperature lines at 20,365 and 23,898. The former is close to a correct distance from the nearest low temperature line and is possibly related to an "invisible" low temperature line. The second might be evidence for a level at about 95 cm⁻¹ above the basic one if it were not for its rather too large intensity at 20°K and the slow increase in intensity at higher temperatures. Other similarly placed lines offer the same difficulty and probably also are satellites of non-appearing low temperature lines.⁶ Perhaps the best evidence for higher levels is located at about 26,500, but here, as in other similar cases, the structure

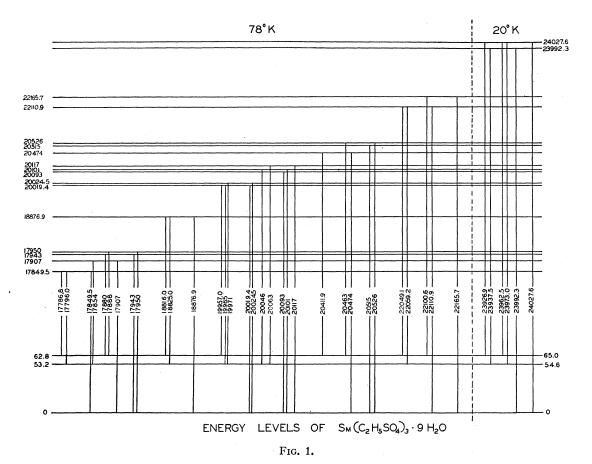
⁴ Benedicks, Zeits. f. anorg. Chemie 22, 413 (1900).

⁵ Jaeger, Proc. Amsterdam Acad. Sci. 16, 1095 (1914).

⁶ This difficulty is not limited to the ethylsulfate lines. An attempt was made to explain anomalous lines in such cases by the use of several levels very close to the basic one, which is the level ordinarily supposed to develop the strong low temperature lines. If selection rules favor a transition from another very close level other than the normal one, then certain constant discrepancies in the separations between the strong low temperature lines and their high temperature satellites should be noticed. Obviously other explanations are possible. Though lower temperatures (for sharpness) and instruments of, higher resolving power will be necessary to decide the matter, it is quite possible that such levels, caused by crystal splitting of the ${}^{6}H_{5/2}$ level of the salarium ion, are actually present in all of the salts studied.

TABLE I. Conglomerate absorption lines and bands of $Sm(C_2H_5SO_4)_3 \cdot 9H_2O$ in the visible regions of the spectrum.

Frequencies are given at four temperatures, $R.T. 298^\circ$, $E.T. 169^\circ$, $N.T. 78^\circ$, and $H.T. 20^\circ$ K. Columns of intensity and character are completely filled for H.T., and only occasionally occupied for N.T. In all other regions at 78° relatively the same intensities as at 20° may be assumed. The "Type" column indicates by H and L the lines or bands that show their strongest intensities at high or low temperatures, respectively. HL signifies that probably both types overlap, and a question mark is placed beside doubtful assignments. Character of line is indicated by the following letters: vd, d, nd, s, vs are degrees of increasing sharpness, and b denotes a broad line or band. Sharp edges are noted by se, and a number in quotation marks signifies a probable but not clearly resolved multiplicity. Primed frequencies and wave-lengths are band edges, but all other values, including those marked c, are centers of intensity. Intensities are estimated on a scale of ten, with very faint or doubtful lines given as 0.


R.T. E.T. Type N.T. H.T. (cm^{-1}) (cm^{-1}) Int. (cm^{-1}) Int.	R.T. E.T. Type N.T. H.T. (cm^{-1}) (cm^{-1}) Int. (cm^{-1}) Int.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{bmatrix} 20593' & & & & & & & & & & & & & 20633.3c & 6nd \\ & & & 20634.9 & 3nd \\ & & 20634' & & 20636.0c & 2nd \\ & & 20658c & 1 & 20658c & 2nd \\ & & & 20679 & 2nd \\ & & & 20679 & 2nd \\ & & 20679 & & 20688 & 1nd \\ & & & & 20679 & 2nd \\ & & & & 20679 & & 20688 & 1nd \\ & & & & & 20747.4 & 3nd \\ & & & & & 20747.4 & 3nd \\ & & & 20836' & & 20837' & \\ 20830' & & 20836' & & 20837' & \\ & & 20836' & & 20837' & \\ & & 20836' & & & 20837' & \\ & & 20836' & & 20837' & \\ & & 20936' & & 20936' & 20926 & 1nd \\ 209370' & & & 20930' & 20926 & 1nd \\ 209370' & & & 20936' & 20926 & 1nd \\ 209370' & & & 20936' & 20926 & 1nd \\ 209370' & & & 20936' & 20926 & 1nd \\ 20937' & & & 20936' & 20926 & 1nd \\ 20937' & & & 20936' & 20926 & 1nd \\ 20097' & & & 20936' & 20926 & 1nd \\ 20097' & & & 20936' & 20926 & 1nd \\ 20097' & & & 20936' & 20926 & 1nd \\ 20097' & & & 20936' & 20926 & 1nd \\ 20097' &$

R.T. (cm ⁻¹)	E.T. (cm ⁻¹)	Type	N.1 (cm ⁻¹)	ſ. Int.	H.' (cm ⁻¹)	r. Int.	R.T. (cm ⁻¹)	E. T . (cm ⁻¹)	Type	N.1 (cm ⁻¹)		H.7 (cm ⁻¹)	r. Int.
1990 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 -	21829' 21841'	L L	21812 21845		$\begin{bmatrix} 21805' \\ 21820' \\ 21846 \end{bmatrix}$	0 1d		24157' 24172c	L L L	24145 24170		24137.0c 24147.7c 24165.8' 24175.0'	1nd 4nd 6se '''
	L21041	L L L	21843 [21892' [21906' [21947'		21845 21865 21895' 21910' C21957'	0 1d 0		$\begin{bmatrix} 24196' \\ 24214' \end{bmatrix}$	L L H L	24197 24213	4d	24173.0 24182 24186.3 24202 Γ 24215.2c	0s 2nd 1d 5nd
□ 22105'	$\begin{bmatrix} 22051'\\ 22063' \end{bmatrix}$	H H H	21967' 22049.1 22059.2 22100.6	3s 2s 3nd	21972'	·		²⁴²⁴¹ 24261'	L L L L	24232' 24261c		24223.0c 24238 24250.2 24263	3nd 1d 2nd 6d "
$\begin{bmatrix} 22128' \\ 22158' \\ 22174' \end{bmatrix}$	22111 22164	L L L	22110.9 22165.7	Und	$\begin{array}{c} 22111.5\\ 22162.7\\ 22166.7\end{array}$	9vs 2vs 10vs		24290' 24304'	L L	24305		24276 24287 24300 24309.7	1nd 1nd 2nd 6nd
	$\begin{bmatrix} 22438' \\ 22450' \end{bmatrix}$	L L H L	22441 22466	5d 1d	22345 22382 22441 22464.4	0 0 0 2s			L L L	24331 24360		$\begin{bmatrix} 24332.1 \\ 24350' \\ 24350' \\ 24358' \\ 24370' \end{bmatrix}$	2nd 3db
22510'	$\begin{bmatrix} 22506' \\ 22516' \end{bmatrix}$	Н Н Н Н	22479 22495c 22505.1 22517.7	0 3d 8nd 7nd	22495 22501.4 22517 8	1s 4s 3nd		24462 24492'	L L H H	24463c 24492.8	3d 10nd	24378 24389 24492.8	1d 1d 4s
_22552'	$\begin{bmatrix} 22531' \\ 22550' \\ 22567 \end{bmatrix}$		22534.5 22547.5 22573.8		22536.2 22548.7 22573.2 C22593c	10s 10se 10se 0	24505'	24501 24515	н н	24501 24512	10d 10d	$\begin{array}{r} 24497.8 \\ 24502.5 \\ 24507.5 \\ 24514.0 \end{array}$	2s 6s 9s 2s
		L L L	22614' 22632 22666		L22603c 22633 22645 22662	0 1d 0 1d	24526' 24542'	24523′ 24533 □24541′	H H	$\begin{bmatrix} 24519' \\ 24528.1 \\ 24537.3 \\ 24545.0c \\ 24550.1c \end{bmatrix}$	9s 9nd	24526.6 24537.6 ⊏24544.8c	2s 2nd 10nd
	$\begin{bmatrix} 22679' \\ 22695' \\ 22714' \\ 22729' \\ \hline 22747' \end{bmatrix}$	H H L L	$ \begin{bmatrix} 22681 \\ 22692 \\ \\ 227713' \\ 22727' \\ 22727' \end{bmatrix} $	3d 2d	$\begin{array}{c} 22682 \\ 22690 \\ \boxed{22717.3c} \\ 22725.5c \end{array}$	0 0 7nd 7nd	_24559'	$\begin{array}{c} 24552'\\ 24560\\ 24570\\ 24583'\\ 24596'\end{array}$	L L L H	L24550.1c 24562.1 24571.9 24589	3d	24549.8c 24562.0 24572.7	10no 10s 10s
	22771'	L L L L	$ \begin{array}{c} 22755 \\ 22771 \\ \end{array} $		22755.9 22774 22806 22819 22831	7s 1d 1d 1d 2d		24603' 24625' 24625' 24634'	L L	$\begin{bmatrix} 24602' \\ 24614' \\ 24624' \\ 24636' \end{bmatrix}$		24610 24623	1d 1d
	22845'	L L L H?	22845 22869 22923	2d	$ \begin{array}{c} 22831\\ 22844\\ 22862\\ \underline{22893'}\\ 22922' \end{array} $	3d 1d 1vd		$\begin{bmatrix} 24634 \\ 24654' \\ \end{bmatrix}$	L L L	24664' 24692'		$[\begin{array}{c} 24655'\\ 24668'\\ 24682\\ 24682\\ 24689 \end{array}]$	2d '' 3d 3d
	$\begin{bmatrix} 22972' \\ 22983' \end{bmatrix}$	L ? H?	22943c 22954c 22964	1d 1d 2d	22943.6 Obscur plate e	2s ed by		$\begin{bmatrix} 24704' \\ 24730' \\ 24744' \end{bmatrix}$	L L H L	24722 24738	5d	24697 24723.1 24739 24751	0 4nd 4d 1d
	23026	L? L? H	23027 23047 23288' 23306'	6d 2d 00				$\begin{bmatrix} 24760' \\ 24781' \\ 24803' \\ 24809' \end{bmatrix}$	H H H	24763 24785 24798 24811'	2d 4d 4d	24771 24784 24797	2d 1d 2d
$\begin{bmatrix} 23712'\\ 23735 \end{bmatrix}$		H L H	23310 23361.2	Ovs	23361.3	3vs	$\begin{bmatrix} -24815' \\ -24841' \\ -24856 \end{bmatrix}$		H H L L L L	24816 24831 24842'	10d 10d	$\begin{array}{r} 24814.8 \\ 24828 \\ 24842.4 \\ 24852.4 \end{array}$	2nd 8d 10nd 10nd
$\begin{bmatrix} 23761'\\ 23786 \end{bmatrix}$	$\begin{bmatrix} 23808'\\ 23823' \end{bmatrix}$	н Н	$\begin{bmatrix} 23807'\\ 23820' \end{bmatrix}$	2d	23811	0	_24894'	_24898'	Ľ	_24905'		_24862.7 24872' 24874 _24905'	10nd 10d 9
²³⁸⁷¹	$\begin{bmatrix} 23859'\\ 23862' \end{bmatrix}$	H H H H	23844 23857 23866 23873	2d 1d 2d 2d	23843	Ond	24920' 24946'	$\begin{bmatrix} 24916' \\ 24950' \end{bmatrix}$	L L L	$\begin{bmatrix} 24923'\\24944' \end{bmatrix}$		$ \begin{array}{c} \hline 24921' \\ 24941' \\ 24952.7 \\ 24963.6 \end{array} $	10dl 2nd 2nd
23891'	_23901 23926' 23935 23944 23950'	H H H	${\begin{smallmatrix} 23896 \\ 23923' \\ 23933' \\ 23939.3 \end{smallmatrix}}$	5d 10d ''2' 9nd	23897.5 23926.9 23937.5	4vs 9s 6s	24994'	L24980'		_ 24973c		$\begin{array}{c} 24975.6 \\ 24987c \\ 24995c \\ 25006.2 \\ \end{array}$	6nd 3d 3d 3nd
1_23900	23950	H H H L	23963.8 23972.4 23984.7	8s 6s 2nd	23962.5 23973.0 23992.3	3s 3s 1nd	[_1_23020'	$\begin{array}{c} 125018'\\ 25030'\\ 25040'\\ 25061' \end{array}$	L L L L L	25011 25024 25042 25057		25015.0 _25026.1 _25037.5c _25045.6 _25059.7	8nd 3nd 3nd 6nd 4nd
			24005 24012 24020'	1d 1d	- 24021' 24022.8	0 10s	25083'	$\begin{array}{c} 25001 \\ 25091' \\ 25103' \\ \hline 25118' \\ \end{array}$	L L	25071 25094 25124	1	25039.7 25078' 25093c 25098.8c	2 9d 9nd
_24048'	24025 24039 _24047'		24029' 24037' 24050'		$\begin{array}{c} 24027.6 \\ 24035.2 \\ 24042' \\ 24051' \end{array}$	10nd 10nd 10d	_25 138'	25137'	L L L			25133' 25141.9 25153.7	9b 1nd 1nd
	24073'	L L L L	24066	•	$\begin{array}{r} - 24066.3 \\ 24073.6 \\ 24085.0 \\ 24089.8 \\ \end{array}$	6s 1nd 5nd 6nd	25172'	25177'		25175c 25186		$\begin{array}{c} 25166.0 \\ 25176.9 \\ \boxed{25183.7'} \\ 25195.0' \end{array}$	4s 4s 9se
_ 24100'		L L L	$\begin{array}{c} 24101 \\ 24111 \\ 24120 \end{array}$		$ \begin{array}{c} 24101.8 \\ 24113.2c \\ 24120.0c \end{array} $	4nd 5nd 5nd		25223'		25199c 25229'		25202 25221	6d 1vd

TABLE I.—Continued.

R.T. (cm ⁻¹)	E.T. (cm ⁻¹)	Type	$\underset{(cm^{-1})}{\text{N.T.}}$ Int.	H. (cm ⁻¹)	Г. Int.	R.T. (cm ⁻¹)	E.T. (cm ⁻¹)	Type	N.T. (cm ⁻¹)	Int.	H.7 (cm ⁻¹)	r. Int.
	25235'		25238' ⁻ 25238' ⁻ 25244'	25241.1c 25249.6	4nd 5nd			L L			27197 27225	0
	25253'		L25258' 25266	25257.6c 25268	5nd 1d			${ m L}^{ m H}$	27237	2đ	27253	0 0
		L L	25281	25282.4 25292.8	7vs Os	-27280/	27274'	H.		7d	C27275.2c	4nd
			25303' 25321' 25335'	25305 25315 25343	1d 1d 1d	27280' 27300'	_27290' _27310	$_{ m L}^{ m H}$	1	10d 3nd	L27279.7c 27295	$\frac{5 \text{nd}}{1 \text{vd}}$
		Ľ L	25356'	25359 25377	1d 1d		27331	L L	27328.8		27329.5 27334.4	9nd 3nd
		L L	25406	25388 25407.9	0d 3nd	C27350'	C27354'	L L	C27358.7c		27348.3 27360.1	2nd 8s
		LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL	25418 □ 25451'	25419.2 25438 Г25456'	3nd 1d 1d	27370'	L27376' - 27423'	L L L	27380' 27406' 27429'		27374 27407 27432	2d 1d 2d
	25501	н	25466' 25496 4d	L25470' 25493	2d		F 27472'	H?	27440' 127467'		F27480c	8d
25526'	25524	H · L	25516.5 8nd	25515.5	3nd 1d	27480'	L27485'	H? H?		db ''2''	_27487c	10d
25542' 25554'	25545'	L	25545c 25556	25540' 25547' 25561'	9b	_27523′	[_27511' □27530'	? L	_ _27508'		27514 F27534c	3d 10d
25569'	_25563'	L	25567c 25584	25566' 25579	2d	27543'	_27542′ □27547′	HL		10db	_27544c	ĩõđ
$\begin{bmatrix} 25592'\\ 25612' \end{bmatrix}$	$\begin{bmatrix} 25587' \\ 25603' \\ 25620 \end{bmatrix}$	L	25596 "2"	$\begin{bmatrix} 25589.9' \\ 25602.9' \\ 25621.2 \end{bmatrix}$	9se 9s	27575	$\begin{bmatrix} 27568' \\ 27584' \\ 27610' \end{bmatrix}$	H L? L?	$\begin{bmatrix} 27561' \\ 27584' \\ 27614' \end{bmatrix}$		27555 $\begin{bmatrix} 27595c\\ 27608c \end{bmatrix}$	3d 10d ''2 .10d
25651'	$25620 \\ 25654 \\ 25666$	L H H	25620.2 25646.0 5nd ∑25659.7c 3nd	$25621.3 \\ 25644 \\ 25656$	1d 0	27643	$\begin{bmatrix} 27627' \\ 27657' \end{bmatrix}$	Ľ? Ľ?	27629		27636c 27647c	10d 10d
25671'		$^{ m H}{ m L}$	L25669.4c 2nd	$\begin{bmatrix} 25669' \\ 25681' \end{bmatrix}$	2b	27685'		$_{\rm L}^{\rm L}$	27685' 27702		27672 27702	$\frac{5d}{4d}$
25704'	25698 25724	HH	25693.1 6nd 25701.3 2nd	25691	2d 9s	4	$\begin{bmatrix} 27714' \\ 27741' \\ 27767' \end{bmatrix}$	L L	27721 27762		27721 - 27749 27766	6d 0 1d
_25757'	25751	L L L	25723 25752	25723.7 25752.7 25775	9s 9s 1d		-	L L	27785		27785.7	5nd
	$25795 \\ 25825$	L L	25795 25825	25795 25825	1vd 1vd	L27825'	$\begin{bmatrix} 27802' \\ 27822' \\ \Gamma^{27853'} \end{bmatrix}$	L L	27812 		27813 □ 27868c	6d 5d
		L L	$\begin{bmatrix} 25861' \\ 25885' \end{bmatrix}$	25854 25868	1d 1d 1d	L27883'	27886' 27901	L L L	27877c 27908 27939		27879c 27911.5 □27930'	6d 5nd 2db
		L L	25920' 25946'	25884 25924' 25952'	1db ''2''			L	21939		27949' 28006	0
		L	25987	$\begin{bmatrix} 25980'\\ 25997' \end{bmatrix}$	1db			$_{ m H}^{ m L}$	∑ 28097c	2d	28033	0
	26323	L H H	26023 26318.1 3nd 26474 1d	26027	1d	28119 28158'	28109 28160	H L L	_28104c ·	3d	28103 28127 F28156.4c	1d 0 10vs
$\begin{bmatrix} 26505' \\ 26550' \end{bmatrix}$	$\begin{bmatrix} 26493' \\ 26536' \end{bmatrix}$	H H	$\begin{bmatrix} 26495c & 1d \\ 26530c & 2db \end{bmatrix}$	□ 26525'	0	28180'	28100	н		0	_28160.8c	7vs
		н	26554 3d	26538'		28200'	F28197'	н		4d	28196	0
	26575'	L H HL	26576.3 9nd ⊏ 26585.9c 10nd	26565.8 26575.4 26583.8	1nd 3nd 2s	_28226'	L28214'	H ? ?	28210c 28223.4 28230.1	4d	28209 28224.9 28231.5	0 1vs 1vs
] [_] 26604′	26598	H H H	26597.3c 10nd 26610 10d	26596.6 26609.0	9nd 7s	28261	28263	· L	28263		28256c 28264c	2d 9d
26640'	26615 _26633c	H L	26617 10d 26631	26619.0 26629.7	8s 10s			L L	28296 28330	, ,	28298 28330	3vd 3d
26662	26653		26650	$ \begin{bmatrix} 26648.5c \\ 26654.4c \\ 26664.1 \end{bmatrix} $	10nd 10nd 2s			H H H	28601.7	1nd 1nd 1d		
26670'	26675	Ľ L	26673	$26673.8 \\ 26684$	10se "2" 1d			Ĥ H	L28630c 28643.3	1d 4s		
26698'	26694 26718	H L	$\Gamma^{26692}{26716.9c}$ 9d	26691.9 26718.3	$\frac{3nd}{10s}$	$\begin{bmatrix} 28650'\\ 28672' \end{bmatrix}$	$28651 \\ 28677$	3	28654.4 28674.4		28654.7 28675.0	8vs 10vs
26735'	26746	L L L	_26723.8c _26735.8c _26746.3c	$26725.5 \\ 26737.4 \\ 26747$	7s 8s 9d	28800'	28803	? H ?	28685.6 28794 visible	9d	$28685.4 \\ 28792.0 \\ 28803.1$	4vs 2nd 1nd
_26770′	$\begin{bmatrix} 26759' \\ 26777' \end{bmatrix}$	Ľ L	26770c 26782'	26772 26782	6d 2d	_28830'		Ĺ	28818.2		28818.7 28832.2	9nd 1nd
	26795'	$_{\rm L}^{\rm L}$	□ 26802c	26794 ²⁶⁸⁰³ c	1d 5d ''2''		28848' Too	Ľ?	^{28842'} Too		28843.5 28857.0	1nd 8s
	26815 ′	$_{\rm L}^{\rm L}$	<u>26815'</u> 26826'		5d 5d	1-28933'	_ faint		_ faint		28882 28901.7 ⊏28928'	2vd 7s b
26844'	$\begin{bmatrix} 26839' \\ 26855' \end{bmatrix}$	L L	_26842c 26854	26842.0 26854	5nd 6d	_28973'					L28947' 28963	d
-26873' 26900	26875 26900	L L	26873 26897	26875 ⊤ 26897c	3d 7d "2"	Too faint					29003 29019 29058.3	d d
	26915'	$_{\rm L}^{\rm L}$	26921	L26911' 26922 26934	5d 0						29058.3 29080 29100.0	nd d ''2 nd
26943'	_26951'	L L	26944	26946 26963	6d 0						29172 29192	d d
	$\begin{bmatrix} 26997' \\ 27017' \end{bmatrix}$	$_{\rm L}^{\rm L}$	26983 27008	26983 27009	2d 3d						29250 29274 29334	d d d
	L2/01/	L L	27073 	27075 27166	1vd 1d						29352 29525	d d
			27178'								29554.6 29582.6	nd nd

TABLE I.—Continued.

thereabout is so complex as to make it difficult to determine with which low temperature line a given satellite must be placed. Consequently, definite values for these higher levels cannot be assigned. Two very hazy bands between 23,700 and 23,800, making their first appearance at room temperature, may indicate levels over 250 cm^{-1} from the normal state, but one has to be careful in accepting too readily faint bands obtained only at high temperatures, since then there is a tendency for decomposition to occur upon absorption of the intense light beam. These particular bands, however, are not directly in positions occupied by intense sulfate bands, which would be the most probable results of decomposition. No other ethylsulfate bands offer supporting evidence for these relatively high lower levels.

Tables II and III give the evidence concerning the two levels at 55 and 65 cm⁻¹. Nearly all the lines agree within what we consider to be the accuracy in each case. The averages of the best values at the two temperatures indicate the separations 54.6 and 65.0 at 20° K and 53.2 and 62.8 at 78°. The mean position of the two excited levels is accordingly 59.8 at 20° and 58.8 at 78°. It can be estimated that the corresponding mean positions at the other temperatures are about 56 at 169° and 52 at room temperature.

Comparison with the measurements of Freed and Harwell⁷ on the absorption of samarium ethylsulfate in the limited region of the violet where that is possible shows considerable discrepancies. Aside from a shift toward longer wave-lengths in their values which is several times our possible error, we are inclined to attribute most of the differences to a lack of sufficient dispersion and resolving power in the instruments available to the other authors. We were unable to locate a level at 12 cm⁻¹. The

⁷ Freed and Harwell, Proc. Amsterdam Acad. Sci. **35**, 979 (1932).

Low temp. line	Satellit		Satellit	
$\nu \mathrm{cm}^{-1}$	ν cm ^{−1}	$\Delta \nu_{\mathbf{A}}$	ν cm ⁻¹	$\Delta \nu_{\mathbf{E}}$
17850.2	17795.6	54.6	17785.0	65.2
(17949)			17885	64
18878.1	18824.7	53.4	18814.2	63.9
20019.4	19964	55	19954.1	65.3
20026.0	19971.6	54.4		
20039.9	19985.3	54.6	19974.5	65.4
20475.7			20410.6	65.1
20526			20462	64
20724.6	20669.0	55.6	•	
20983	20926	57		
21004	20949	55	20938	66
21551	21497	54	•	
21577	21520	57		
22548.7	22495	54		
22573.2	22517.8	55.4		
22755.9			22690	66
23992.3	23937.5	54.8	23926.9	65.4
24027.6	23973.0	54.6	23962.5	65.
24572.7	2071010		24507.5	65.3
26629.7	26575.4	54.3		
(26651.4)	26596.6	54.8		
26673.8	26619.0	54.8	26609.0	64.8
26747	26691.9	55		•
27329.5	27275.2	54.3		
27334.4	27279.7	54.7		
27534	27480	54		
28156.4	28103	53		
28857.0	28803.1	53.9	28792.0	65.

TABLE II. Prominent "low temperature" lines and their "high temperature" satellites (20°K).

 TABLE III. Prominent "low temperature" lines and their

 "high temperature" satellites (78°K).

Low temp. line $\nu \text{ cm}^{-1}$	Satellit $\nu \text{ cm}^{-1}$	te A $\Delta \nu_{\mathbf{A}}$	Satellit $\nu \text{ cm}^{-1}$	te B $\Delta \nu_{\rm B}$
17453			17390	63
17849.5	17796.0	53.5	17786.8	62.7
17907	. 17854	53	1	0
17943			17880	63
17950			17888	62
18876.9	18825.0	51.9	18816.0	60.9
20019.4	19965	54	19957.0	62.4
20024.5	19971	54	1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
20101	20046	55		
20117	20063	54		
20474	20000	01	20411.9	62
20526			20463	63
20722	20667	55	20100	00
21552	21594	58		
21579	21522	57		
22110.9	22059.2	51.7	22049.1	61.8
22165.7	22009.2	51.7	22100.6	65.1
22534.5	22479	56	22100.0	05.1
22547.5	22495	53		
22573.8	22517.7	56.1		
22755	22317.7	30.1	22692	63
24261			24197	64
25723	25669.4	54	25659.7	63
26631	26576.3	55	23039.7	03
26650	26597.3	53 53	26685.9	64
26673	26597.5	55 56	20085.9	04
26746.3	26692	50 54		
27328.8	27278		07067	62
27358.7		51	27267	02
27358.7 28157	27305.7	53.0		
	28104	53	00100	~
28263	28210	53	28199	64
28654.4	28601.7	52.7	28590.7	63.7
28674.4	28622	52		

() indicates center of two strong lines.

 10 cm^{-1} interval between the 55 and 65 levels causes the only frequent separation of that order, but it obviously cannot be related to any really basic levels. We agree upon the existence of the 60 cm^{-1} level but find it double. We cannot confirm the higher levels suggested by Freed and Harwell, though it is not possible to deny them positively. The fact that they have found a level at about 160 cm^{-1} and that we have discovered the most important low excited level of samarium sulfate to be at such a separation might indicate that their crystal had partly decomposed. In several of our plates decomposition to the sulfate is indicated very clearly by the appearance of some of the stronger sulfate lines. However, we were careful in obtaining the photographs upon which this report is based to use only fresh and undecomposed material each time. None of the strongest sulfate lines were observed after such precautions.

As noted before, the ethylsulfate produces the best example studied so far of the "hexagonal" type of spectrum, first introduced by the bromate. The bromate, however, had a particularly peculiar behavior at low temperatures, and because of that and other factors tending to increase the complexity, the expected greater simplicity of spectrum was not quite so marked as might have been desired. The ethylsulfate is more satisfactory in this respect. In many places components of doublets can be observed to have approached each other and small groups of lines to have coalesced.

THE PERCHLORATE AND IODIDE SPECTRA

At this point mention may be made of two other salts which at first glance seem to have the spectrum of the hexagonal type. Their most important low-lying levels are closer together than are those of the "monoclinic" spectra as exemplified by that of the chloride.

These two new salts are the perchlorate and iodide, each prepared by dissolving the oxide in the proper acid and crystallizing the salt from the resulting solution. The perchlorate forms what appears to be a glass-like solid but under closer examination seems to be an interlocking network of fine crystals. The water of crystallization is unknown, and indeed its great tendency to take up water from the air would make it difficult to determine any definite composition. The iodide crystals are known to contain nine molecules of water per molecule of salt and under microscopic examination appear to be hexagonal, though again the hygroscopic nature of the compound makes prolonged and thorough examination difficult.

We have not attempted to make a complete study of these salts, but examination of photographs of the spectra absorbed at 78°K has disclosed the most important levels. In such a study relative position and intensity, as well as appropriate separation, of pairs of neighboring lines are used to determine the levels. In the perchlorate many satellites occur at about 104 cm⁻¹ from stronger lines, while with the iodide a separation of 90 cm⁻¹ is most frequently observed. Other levels at 160 for the perchlorate and 107 for the iodide are indicated. Tables IV and V give the best evidence.

The positions of the multiplets are interesting. The iodide lines are displaced to longer wavelengths than the corresponding chloride multiplets, as are also lines of other hexagonal spectra to a greater extent. The perchlorate positions are about those of the chloride. This last fact along with absence of noticeably greater simplicity of spectrum and the existence of the 160 cm⁻¹ level would indicate that the perchlorate has not a hexagonal spectrum but an intermediate type with definite leanings in the monoclinic direction. The iodide, too, shows an intermediate character, but its spectrum is more

Low temp. line $\nu \text{ cm}^{-1}$ Satellite A $\nu \text{ cm}^{-1} \qquad \Delta \nu_A$ Satellite B $\nu \text{ cm}^{-1} \quad \Delta \nu_{\mathbf{B}}$ 18037 17933 104 17933 18821 18842 19908 19983 20036 18925 18945 20011 18784 161 104 104 103 103 105 19851 160 2008820138 102 105 20168 20063 103 104 104 104 20449 20488 20005 20345 20384 20519 20415 20705 20600 105 105 105 104 105 22166 22061 22002 164 22103 22136 22241

TABLE IV. Samarium perchlorate satellites $(78^{\circ}K)$.

TABLE V. Samarium iodide satellites $(78^{\circ}K)$.

Low temp. line	Satelli	ite A	Satellite B		
$\nu \text{ cm}^{-1}$	$\nu \mathrm{cm}^{-1}$	$\Delta \nu_{\mathbf{A}}$	$\nu \text{ cm}^{-1}$	$\Delta \nu_{\mathbf{B}}$	
17799	17709	90			
17859	17769	90	17752	107	
18893			18787	106	
19964	19874	90	19857	107	
20001	19910	91	19892	109	
20562	20471	91			
21572	21482	90			
21606	21516	90			
22197	22107	90			
22414	22323	91			
23950	23859	91	· .		

nearly the hexagonal type. The terms "hexagonal" and "monoclinic" in this connection signify simply greater and less symmetry, respectively, about the samarium ion in the crystal environment.