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It is shown both theoretically and by examination of the
Leiden experimental data on CeF3 and tysonite that in
rare earth compounds the Verdet constant U should
exhibit the same dependence upon temperature as does
the magnetic susceptibility x, even when Curie's law is not
obeyed. In consequence of the similarity in. the mode of
variation with temperature for V and x, existing data on
the temperature variation of x can be considerably en-
hanced by drawing upon the Faraday measurements of
Becquerel and de Haas. In particular, information con-
cerning the y's for individual crystallographic axes thus
becomes available in tysonite and the tests of calculations
of the susceptibility with crystalline potentials become

correspondingly severe. The triclinic fiel proposed by
Kramers for tysonite does not appear to account for the
behavior of individual principal susceptibilities, although
adequate for the mean characteristic of a crystal powder.
It is shown that somewhat better agreement with experi-
ment can be achieved by assuming tentatively that the
local field has rhombic symmetry, with three possible
orientations for the rhombic axes differing from each
other by 120', so that all told the crystal has the desired
hexagonal symmetry. Such staggered rhombic fields are
compatible with Oftedal's x-ray analysis of the crystallo-
graphic structure of tysonite, except that the deviations of
the fields from axial character seem rather large.

INTRQDUcTIQN

HE well-known measurements on the
Faraday effect of paramagnetic salts at

low temperatures, made at Leiden by Becquerel
and de Haas, ' are valuable as an alternative
means of determining effective magneton numbers
and other magnetic properties usually found from
experiments on suceptibilities. Hitherto only the
saturation properties of the magnetic rotation
appear to have been generally' correlated with
susceptibility. It is the purpose of the present
paper to show, both by theory and by calculation
from experimental data that, under certain
conditions, the temperature variation of the
Verdet constant U (rotation per unit length,
divided by field strength) is, apart from an
additive constant, the same as that of the
magnetic susceptibility X. Then

' Jean Becquerel and W. J. de Haas, Proc, Amsterdam
Acad. 32, 523 (1929);J. Becquerel and W. J.de Haas, ibid.
32, 536, 578, 590, 733, 874, 913, 926, 937 (1929-30); or
Leideri Communications, Nos. 191, 193, 199, 211.

2 It was mentioned long ago by Becquerel, and some-
what later independently by Ladenburg, that U and x are
both often linear in 1/T, in which case Eq. (1) is obviously
valid. Our emphasis, however, is on the applicability of (1)
in the general case that Curie's law is not obeyed and it is
primarily in this non-linear case that we 6nd (1) particu-
larly useful,

where E is a constant independent of tempera-
ture. Becquerel and Kramers confined' their
analysis to temperatures so low that they could
take %=0, and appear to have always regarded
A as an undetermined function of the temper-
ature, so that they could only utilize relations
of the form

V(II2i Ti)IV(+~» Ti) x(~~» T&)lx(~~» Ti)~ (2)

whereas we propose to show that it is often
allowable to take

V(H2, T2) Ex(H2, Tg)—

V(Hi, Ti) —X x(Hi, Ti)
(3)

'H. A. Kramers, Proc. Amsterdam Acad. 32, 1176, 33,
959 (1929—30); H. A. Kramers and J. Becquerel, ibid. 32,
1190 (1929); or Leiden Communications 204 and supple-
ment 68,

Here EI&, II2 denote two arbitrary field strengths,
and T~, T2 two temperatures. As compared with

(2), Eq. (3) greatly enhances the utility of the
Faraday data, for (2) is of no value unless the
field H is so great and the temperature so low as
to permit observation of the saturation effect
x(H, Ti)/y(O, Ti).
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1. THEQRY FQR RARE EARTH IQNs

The Verdet constant V for light of frequency v is given by the expression'

y=(4~ v't3/IIca)Z„„.; r(n'j'm'; num)[P, (n'j'm')Pv j e
where

(4)

It —+/g e s'aim—lk & r(nj''m'; njm) = 1/[v' —v(nj''m', njm)'). (5)

The matrix elements of the x component of electric moment are denoted by P,(n'j'm'; njm) etc.
To avoid excessive explicit printing of these elements, we find it convenient to introduce the
abbreviation

[P,(n'j'm')P„f„„.= i[P,(njm; n'j'm') P„(n'j'm', nj m") P„(n—jm; n'j'm')P, (n'j'm', njm")]. (6)

The direction of the magnetic field IV we take to be the s axis. The indices j and m denote respectively
the inner and magnetic quantum numbers, while n signifies all quantum numbers other than j, m.
The effect of n and j on the energy TV is supposed large compared to kT. This supposition is war-
ranted for all the rare earths except Sm, Eu, to which elements Eqs. (1) and (3) are consequently
not applicable. It permits us to neglect, as is usual, the part of the Zeeman effect arising from elements
non-diagonal in j.

If we disregard modulation of frequencies by the magnetic field we may set

v(nj m; nj'm') = v(nj; n'j'), r(n'j'm'; njm) = r(n j;nj) (&)

Actually this modulation is not negligible and gives rise to well-known, so-called "diamagnetic"
terms, which have been calculated by Kuhn, Rosenfeld' and others. As long as II is the only external
field, these terms are independent of T and unimportant at low temperatures. The Kronig-Honl
formulas for Zeeman components yield relations of the form'

[P.(n'j'm')Pv] "=m8 ""C.;,
where C„;depends on n, j but not on nz.

The paramagnetic susceptibility is

y = (BgP/II) Z„me (9)

with the understanding that W„; is inclusive of Zeeman energy. Here g is Lande's factor, and P
is the Bohr magneton he/4~me. If we substitute (7) and (8) in (4), then the terms in (4) corresponding
to every value of n, j have the same dependence on T and II as does (9), except for a constant pro-
portional factor and consequently (1) is proved, with so far %=0. (The dependence on II is mainly
implicit, through W; .)

Introduction of a Crystalline Field. The preceding argument is essentially the same as Rosenfelds',
but now we must go further, and insert a crystalline field, of the type treated by Bethe, ~ Kramers, '
Penney, ' Schlapp' and Van Vleck. ' This complication is necessary for it is precisely what makes the
temperature variation complex and interesting. The Hamiltonian function will cease to be diagonal
in the original, equatorial system of representation. Instead, to diagonalize the crystalline plus
Zeeman energy, one must make a canonical transformation to a new system, symbolized by indices
j*, m*. We shall assume that the crystalline potential may be considered diagonal in n, . This is
doubtless a good approximation, for any perturbations due to non-diagonal elements in n are of the
unimportant, high-frequency type. We shall also assume that in the ground state the non-diagonal
elements of this potential in j can be disregarded, as here the Stark effect is smaller and the spin

4 H. A. Kramers, Proc. Amsterdam Acad. 33, 959 {1930);
R. Serber, Phys. Rev. 41, 489 (1932).' W. Kuhn, Math. Phys. Comm. Dan. Acad. vii, 12, 11
(1926); L. Rosenfeld, Zeits. f. Physik 57, 835 (1930).

Cf. L. Rosenfeld, Zeits. f. Physik 5'7, 838—839 (1930).

~ H. Bethe, Ann. der Physik 3, 133 (1929).
'W. G. Penney and R. Schlapp, Phys. Rev. 41, 194

(1932);R. Schlapp and W. G. Penney, ibid. 42, 666 (1932).' J. H. Van Vleck, The Theory of Electric and Magnetic
Susceptibilities, Chap. X&.
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multiplets wider than for the excited states. The new index m* may, in a certain sense, still be
regarded as a spatial quantum number but it ceases to have the usual axial significance of quantizing
a component of angular momentum. For example, m* will be nearly a "cubic" rather than equatorial
quantum number if the external field is of cubic symmetry except for the magnetic portion II. Under
our hypotheses, the transformation matrix from the old to new system is of the form

S(nj'm; nj *m*)= 8„"*S„(jm;j *m~), S(nj m; n*j "m*)= 8 "'&'*S(m; m*), (10)

and the susceptibility is
x= (BI,P/II)Z„,„mtS(m; m*) ~'e ~"~ "r,

with, of course, the understanding that now the letter m* rather than m is to be used in con-
nection with the definition of B. The Verdet constant is still given by (4) except that m*, j*', m*'

everywhere replace m, j', m'. lf it is allowable to neglect the effect of m*, j*', m*' on the frequency,
and thus set

r(n'j*' m*', njm*) = r(n'j'; nj), (12)

then one can take v outside the summations over m*, j*', m*'. %hen this simplification is possible,
use can be made of the relation

Z;, * [p,(n' j*' m*')p„j~ =Z;, [p,(nj''m') p„]
~
S(m; m*) t', (13)

which is essentially a special case of the principle of spectroscopic stability and is readily established
from the orthogonality properties of the transformation (10) and the occurrence of the Kronecker
8 factor in (8). In virtue of (12), (13) and (8), the new version of (4) becomes

V=(4~'~'3/IIeh)Z„; f C„;r(nj''; nj) Z„,„m~S(m;m*) ~'e ~"~' '~"r. (14)

Eq. (14) differs from (11) only by factors independent of H, T, and so (1) retains its validity, with
E=0 as yet. The X term should, however, be added to allow for the well-known diamagnetic rotation
which arises from the modulation of the frequency factors, and also sometimes of the amplitude
factors, by the magnetic field. Besides diamagnetic contributions, the X term may be regarded as
including also the effect of the matrix elements of the magnetic moment which are non-diagonal in j.
This term is really independent of temperature only as long as the effect of the crystalline potential
is negligible, i.e. , as long as this potential is small compared with k'r. At low temperatures this
condition will not be fulfilled but then the paramagnetic rotation far overshadows the diamagnetic,
Hence, little harm is done if X is treated as independent of temperature.

The crux of the whole matter is whether (12)
is a legitimate approximation. Naturally (12) is
a much more severe restriction than (7), for the
dependence of v on m* is due to crystalline Stark
as well as Zeeman effect and is so much larger
than the purely Zeeman dependence discarded in
assuming P). We shall consider specifically the
case of Ce+++. Here most of the rotation appears
to be due to a band at 2500A, which, as first
noted by Freed, ' is doubtless to be attributed

"S.Freed, Phys. Rev. 38, 2122 (1931);It has often been
suggested by spectroscopists that the ground state of
Ce+++ is perhaps a 5d rather than 4f state. Such an
alternative, however, seems entirely incompatible with the
conformity of the susceptibility of cerium salts to Hund's
formula at high temperatures. The spectroscopic evidence

to the transition 4f 5d. The St—ark effect for the
ground level 4f cannot amount to over 1000 cm '
or so, as otherwise the susceptibility would not
conform as well as it does to Hund's formula.

favoring 5d is an extrapolation from the spectrum of Cs I
and Ba II (cf. Gibbs and White, Phys. Rev. 33, 157, 1929).
Such an extrapolation, however, is not really applicable,
because the 4f orbit is of a different nature in Ce than in
Ba, as in Ce+++ it is situated in the interior rather than
exterior of the atom. In other words an extrapolation
cannot be used to compare states located in diff'erent
potential valleys. The theoretical calculations of Wu
(Phys. Rev. 44, 727 (1933) are not open to this objection,
and still place 5d below 4f but the potential field utilized by
Wu may not be accurate enough to make this conclusion
reliable. On the other hand, very recently Roberts, Wal-
lace and Pierce (Phil. Mag. 17, 934, 1934) have found that
the magnetic rotary dispension of aqueous solution of
Ce2(SO4)3 favors a 4f rather than Sd ground level for the
Ce+++ ion.
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The Stark splitting for the 5d level can be
somewhat greater, as this is an excited state.
Unfortunately the series limit for the spectro-
scopic terms of Ce+++ is unknown but this may
be approximately located from the known"
separation of the Sd and 6d terms if we assume
that these terms conform approximately to the
Rydberg formula 16'j(n+ 6)'. This gives
6= —2.1 for d terms, making 5d=2l5, 000 cm '
and hence 4f= 255,000 cm '. Thus there is little
relative difference between the firmness of
binding of the 4f and Sd orbits. The Stark
splitting should be somewhat greater, though,
for a 5d than for a 4f orbit of equal firmness, due
to the greater eccentricity of 5d. It seems
plausible that the crystalline Stark effect for 5d
does not greatly exceed 10' cm ' in magnitude.
Since 4f 5d is—about 40,000 cm ', it is seen that
(12) is approximately true if this is the case.
Strong experimental evidence that the Stark
effect for Sd is not excessive is furnished by the
mere existence of absorption bands for Ce+++

at approximately 2500A in a variety of com-
pounds. Freed, for instance, finds that the
position of the band does not differ by more
than 100A or so, for the ethyl sulphate and for
the hydrated chloride of cerium.

The absorption observed by Freed for Ce+++

near 2500A is diffuse rather than discrete in

structure. As he mentions, this is probably
because of the complicated modulations of the 5d
state due to interaction with the inter-atomic
vibrations in the crystal. Such interaction is, of
course, not covered by the Bethe-Kramers

, method of static crystalline potentials. The am-

plitudes of the inter-atomic vibrations, of
course, vary with temperature and this will

mean that the absorption frequencies v are to
a certain extent a function of the temperature.
It is partly for this cause that Kramers regards
the proportionality factor A in (1) as an unde-
termined function of the temperature. However,
we believe that any variation of A due to this
cause is a relatively unimportant factor, par-
ticularly below room temperatures. This, for one
thing, is indicated by the fact that Freed finds
no great shift of absorption frequency with
temperature. He finds that the absorption near

"J.S. Badami, Proc. Phys. Soc. London 43, 53 (1931).

2500A can usually be divided into three com-
ponent bands, occurring at roughly 2575, 2450,
and 2300A. Possibly the three components are
to be correlated with different Stark and spin
components of the 5d state, each component
being diffuse because of spread due to vibra-
tional modulation. If so, the Stark splitting of
Sd is of about the order estimated in the pre-
ceding paragraph.

Besides the above rotation due to 4f—Sd, we must also
in Ce+++ consider that due to 4f—5g. (The higher members
4f—md, m =6, 7 ~ and 4f—mg, ns =6, 7 . ~ are definitely
less important, as the higher d members have much smaller
~ factors than that for the first member Sd, while the
higher g members have much smaller amplitudes than
for Sg.) The Sg state is probably closely hydrogenic and
then 4f—5g is about 185,000 cm '. The Stark effect for
Sg is undoubtedly much larger than for Sd, perhaps of
the order 104 cm '. Even with this estimate, however,
Eq. (12) is still approximately valid as applied to the
transition to Sg, thanks to the large value of the frequency
4f—Sg. The sign of the observed Faraday effect in solutions
containing cerium shows quite definitely that 4f—Sd is a
much more potent line for the Faraday effect than 4f—5g.'~

This fact presents an interesting theoretical problem.
The magnitude of v(4f; 5d) is, to be sure, much greater
than that of ~(4f; 5g). The ratio of the two 7's is, for
instance, about 30 if the incident light has a wave-length
of 5000A. However, the amplitude a(4f; 5g) is much
greater than a(4f; Sd), in fact over ten times greater if one
makes a calculation with hydrogenic wave functions. "This
is because the bulk of the 4f—g absorption intensity is
concentrated in the first line 4f—Sg, whereas 4f—Sd
consumes only a small part of the 4f—d absorption.
The departures from hydrogenic conditions must thus be
such as to make a(4f; Sd)'/a(4f; Sg)')1/30 rather than
&1/100. That such departures may be large is clear from
the fact that the 4f orbits in the rare earths occupy inner
rather than peripheral regions of the atom. In Ce+++, in
particular, the 4f state has an effective quantum number
n*=2.6 and so is bound over twice as firmly as one would
calculate for a hydrogen-like atom with Z =4. That
actually the amplitude for 4f—Sd is more important
relative to other amplitudes emanating from 4f than in a
hydrogen-like atom is shown by the following considera-
tion. The squares of the amplitudes emanating from a
given state sum to the mean square radius of this state.
Since r~n*' the mean square radius for 4f differs from the
hydrogenic value by a factor roughly (2.6/4)4=0. 2. On
the other hand, Gorter's" measurements on the absolute
amount of Faraday rotation indicate that the amplitude
for 4f—Sd has approximately the hydrogenic value. Hence
the relative importance of this amplitude is increased by

» C. J, Gorter, Phys. Zeits. 34, 238 (1933); Roberts,
Wallace and Pierce, reference 10.

"Cf. calculations of hydrogenic amplitudes by Slack,
reported by L. R. Maxwell, Phys. Rev. 38 1685 (1931).
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a factor 5'. On the other hand, a corresponding increase
for 4f—Sg is impossible and this amplitude must be about
5 & the hydrogenic value, since otherwise the squares of
the amplitudes for 4f—g, already due almost entirely to
4f Sg,—would aum to more than the mean value of r'
for 4f

Salts of the iron group are not in general
amenable to any of the preceding theory, as here
the crystalline potential is large compared to the
spin-orbit energy, and produces a large electric
Paschen-Back eRect on the ground state. J. H.
Van Vleck and W. G. Penney'4 will show else-
where that a possible exception is furnished by
manganous and ferric compounds for which the
crystalline fields have cubic symmetry. In such
ions the ground state is 'S and the important
absorption lines are 'S—'I'. Cubic fields do not
decompose either S or I' states, except for spin-
orbit complications. Thus in cubic ferric or
manganous crystals, V and x are possibly
sometimes proportional.

2. EXPERIMENTAL CONFIRMATION IN

TYsoNITE

Tysonite is the rare earth mineral for which
the most comprehensive rotational data are
available at present. It is a mixed crystal (La,
Ce, Nd+Pr, Fa). Cerium is known to be re-
sponsible for most of the rotation, probably
because of the coniparatively low value of the
frequency 4f Sd in Ce—+++ (cf. section 1). To
make a proper test of (1), one must compare the
Verdet constant of tysonite with the suscepti-
bility of CeF& rather than of tysonite, since the
susceptibility of tysonite arises only partially
from Ce. The x-ray measurements of Oftedal"
reveal that tysonite and CeF3 are similar in

crystal structure and dimensions, except, of
course, for the variable cation (La, Ce, Nd, Pr)
in the former. Hence the crystalline fields sur-
rounding Ce+++ are nearly similar in the two
materials.

The suceptibility of CeF3 crystal powder has
been measured by de Haas and Gorter. The
Verdet constant V perpendicular to the crystal

"J.H. Van Vleck and W. G. Penney, Phil. Mag. 1'7, 961
(1934)."I.Oftedal, Zeits. f. physik. Chemic BS, 272 (1929); 13,
190 (1931).

~6 W. J.de Haas and C. J. Gorter, Proc. Amst. Acad. Sci.
33, 349 (1930) (or Leiden Communication 210c).

(i.e. , optic) axis has been determined recently by
Becquerel, ' while that parallel to this axis has
been available for some time. Since tysonite has
hexagonal symmetry, the Verdet constant should
have the same value for all directions orthog-
onal to the crystal axis, except for saturation
effects which will be deferred until sections 3
and 6. For weak fields, the mean Uerdet con-
stant analogous to that for a powder equals
(V~~+2V~)/3. The comparison of susceptibility
with rotation is given in Table I, along with the

TABLE I. Comparison of susceptibilz'ty with rotation.

Temper-
ature

293 K
77.5'-
20 4o
144

Tysonite Cera
V((X10' V&X10' yX10'

—6.17 —5.11—22, 17 —12.84—73.3 —24.4—101,9 —30.3

11.2
29.3
75.8

100.8

gX10'
~(V( (+2V~)

—2.05—1.84—1.86—1.86

gX1(P
k(V((+2 V~)—.67X10 3

—1.83—1.76—1.83—1.84

underlying experimental data. " The constancy
of the ratio in the next to last column is a test
of Eq. (1) with E=O. The deviation at the
highest temperature might be expected, since
here the diamagnetic correction X will be most
important. In the last column, the Verdet
constant is modified by subtraction of a term
X= 0.67 && 10 ' independent of T. This value of
X has been so determined as to make the ratio
in the last column have the same value at 20.4'K
as at 293 K.

The slight variation of the entries in either of
the last two columns is gratifying when it is
remembered that the experimental determination
of V is exceedingly difficult and that tysonite
and CeF3 are, after all, not exactly identica1
crystals. The approximate validity of (1) enables
us to translate measurements of Verdet constants

"Just as the present paper was completed, an article
appeared by J. Becquerel, W. J. de Haas and J. van den
Handel, Physica 1, 383 (1934), giving a value of V~ ~

at
293'K 4.6% higher than that shown in Table I. This
reduces —(x/V)10' from 2.05 to 2.01. Unfortunately, new
measurements on the perpendicular component are not
available but if they should increase Vs. in the same ratio,
the value of —(y/ V)10' at 293' would be lowered from 2.05
to 1.96. The corresponding change at 77'K is only slight,
vis. , from 1.84 to 1.82. At temperatures below 20'K we
have always utilized the new measurements on the parallel
component, as these were communicated to us by Professor
Becquerel in advance of publication. We wish to take this
opportunity of expressing our indebtedness to Professor
Becquerel for this material. Use of the new data does not
affect our points on Fig. 2 at 293' if we assume that
Becquerel's old value for the anisotropy V~/V~

~
is still

correct.
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into determinations of magnetic susceptibility
and so greatly enriches our magnetic data, since
the V of tysonite, unlike the x of CeF3, has been
determined for individual crystallographic axes.

It is probably better to take th diamagnetic
correction X to be negligible, i.e. , of order 10 ',
rather than to be 0,67)&10 ', for the following
reasons. First, in cerium ethyl sulphate, which
should presumably be comparable with tysonite
as regards the rough order of magnitude of K,
Becquerel and de Haas" have presented fairly
convincing evidence that X is only 3X10 '.
Second, it is hard to understand how y/ V could
be lower at 77'K than at 20' and 293', as would

be required if X=0.67 &(10 '. On the other hand,
the anomaly in x/ U at room temperatures which
is concomitant to taking Z= 0 might be blamed
on a shift of absorption centers with temperature
or something of the kind. Hence in the following
work we shall not use the value of V at 293'
except that we shall make the reasonable assump-
tion that the anisotropy in x at 293'K is the
same as that in V. This is necessary in order to
have data available on individual axes at room
temperatures and is tantamount to raising the
values of V at 293' in the ratio 2.05/1. 86. If,
instead, one preferred to take X=0.67X10 ',
the only material change would be to raise the
values of n& slightly at 77"K as shown by the
solid circles in Fig. 2.

3. EVIDENCE FOR A DEMAGNETIZING MOLECULAR

FIELD IN TYsoNITE

Unless the crystalline field has unusual sym-
n;etry, the Boltzmann factor is negligible at low

temperatures for all but one pair of levels in an

ion with an odd number of electrons such as
Ce+++. Such a pair we shall call a Kramers
doublet. Because of Kramers' theorem, " the
components of a doublet separate only in virtue
of the magnetic field and have Zeeman energies
Wo& pPH (+H'). The susceptibility is given by
the expression

y= I/H= (XpP/H) tanh [pP(H yI')/kT]—
Im~(~; ~') I'

+»I —
I 2"&"+.&, , (-15)

H ) km(n', n)
"J.Becquerel and W. J. de Haas, addendum to supple-

ment 74 of the Leiden Communications.
» H. A. Kramers, Proc. Amsterdam Acad. 33.959 (1930).

where the matrix elements of the magnetic
moment in the direction of the field II are
denoted by m~(n; n') and n' always refers to
other doublets than the basic pair n. The term
involving the hyperbolic tangent originates with
Kramers and Becquerel' and is inclusive of the
correction for saturation. On the other hand, we
always neglect saturation in writing the second
term, which represents the contribution of the
high frequency elements. This is allowable, for
surely PH is small compared with the crystalline
Stark separation.

In writing Eq. (15) we have taken the
argument of the hyperbolic tangent to be
pP(H yI')/k—T rather than IJPH/kT, in order
to allow for the exchange effects which couple
together the spins of the various paramagnetic
ions. It is a well-known result of Heisenberg' s
theory of magnetism that these effects are
approximately equivalent to superposition of a
Weiss molecular field —yI' upon the applied
field II; so that the total effective field is II—pI',
where I' is the intensity of magnetization. The
prime is affixed to I to indicate that it refers to
the entire mixed crystal, rather than just to the
cerium ingredient. Some of the coupling between
the magnetic moments of the different ions may
be due to "orbital valence, " since the mutual
energy of two ions certainly depends on the
relative orientation of their orbital angular
momentum vectors. The orbital coupling is
likewise capable of description by a molecular
field in the first approximation. "Thus, strictly
speaking, —yI' represents the field arising from
both exchange and orbital coupling. The constant
of proportionality p turns out to be positive in
tysonite. This is the common sign behavior for
non-ferromagnetic bodies and means that the
molecular field has a demagnetizing effect, since
then II—pI'&II. In a crystal such as tysonite
the concentration of paramagnetic ions is, of
course, much greater than for the hydrated
sulphates. Hence it is not unreasonable that the
exchange correction should be appreciable in

"The subject of orbital coupling will be discussed more
fully in a future paper by the writer. Cf. also H. A. Kramers,
Physica 1, 182 (1934). It is to be clearly understood that
the exchange integrals themselves depend on the alignment
of the orbital angular momentum vectors; in fact this
dependence is perhaps the most important manifestation of
orbital coupling.
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tysonite though it is known to be negligible in

Gdm(SO4) ~8H20 even at 1.4'K."
In the discussion of magnetic data, it is often

convenient to use in place of the susceptibility
the effective Bohr magneton number defined by

(16)

The relation between V and x, established in the
preceding section, shows that in tysonite, n& is
then given in terms of the Verdet constant V
by the relation

ns "= —2.91 -V(T+ 6). (17)

2
Tl g

XX

ns' ——3p'+BT (20)

of T provided Eq. (15) is valid. The constant 8
equals 6k/P' times the sum in the second term
of (15).The linear relation (20) should hold up to
at least the temperature of liquid hydrogen but,
at still higher temperatures, more than one

"According to P. W'. Selwood, J. Am. Chem. Soc. 55,
4869 (1933), the value of d in GdCI3 is 14', This, however,
is not necessarily inconsistent with a 6 of only 0.29 in
tysonite as gadolinium has a much larger spin vector s.
Because only the component of spin along the total angular
momentum j is effective with wide multiplets, the relation
connecting 6 with the exchange integral J per electron
can be shown to be
6 = —2Jz(s j)'/3kj'= —Jz(s~+s+j'+j—P—l)'/6kj( j+1).
Here z is tQe number of paramagnetic neighbors possessed
by an ion. If this formula is used, and if J is the same in
tysoni&e as in GdC13, the value of 6 should be 88.2 times
larger for the latter than for the former. Actually J should
be larger in tysonite than in GdC13 because the Gd and
Cl ions are larger than those of Ce, F, respectively, and
because the greater nuclear charge of Gd than of Ce tends
to reduce the overlapping of the wave functions.

One must use in (16) and (17) only the values of
V and y appropriate to weak fields, where
saturation can be neglected. If there is no
saturation, we may replace the hyperbolic
tangent by its argument in (15), and also we

may consider the ratio of the intensity of mag-
netization to the effective field to be approx-
imately proportional to 1/T at temperatures
where the demagnetizing correction is appreci-
able. Hence

yI'/(H yI') = 6/T, —

where 6 is a proportionality constant, and so

H yI'=H/(1+AT—'). (19)

Thus the effective magneton number should be
a linear function

15 20 25

FIG. 1.Experimental values of the square of the effective
Bohr magneton number n& for tysonite at low tempera-
tures, obtained, from the data of Becquerel and de Haas by
means of Eq. (17).The crosses are for 6=0; the circles for
6 =0.29. The upper curve and corresponding points relate
to the parallel component; the lower to the perpendicular
component.

Kramers doublet becomes inhabited and then
(15) and (20) cease to be valid.

The values of ns' deduced with the aid of (17)
from Becquerel's data on the Verdet constants
of tysonite are shown in Fig. 1. It is seen that
with 6=0.29 there is the desired linearity (20)
but that if 2 = y= 0 there are pronounced devi-
ations from linearity. Hence the introduction of
the demagnetizing molecular field y has been
necessary in order to secure the proper variation
with temperature for small T. In drawing Fig. 1
we have been aided by a letter from Professor
Becquerel'~ informing us of new measurements
on V~I. He has independently concluded that
introduction of a demagnetizing field is necessary
to secure the proper linearity (20) at low tem-
peratures and finds that 0.29 is the best choice
for 6, which we hence adopt. Prior to his letter
we had obtained 6=0.17 on the basis of the
older data and less thorough examination of the
numerical fitting.

The determination of 6 for the perpendicular
component is less certain, because here the
experimental error is considerable. Note par-
ticularly the large divergence between the
points at 1..7'K. If the values for V at 14.3,
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20.3'K and the higher value for 1.7'K be
accepted as accurate, 6, is 0.62. This value is,
however, probably too high and in the absence
of more accurate measurements, we shall in the
following sections take 6 as having the same
value for the parallel and perpendicular com-
ponents. If this is done, it is seen that a fairly
good fit for the perpendicular components can
still be obtained if the straight line be drawn
slightly above some of the points and below
others, as shown by the circles in Fig. 1. If the
molecular field arises predominantly from ex-
change rather than orbital coupling, one may
take y ~ ~

= y~ inasmuch as the proportionality
constant p is independent of direction in
Heisenberg's theory. Since the left side of (18)
is approximately yI'/H the values of ~ for the
two axes should then obey the relation

'll/'s. XII/Xi~ (21)

where x'= I'/H refers to the total magnetic sus-
ceptibility of tysonite. Unfortunately, no infor-
mation is available concerning x~~'/x, ', since
the ratio of the Verdet constants for the two axes
supplies us only with the ratio x~~/x, for the
part x of the susceptibility due to the cerium
ions only. As cerium is only one of the para-
magnetic constituents of the mixed crystal
tysonite, there is no reason why x~~'/x, should
equal x»/x, . At helium temperatures, x~~/x, is
about 5 but it is not unlikely that x~~'/x„' is
smaller, since some of the other magnetic ingre-
dients may behave more isotropically than
cerium. Our choice unity for the ratio (21)
seems about as reasonable as any which can be
made at present, especially since Eq. (21)
ceases to be valid when one considers the effect of
directional valence on coupling between atoms. "

4. SATURATION EFFECTS IN TYSONITE

Instead of using Eq. (20) appropriate to weak
fields, one. can also deduce the numerical mag-
nitude of the effective magneton number ng= 3'p

"In terms of the vector model, the coupling energy
connecting two ions a, b has the form Z;, ~c;&j; jf,'
where j16, j2, j3 are the components of the angular
momentum of ion a along the three coordinate axes (cf.
Kramers, reference 20). A simple calculation shows that the
constant y of the molecular field is approximately pro-
portional to c;; if II is applied along the direction of axis i.
If we ignore orbital valence, as in Heisenberg's theory, then
a»=a&2=a», but actually the orbital eGects may make
a11/a22, etc. Then y~ ~

gy.&, and so (21) CeaSeS to be Valid.

at T= 0 from the curvature of the graph of the
rotation against field strength at a particular,
very low temperature. This other, independent
method based on saturation is that used by
Kramers and Becquerel. At helium temper-
atures, the second term of (15) is of negligible
importance, and the ratio of the rotations at
two different field strengths will fix p, even if
one assumes (2) instead of (3). Before one can
use (15) it is necessary to make the assumption
that the demagnetizing fi,eld —yI' is propor-
tional to the paramagnetic rotation p, so that

II—yI'= II—b p, (22)

where b is a constant. The value of 6 is then
connected with that of b by the relation

A=bp yP/k

if p denotes the rotation at infinite field
strengths, where the hyperbolic tangent may be
replaced by unity. The assumption (22) may not
entail serious error but certainly is not entirely
correct, since the Faraday rotation p arises
almost entirely from the cerium ions and so
represents, except for a constant factor, the
intensity of magnetization I of the cerium alone.
On the other hand the demagnetizing field is
proportional to the total intensity of magnet-
ization I' of the mixed crystal. There is no
reason why I' and I should be exactly the same
functions of II, but possibly the difference
between the two functions is not large.

If we assume (22) and that 6= 0.29, Becquerel
finds'~ that the value obtained from his latest
saturation curves is p= 1.288. The corresponding
value obtained from (17) and (20), i.e., from the
intercept in Fig. 1, is p, =1.18. The agreement
between the two methods is thus only moderate.
The estimate obtained from the saturation
effect is reduced to 1.22, thus removing a large
part of the discrepancy, if one makes the approx-
imation (19) rather than (22) in the argument
of the hyperbolic tangent even at high field
strengths. Eq. (22) would be an allowable
approximation if one assumed that most of the
magnetization of the mixed crystal arose from
ions which do not exhibit appreciable saturation
even at the highest field strength employed, so
that I' is a nearly linear function of H even
though I exhibits appreciable curvature, How-
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ever, it is hard .to see any reason why I' should
exhibit much less curvature than I, since the
other paramagnetic ions in the crystal, unless
they greatly outnumber the cerium ions, must
have approximately as great values of p and
hence as much curvature as the cerium if they
are to be important contributors to the mag-
netization.

In the case of the perpendicular component,
the situation is still less encouraging. In the first
place there is the difficulty that the experimental
data are self-contradictory, for the experimental
values of V depend even in weak fields on the
direction chosen for observation in the plane
perpendicular to the crystal axis. Any sort of
theory, " however, shows that such a variation
is incompatible with the hexagonal symmetry of
the crystal. (We shall later see, in section 6, that
there might be some variation with direction in
the saturation method but that this is too small
to be appreciable at the field strengths used. )
When we give experimental data or theoretical
calculations aimed to fit these data on the per-
pendicular component near T= 0 we shall always
give two values. The first of these is based on
measurements parallel to one of the diagonal
axes of the crystal. The second of these will be
inclosed in parentheses and is based on measure-
ments still perpendicular to the crystallographic
axis but at an angle of about 30' to the diagonal
axis. The first and second directions are equiva-
lent to horizontal and vertical axes in Fig. 3 of
section 6. The difference between the two sets of
measurements is perhaps due to crystalline flaws
or to the fact that Becquerel used two different
crystals. It disappears at hydrogen temperatures
and higher.

With 6=0.29, the value of p furnished by
the saturation method is 0.874 (0.726) while (17)
yields 0.523 (0.469). In connection with the
saturation procedure, it makes little difference
whether one uses (19) or (22), since in the per-
pendicular component only the beginnings of
saturation are observed. Part of the trouble may
easily be experimental error, since the saturation
curvature in the perpendicular direction is slight
and hence very difficult to determine. We shall
show in section 6 that the value of p obtained

"J.H. Van Vleck, Phys. Rev. 45, 115 (L) (1934).

by the saturation method is reduced to 0.780
(0.726), if all the cerium atoms do not have the
same crystallographic situations, in which case
Eq. (15) must be modified.

In testing various types of crystalline fields in
the next two sections, we shall use the values of
ns furnished by (17) rather than by the satu-
ration curvature, since the former appear to be
the more reliable. The discrepancy between the
two methods of determining n~ is inherent in the
existing data, and for the following reason cannot
possibly be imputed to our use of (1) (i.e. , cor-
relation of the temperature variation of x with
that of V) rather than of the less drastic con-
ventional hypothesis (2). Suppose that we ad-
mitted only (2) and assumed that saturation
methods were reliable. Then the effective
"powder" magneton number (p~~'+2@,') & would
be deduced from saturation to be 1.78 (1.65)
at 1.7'. On the other hand it is known from
susceptibility measurements that n& for CeF3
powder has already dropped to 1.52 at 14.48'K.
Now it is scarcely conceivable that the magneton
number should actually increase as one lowers
the temperature from 14.48' to 1.7'. In fact,
examination of Fig. 2 shows that any reasonable
sort of extrapolation of the direct experimental
measurements of susceptibilities, indicated by
crossed circles in Fig. 2, to very low temperatures
demands that n~ be about 1.4 for the powder
near T= 0. We thus appear forced to accept the
lower values of ns given by (17) in preference to
the greater values yielded by saturation.

Of course it is possible that the trouble may
lie in a real difference between CeF3 and tysonite
for our purposes. The constancy of the ratio
y/V in Table I makes it appear probable that
if the two materials are unlike, they manifest
approximately the same percentage difference
in their susceptibilities at all temperatures. If so,
our use of (17) may be regarded as a convenient
and allowable way to extend the data on CeF3
to individual axes and very low temperatures.
Our calculations in sections 5 and 6 would then
be for the crystalline potential of CeF3 rather
than of tysonite. Because of the qualitative
similarity of the two substances, our ensuing
conclusions concerning the relative merits of
the triclinic and staggered rhombic fields mould
also apply to tysonite.
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5. FAILURE OF A TRICLINIC FIELD TO REPRESENT
THE MEASUREMENTS IN TYSONITE

So far our discussion has consisted mostly in
establishing the proportionality between x and
V. We now propose to examine what crystalline
field will represent the observed behavior of y,
or equally well the related V. We thus enter
upon a subject whose broader aspects have been
developed by Kramers, ' Bethe, 7 Penney, s

Schlapp' and Van Vleck. ' The only attempt at
numerical calculations for tysonite has been
made by Kramers. '4 When we refer to his work,
we always mean his most recent paper'4 and
not his earlier articles' on tysonite which involved
the incorrect assumption that the multiplet
width structure is small compared to the
crystalline potential.

Tysonite is a hexagonal crystal, but this does
not mean that the field on an individual atom
possesses hexagonal symmetry. Instead the
hexagonal symmetry need be achieved only from
a macroscopic point of view. The x-ray measure-
ments of Oftedal" indicate that the fields acting
on individual atoms have nearly triclinic sym-
metry, i.e. , nearly a period of 120' around the
crystallographic axis. The simplest assumption,
and the one made by Kramers, '4 is that these
fields can be considered accurately triclinic.
This facilitates the calculations, for the off-
diagonal matrix elements of the crystalline
potential are then entirely of the form 63f= +3,
with none between 3II= 3/2, M = —3/2. Here 3'
denotes the magnetic quantum number associ-
ated with spatial quantization relative to the
crystallographic symmetry. The wave functions
belonging to the Stark levels are then of the
form

+mr= &4'w5/2+ (& & )'

+&IX (l ~ ) V&5/2 ~4%1/2i

+~nx= 4~a/~, (23)

where n is a constant and the fractional sub-
scripts relate to 2'. The two sign choices yield
the two components of a Krarners doublet.
Kramers gives the formula for the mean
corresponding to (23) and we need not repeat
it here. He does not explicitly isolate p~~,

'4 H, A. Kramers, Proc. Amsterdam Acad. 36, 1 (1933).
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FIG. 2. The square of the effective Bohr magneton
number as a function of temperature. The crossed circles
are experimental values deduced from Leiden susceptibility
measurements on CeF3 by means of (16) with 6=0.29,
while the plain circles Q give values obtained from the data
of Becquerel and de Haas on the magnetic rotation of
tysonite (with adjustment at 293'K mentioned in section
2). The solid circles ~ at 77'K are obtained by using
X=0.67 X 10 ' instead of X=0 in (1) and (17).The broken
lines are theoretical curves based on Kramers' triclinic
field, with constants chosen as in (25). The solid curves are
for the staggered rhombic field described in section 6. The
upper and lower curves refer, respectively, to directions
parallel and perpendicular to the optic axis. The middle
curve relates to the mean,

but this can be done without difficulty.
Kramers considered only the mean or powder

susceptibility of CeF3, which he shows can be
fitted quite well with the following choice of
constants

cP = 2/3, Wnr —Wz = 163 cm ',

W„—W, =4&&163 cm —'. (24)

(Here and elsewhere we take the lowest Stark
component as the origin of energy. ) When,
however, the proportionality between magnetic
susceptibility and rotation is used, the measure-
ments extend down to 1.5' rather than 14.3'K,
and especially, data for individual crystalline
axes become available. The test to be met by
the theory then becomes considerably more
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severe and it turns out that no wave functions
of the form (23) are adequate. It is possible, to
be sure, to represent the mean susceptibility over
the entire range 1.5 —293'K by modifying
slightly Kramers' choice of the constants as
follows

cP=O 644, S"xn —8'z= 139 crn ',

WI~ —W~=5.5+139 cm '. (25)

However, the susceptibilities for individual axes
are not then correctly represented as can be
seen from examination of the broken lines in
Fig. 2. Kramers notes that the powder sus-
ceptibility of CeF3 can be fitted by still another
choice of constants, which is similar to (24)
except that W&z, S"»I are interchanged. This or
any neighboring choice of constants, however,
gives even worse agreement on individual axes
than does (25). It would require that n& for the
parallel component reach a maximum at around
500—600'K and then decline as the temperature
is raised further.

This failure of purely tric1inic fields is not
surprising, for the following reason. If there is a
center of symmetry the terms of the crystalline
potential which yield matrix elements of the form
AM= ~3 arise, as Kramers shows, only from
Tesseral harmonics of even order which change
sign under reHection in the equatorial plane
(e.g. , T4', T6', etc.). Without such elements we
can only have n=0 or u= 1 in (23); i.e. , wave
functions of the same form as for a field of axial
symmetry. Furthermore, the calculation of the
susceptibility for a field of axial symmetry is
particularly simple, and one easily convinces

oneself that the data on the individual sus-
ceptibilities of tysonite are incapable of repre-
sentation by a field of axial symmetry: in fact
even the mean is fitted none too well. To give a
situation like (24), the matrix elements 63II= &3
must be quite important, and this in turn
demands large terms in the harmonic expansion
of the crystalline potential which change sign
under equatorial reHection. However, according
to the crystallographic structure tentatively
proposed by Oftedal, " there is a plane of sym-
metry passing through each atom perpendicular
to the crystallographic axis. If this is the case
and if there is triclinic symmetry, there can be
no such terms in the expansion of the potential
function. Oftedal himself mentions that the
crystallographic structure may be somewhat
distorted from the diagrams which he gives. In
fact, he even mentions the possibility that the
atoms do not have planes of symmetry in their
potential fields. This will be the case if the cor-
responding crystallographic planes "above" and
"below" a given atom are not equidistant.
However, one would expect any asymmetries of
this type to be small, so that it seems rather
unreasonable for surface harmonics which are
odd under equatorial reHection to have as large
an effect as postulated by Kramers.

FIG. 3. "Staggered" rhombic field, representing the
three orientations of the local field about an individual
Ce+++ ion.

6. REPRESENTATION OF THE SUSCEPTIBILITY OF TYSONITE BY A STAGGERED RHOMBIC FIELD

Instead of a trigonal field, we may essay calculations on the assumption that each atom is subject
to a field of rhombic symmetry. One of the principal rhombic axes, viz. , the s axis, we shall suppose
to be always parallel to the crystallographic or optic axis. One-third of the atoms will have their x
and y axes directed in each of the fashions shown in Fig. 3, so that the field for one atom will differ
from that of another only by a rotation through 120',' thus explaining our use of the term "stag-
gered. " A staggered structure of this type is precisely what is indicated in the tentative structure
diagram for tysonite published by Oftedal. Hence our model is perhaps more reasonable than the
triclinic one used by Kramers; we must, however, mention that to represent the susceptibility
properly, the "rhombic" terms which represent the departures from effective axial symmetry
(represented symbolically in Fig. 3 by the dilference in length of the crossed arrows) turn out to be
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surprisingly large, greater than one would /5 priori expect from the nearly triclinic symmetry in
ionic surroundings reported by Oftedal.

The matrix elements introduced by a field of rhombic symmetry are of the form AM= M' —2IP'= 0,
&2, ~4 so that the wave functions may be taken to be

+i~ 12 5/24~5/2+ i2 1/20+1/2+ & —3/24~3/2r i=I, II, III. (26)

As previously, the two sign choices give the two components of a Kramers doublet. We have assumed
the u's to be real, which involves no loss of generality since by proper choice of phases the matrix
elements of the crystalline potential may all be made real if there is rhombic symmetry. The coef-
ficients o. are not all independent and must satisfy the orthogonality and normalization relations

52 5/252 5/2+ 52 1/253 1/2+ 52 —3/253 —3/2 ~i ~ (27)

In a system of representation appropriate to the wave functions (26), the matrix elements of the
magnetic moment are

5 1 3
(2& j~) g 52 5/252 5/2+ 12 1 2/521/2 52 —3/253 —3/2

2 2 2
(28)

/5 (3& jW) g (i2 5/2i2 —3/2+ 52 —3/253 5/2) +2 (53 1/253 —3/2+ 52 —3/2i2 1/2) + 52 1/253 1/2-2 2

-g1/2

/3, (i ;j +)=—/3„(i+—;j )= (—1—)""g (a';/2n'-3/2+ n'-3/2n'5/2)
2

(29)

These expressions follow from the well-known relations

3 .
(53 1/253 —3/2+ 52 —3/252 1/2) + & 1/212 1/2 ~ (3O)

2

(/3, +i/5„)(M;M+1) =g[J(2+1)—M(M&1)]'/2 /3, (M M) =gPM

characteristic of the usual 3EI system of representation appropriate to a field of axial symmetry.
Elements of the form /5. (i&; jW), /3 (i&; j&), p„(i&;j&) ail vanish.

By standard principles of quantum magnetic theory, the square of the effective magneton number
for the s direction in weak fields is

ns2(s) = 3Z;f [/3, (3+; i+) ('+2kTZ;~;)/3, (i+;j+) ['/(W' —W ) Ie

g~—~i0f Ie &
(31)

The expressions for the x and y components are similar except that p, or p„replaces p, and that the
indices are (i+;i ), (i+;j——) instead of (i+; i+), (i+; j+). Eq. (31) contains only one sign
choice, as the summation over the two components of the Kramers doublet has already been per-
for 1Tled.

The constants at our disposal must now be adjusted so as to yield agreement with experiment.
These constants are five in number, via. , the energy intervals 8'zz' —W&' TV&zz' —Bz' and three
of the coefficients n. Only three of the nine n's are arbitrary because of the six constraints imposed
by (27). In place of W1,' —W, ', Wzn3 —W1' it is convenient to introduce new parameters q, A defined

by S'zz' —R"I'=A, 8'zz&' —8'z'=gA. If we plot n&' against T, the e6ect of changing A is merely to
expand or contract the scale of abscissa. There are obviously more complexity and more leeway in
adjustment to experiment than in Krarners' triclinic case, where there were three adjustable con-
stants. It should not, however, be inferred that with a rhombic field agreement can be achieved with
almost any sort of experimental curve, for with data on two principal axes the material to be fitted
is considerable. In fact most of the parameters are fixed simply by data in the hydrogen-helium range.
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The simplest way to start is to fit the experimental values of the effective magneton number
defined by (20) at T=1.7', which is the same as T=O to all intents and purposes. Using values

appropriate to 6=0.29 quoted in section 4, we thus have

ti, (I+; I+) =ti~~=1.18, 2[~ ti,(I; I+) ~'+
~
p„(I;I+) ~']= tii'= (0 52)' (or (047)') (32)

with notation as in (27), (28), (29). The value of —,'(ti„'+ti„')is the same as that of ti~' because one
must average over the three types of orientation of rhombic axes shown in Fig. 3. It is found that
there are four sets of values of n' which will fit (32), viz.

0.762, (0.736),

n'5(p= 0.122, (0.145),

ni5/2 =0.095, (0.126),

n'5)2= 0.680, (0.700),

~'i(2= 0.525, (0.592),

n'i)2= 0.187, (0.152),

n'i)p= 0.217, (0.182),

nii(n= 0.713, (0.675),

u' 3i2= —0.379, ( —0.327),

n' 3(2=0.975, (0.978),

n' 3)2 ———0.972, ( —0.975),

n' 3(2= —0.167, ( —0.234).

(33)

(34a)

(34b)

(35)

As explained in section 4, values in parenthesis relate to a choice of 0.47 rather than 0.52 for the
experimental value of p, .

The remaining constants are determined so as to fit the experimental data at higher temperatures
and to yield proper values for the constant B in formula (20) at low temperatures. One relation
between these other constants is immediately obtained by giving the ratio B,/B~

~

the proper value.
This ratio has the advantage of being independent of the scale factor A. Too much reliance should

not, however, be placed on endeavors to fit this ratio exactly, as experimentally it is not known with
much precision because of uncertainty in the vAlue of ~ for the perpendicular component. Neverthe-
less, study of the approximate magnitude of this ratio furnishes fairly conclusive evidence against
the Kramers triclinic field studied in section 5, since (25) yields a value 4.4 for B,(B~~ which is
excessively high compared with the experimental value 2.3.

It is impossible to choose the other constants so as to give good agreement with experiment if one
uses (34a), (34b), or (35). It is disappointing that (34a), (34b) must thus be excluded, for wave
functions of the type (34a) or (34b) would require only slight departures of the crystalline potential
from axial symmetry, where the matrix of the n's is unity. No nearly axial field can be successful,
since a perfectly axial field yields an infinite value of B,(B~~.

With (33), the experimental data in weak fields can be fitted quite well for both the parallel and
perpendicular components if one chooses the constants as follows for the upper states:

n??5(2= 0.517,

n?»
tt =0 391

n»? i2 = —0.846,

?I? 0 095

n .3(2——0.134

n»' 3(2
——0.916,

8»' —8",0=130 cm ',

8'»? —8'? =754 cm '.
(36)

(37)

These values have, of course, been chosen in compliance with (27). The curves for the effective
magneton number based on (33), (36), (37) are indicated by solid lines in Fig. 2 and are seen to agree
with experiment better than do those for triclinic fields.

For simplicity, we have shown for the perpendicular component in Fig. 2 only the theoretical
curves which are fitted to a value 0.523 for tM at T= 0. If the experimental value is instead taken as
0.469, we would have to use the second set of constants in (33) and modify slightly the constants
in (36), (37) and (25). These alterations, however, are not as important as in the discussion of
saturation, and do not affect the conclusion that the staggered rhombic field fits the data better
than does the triclinic.

Saturation for the perpendicular component Since we must .average over the three types of rhombic
axes shown in Fig. 3, Eq. (15) does not yield directly the susceptibility for directions perpendicular
to the crystallographic axis. Let us suppose that the magnetic field is applied perpendicular to this
axis and makes an angle p with one of the long axes in Fig. 3. Then one can show that the corre-
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sponding type of atoms in Fig. 3 has first order Zeeman energies for the lowest Kramers doublet
of the form

W= WpaFIP/4(y) with /(4)=(/ 'cos' e+/ '»n' 2)'".
The formulas for the other two types of atoms are, of course, similar except that p must be advanced
by 22r/3 or 42-/3. Hence the proper formula for X (p) is

xp / (0+0)P(H V—I')
(22) +/=0, 2m /3, 4x /3 /4(22+ 0') tanh

3II kT

(H 7I')—
+2K ~n (n gn)II

~
m.(n'; n)

~

'+
~
m„(n',n) ~'

(38)
2h3 (n', n)

One notes that (38) is not independent of q and immediately wonders whether this is the reason
why Becquerel observes different rotations for 02= 0 and 02= 30' (cf. section 4). Such an explanation,
however, will not work, since if (38) is expanded as a Taylor's series in H, only the coefficients of
H4 and higher powers depend upon q. At the field strengths used by Becquerel, little harm is done
if the development is terminated at H' and if we neglect terms of the order H2/22. Then (38) reduces
to an expression"

XL
7 (Tyts) 2

432 P2 /4 2+/4 2- I4/P4H2 (1 4g ) -(~ 2+~ 2)2 (~ 2 ~ 2)2-
~ ~ ~

t33T3 E3 3T ) 4 8
(39)

independent of q. In writing (39), we have dropped the second or "high frequency" part of (38);
this is allowable at very low temperatures, where saturation is important. As already stated, and as
is also apparent from (39), the value of the effective magneton number appropriate to weak fields is
3'/'/4 = [3(/4 '+/4 ')/2g'" Because of the term in /4

' —
/4

' the coefficient of H' in (39) is not the
same as that which would be obtained by expanding (15) with /4= /4, . When Becquerel measures the
saturation curvature in the Faraday rotation at low temperatures, he determines empirically the
ratio of the coefficient of H to the term independent of II in X,. The effect of the rhombic staggering
is to make this ratio greater by a factor

a'=1+ 2[(/ '-/ ')/(/ '+/, ') 3' (40)

than it would be if we used Eq. (15).Thus the saturation method really furnishes us with ay,, rather
than /4„ if inadvertently (15) is used, as is usually done. When this distinction is overlooked, the
apparent values of /4, furnished by saturation will thus be greater than those yielded by the Eq. (17)
appropriate to weak fields. With the choice of constants (33), the magnitude of a is found from
(29, 30) and (40) to be 1.12 (1.00). When (38) rather than (15) is used, the value of p. furnished by
the saturation method is then reduced from 0.874 (0.726) to 0.780 (0.726). Hence the correction
(40) removes part, but not all, of the discrepancy with the value 0.523 (0.469) deduced from (17)
in section 4, provided we prefer the determinations not in parentheses.

With a triclinic instead of staggered rhombic field, not even a part of the discrepancy can be
removed, since in the triclinic case no averaging over different types of atoms is necessary, and (15)
can be used even for the perpendicular component.

Constants of the rhombic crystalline fl eld. Let us suppose that the crystalline potential is developed
as a series

f4"(r) ~4"(t/ v) (41)

in Tesseral harmonics F~ (0, 02) = F(0)e'~& which we suppose normalized to unity. Because of the

'5 In deriving (39) from (38) one must re,member that y is
involved implicitly through I' on the right side of (38) as

well as explicitly. Otherwise the factor 4/3 multiplying 6
in (39) would be wanting.
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rhombic holohedral symmetry, fi equals fi and the coefFicients vanish unless I and nz are both even.
If U satisfie Laplace's equation then fi (r) r'. The Laplacian of V probably vanishes only approx-
imately, since V, as we use it, is inclusive of the effect of the charge redistribution of the 5s'5p'
shell under the inHuence of the interatomic field, and so U may have a charge source even in the
region occupied by the 4f orbits inasmuch as the inner parts of 5s, 5p overlap 4f W.e wish to show
that only certain choices of the coefficients in (41) will lead to wave functions and energy levels of the
structure (33), (36), (37). In the "3II" or axial system of representation, one finds by the Kramers'
symbolic method, "or otherwise, that the matrix representing the potential (41) is

5/2 A 00+ (A 20/6l) + (A4o/70t) (A p/10;) (3A 42/70') A 44/5**

&1/2 (A p/10&) —(3A4'/70'*) A 0' —(4A 2'/150&) + (2A 4'/70*) (3A 2'/50&) +(A 4'/14'*)

W3/2 A 44/5' (3A 22/50') + (A 4'/14') Ao' —(A 2'/150') —(3A 4'/70')

with Ai"=c&Jp"fi R'r'dr, where ci is a constant of proportionality independent of m and R is the
radial wave function. Let a be the matrix of the coefficients n and let H be a diagonal matrix of
characteristic values 8&, 8'&z, H/'zzz. After the crystalline potential is diagonalized, its matrix is H.
In the original M system, before this diagonalization, its matrix is aHa ' inasmuch as a ' is the
inverse of the transformation from the axial to the final diagonal system of representation. Using
(33), (36), (37), and the fact that a ' is the same as the "transpose" e of s, one finds

150 —29 261

aHa '= aHa= —29 100 80cm '. (43)

261 80 634,

To obtain (33), (36), (37), the A's must be so
chosen that (42) reduces to (43). The surprising
feature is that the fourth order terms A4 are
thus seen to be fully as large as the second order
ones A2. Hence a second order rhombic field of
the "asymmetrical top" type is entirely inad-
equate and the convergence of the Taylor's
development of the potential is hence presumably
poor, so that it is probably not allowable to
terminate the development at the fourth order
terms. When the higher order terms are included
the identification of the A's ceases, of course, to
be unique. A similar inadequacy of the second
order terms is also found in the Kramers'
triclinic theory, since u in (23) can differ from
zero or unity only if fourth and higher order
terms are admitted. Both in Kramers' theory
and ours, the lowest diagonal element of the
crystalline potential in the original axial system
of representation belongs to &=3/2. This situ-
ation is impossible with only second order terms.
If the crystalline field had cubic symmetry we
would have A20=A22=A/=0; Aio=A44(14/5) &.

"H. A. Kramers, Proc. Amsterdam Acad. 33, 953 (1930);
34, 965 (1931).

Actually these relations are not fulfilled, as is not
at all surprising, since actually tysonite has hex-
agonal rather than cubic symmetry. The devi-
ations from fulfillment are on the whole re-
markably small, for (43) would satisfy these
cubic conditions if, for instance, we replaced the
elements 150, 634, —29, 80 by 217, 685, 0, 0
respectively, leaving 100, 261 unaltered. This
probably is only a fortuitous coincidence, but,
of course, it is conceivable that the microscopic
environment of a given ion show some vestiges
of cubic symmetry even though macroscopically
the crystal is hexagonal.

It will be noted that our procedure is in a
certain sense the reverse of that used by Penney
and Schlapp. Instead of first postulating a given
crystalline potential (41), and then calculating
the susceptibility, we first find the structure of
the wave functions and energy levels which will
represent the observed susceptibility. Then we
transform "backwards" to the M system in the
fashion (43) to find the characteristics of the
crystalline potential. It is believed that this
alternative, reverse procedure may become in-
creasingly advisable for other materials than
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tysonite as the magnetic theory becomes in-
creasingly refined through the development of
improved experimental data on individual prin-
cipal susceptibilities, etc. , permitting more
drastic tests and presumably requiring more
complicated potentials than the simple ones used
in the first approximations.

In conclusion, we do not wish to give any
impression of finality to the rhombic potential
represented in (43). It does seem to work better
than the triclinic, and is fully as compatible with
the known facts of the crystallographic structure.
The departures from axial symmetry involved in

(43) are rather large, and it is possible that they
can be reduced by considering still more com-
plicated potentials, notably those involving
simultaneously both triclinic and staggered
rhombic terms. Another possible modification is
to have the s axis of the rhombic system spiral
about the optic axis instead of being parallel to
the latter. Then to compute the susceptibility in

any given direction, a three-dimensional aver-

aging process is required, rather than a two-
dimensional one as in (38) for the directions per-
pendicular to the optic axis and none at all for the
parallel direction. The attractive feature of this
modification is that it makes the magneton
number deduced from saturation greater than
that deduced from (17) even in the case of the
parallel component, thus tending to alleviate the
discrepancy between the two methods em-
phasized in section 4. Furthermore, the effect of
the matrix elements of the crystalline potential
and of the moment which are non-diagonal in
the inner quantum number j ought really to be
considered if the separation of F5/2 and F7/2 in
cerium is only 1600 cm ', as reported by Brunetti
and Ollano. '7 However, it appears useless to
make elaborate calculations based on these
various ideas until better experimental data are
available for the perpendicular component.

27 R. Brunetti and Z. Ollano, Zeits. f. Physik /5, 415
(1932).

Nitrogen Molecular Spectra in the Vacuum Ultraviolet
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Nitrogen molecular spectra in the region from 900A to
2300A have been photographed with a 10-foot vacuum
spectrograph giving a dispersion of 5.5A/mm. Partial ro-
tational quantum analyses have been made for several
bands of the a'II„~'Zg+ system yielding the constants Bp'
= 1.632&0.002, Bp = 1.998&0.002, u =0.021, o.'=0.018.
Many new bands in a nitrogen band system with an
origin at 1847A discovered by Hopfield in a condensed dis-

charge in a helium-nitrogen mixture are reported. This
system is due to N&+, having the same lower state as that
of the first negative system. The role of the helium is dis-
cussed. Birge and Hopfield's b' progression is found to
consist of Q branches only with 8'=1.147. Several new
N2 ground state progressions among the bands in the
900A—1300A interval are presented.

INTRoDUcTIQN

S EVERAL band systems assigned to the N2 or
N2+ molecules lie in the vacuum ultraviolet.

The vibrational structure of the prominent
a'II„-+'Z,+ system, which extends through the
whole Schumann region, has been investigated in
detail by Birge and Hopfield. ' Their analysis
yielded accurate vibrational energy data for
these two N2 states, but the dispersion of their

spectrograph was insufficient to reveal the rota-
tional structure of the bands. That the upper
state of this system is really 'II„hasbeen proved
by Appleyard' who has made a rotational quan-
tum analysis of the (5,13) and (5,14) bands
which may be photographed with a spectro-
graph in air. The only determination of the ro-
tational energy constant Bo for the normal
'Z, + state, however, has been that of Rasetti'

i R. T. Birge and J. J. Hopfield, Astrophys. J. 68, 257
(1928).

2 E. T. S. Appleyard, Phys. Rev. 41, 254 (1932).' F. Rasetti, Phys. Rev. 34, 367 (1929).


