
Non-Orthogonal Wave Functions and Ferromagnetism

D» R. IN'. IS, Ohio State University

(Received* May 21, 1934)

Close consideration of the influence of non-orthogonality of the electronic wave functions in
a crystal shows that because of the large number of terms arising from the possible permuta-
tions of electrons, the usual procedure involving the neglect of most of the terms arising from
this lack of orthogonality may be seriously in error. The dependence of the relative energies of
the states of low and high multiplicity on this factor is discussed and exemplified in the cases of
some simple molecular models.

INTRQDUGTIoN

A LL treatments' of the problem of the existence of ferromagnetism from the atomic point of
view have been guilty of the convenient but otherwise unjustified neglect of the lack of orthogo-

nality of the electronic wave functions of two neighboring atoms in a crystal. The terms in question
are negligible in the limit of extreme dilation. Though suggestive, it is not entirely satisfactory to
explain only the weak ferromagnetism of an ideally distended crystal (and no more has been done),
because ferromagnetism does not exist in the opposite extreme of high concentration, ' due to the
electrons' zero-point energy.

It is here suggested that the neglected terms have probably much more influence on the result
of the first-order ca1culation than do the terms which have been given as a "criterion for ferro-
magnetism. " The influence of the neglected terms is expected to appear not only in the existence
of ferromagnetism and the magnitude of the "exchange coupling, " but perhaps also in saturation
and paramagnetic magneton numbers. It is further suggested that a consistent manner of neglecting
non-orthogonality does not lead to the usual exchange integral as the criterion, but rather shows,
as one should expect, that the inter-nuclear terms would have no influence on the orientation of the
electron spins.

In calculating the first-order energies, the terms due to non-orthogonality may not be tacitly
neglected because of their enormous number, arising from the large number of permutations of the
electron coordinates in even a small crystal.

This may be seen by examining the elements of the secular determinant. It is derived from the
Hamiltonian

II= —Z ~ +2 i p+Z & '+2 &"
ab c&b

where g» —Q2/8ir»iii) ((j2/gg 2+g2/gy 2+g2/gs 2)

Greek letters refer to the atomic cores, Roman letters to electrons and the V's to mutual electrostatic
energies of two particles. This. in the wave equation

(H NZ0 e) Q Cm mp —m„Q(—)~PP. .m. »fmp—' Pm "=0,
mgmp» ~ ~

where permutation operator I' acts on the atomic coordinates n, P ~ i and P in the exponent is
the order of P, and where P '=f 8(m, /0o) =P(x 'y s )8(m, /0 ) satisfies the atomic wave
equation (6»—V '+E,)P»=0, gives for the first order energies e of the states having the spin
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projection 3f= Zm& the crystalline secular determinant:

{Q(—)~ Q "iI'm "~ f"m (Q V p
—e+ Q V ' —Q Vi '+Q U")Pfm ' Pm„"} =0. (1)

P g~o ~ ~ e&P a, P CX a&b

The determinant is here written with only one sample element. The rows are characterized by
choices of m ~ ~ m„and the columns by choices of m '

~ m„'each mft being ~-', and subject to the
condition Zmii = 3II. (Volume elements dx'dy'dz' are unwritten. )

Here, as in molecules but contrary to the case in many atomic problems, the electronic wave
functions are not orthogonal. The integral

is less than one but distinctly greater than zero. (Here and hereafter, 'A is a neighbor of i~.)
A term of (1) is in general large if the set m,„~m. differs from m '

~ m„' not at all (diagonal
term), or by the interchange of the sign of m~mii of a pair of neighbors y8, whereas a term is small
if the sets differ by interchanges of many pairs of neighbors, or of a distant pair. Excepting the
case M=n/2, even the largest non-diagonal terms of the determinant are of the order of » times
as numerous as the diagonal terms.

Even if we neglect that complication, and examine only a diagonal term, we see that we are not
justified in tacitly neglecting non-orthogonality. In a diagonal term of (1), with m ' m„'=m ~ in,
we find in making the summation over P that the multiplier of (Z V,ti

—e) has as first term 1 due to
the identical permutation P= 1. Added to this are nZ/2 terms due to permutations which differ
from P =1 only by exchange of two neighbors pb (Z =number of neighbors of each atom). For such
a permutation, the integration (and the accompanying summation over spins 0) gives —S' if m~ = mq,

or 0 if m~ = —m&. The fraction of pairs of m's which are equal to each other is

f(n+) = (n+(n+ 1)+—m (m —1)j/n(e —1),

where n+ is the number of mii=+2 and n is the number of mii= —-', so that ', n~ 2n—=—M—Hence.
we get as the term in S': ,nZf(n+)S—' —Bya simila. r process, neglecting overlapping except that of
wave functions of nearest neighbors, we get the approximate expression for a diagonal term of (1):

( g V ti
—e) {1—(n/2)f(n+)zS'+ -', n(n —2) {f(n+)zg'$4 —~ ~ } (2.1)

a+0
f.'V 'P„" f(n+)zSJ P.'U—.'f),' {1——',(e—2)f(e+)zS'+ ~ ~ ~ } (2.2)

+z» ' 4.'4i, 'V'V Vi' —f(ri ) "4 Vi, 'V"Vi,'4 ' {1—(-'(n 4)z+1)f(—n+)zS'+ I. (2 3)

The calculations which have as yet been made' tacitly neglect terms in 5', considering them sma11

in comparison with the terms without S. In, actual crystals, S is of the order of magnitude of 1/10.
Taking n = 10', z= 10, we see that the S' term, the second term in the first line of (2), amounts to
over IO' times as much as the first term, and the terms in 54, 10~ times as much as the first term.
Even if S were only 10 ' (probably making the Curie point below 10'K), the higher terms would
hardly be negligible compared to the first. The ratios of the three series in (2) demands investigation,
ere we may claim to have explained the order of magnitude of the Weiss "internal field" from the
atomic viewpoint. The alternation of signs leaves the possibility that the higher powers of 5 may
prove to be negligible.
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In our problem, it is important to know how the energies b (or their centers of gravity) vary with
n+ and n (that is, with 3/I). Thus, in the usual "approximation, " the nature of the multiplier of
f(n+) in (2) Land in the non-diagonal termsg appears as the "criterion for ferromagnetism. " This
multiplier is

-', nz5'(Q V p
—e)+nzS f.b Q V.bpbb+Q

g+k k)l u

which takes a form similar to an "exchange integral":

Vb'P b (3 &)

il "0b'{i(QV z b)+2—Vbb+ V"I 6'4 '
aJ

(3 2)

if we neglect integrals of electronic potentials involving more than two neighboring atoms.
It has been customary to carry along, rather inconsistently, only one term in S', namely, the

term V„bin (3.2), neglecting (-', ez —1) equal terms V z and b. This has given the "exchange integral"
familiar from the problem of the hydrogen molecule:

t'
y by i(V +2 V b+ Vbi)y by i (3.3)

It is more consistent to neglect V„qas well. We thus have the revised "exchange integral":

~ 4.

blab'(2

Vi,b+ &'/&bi) Pbbs'. ' (3.4)

of which only a positive value may lead to a ferromagnetic result in this convenient "approximation. "
Here ferromagnetism should arise from the tendency of the Pauli exclusion principle to rarefy the
charge distribution of states of high multiplicity in the space betwe n adjacent nuclei. If this detracts
less from the integrated negative energy 2Vbb than from the positive energy e'/rb&, the states of
high multiplicity should have low energy an'd there should be ferromagnetism. It is thus more
satisfactory that the mutual energy V„bof the fixed nuclei does not enter (3.4).

Pending a satisfactory solution of the secular problem for the crystal, we may get some indication
of the nature of the effects of non-orthogonality by the study of the effects in molecules, and their
tendencies as we increase the number of atoms. We shall confine our comparison to three molecules
composed of equidistant and similar atoms and one outer s-electron per atom: a diatomic molecule,
a triatomic molecule forming an equilateral triangle, and a tetratomic molecule which forms an
equilateral tetrahedron. In these cases, the possible permutations of the electrons are few enough
that we may neglect higher powers of 5 in comparison with low powers.

In molecules, the analog of ferromagnetism is a state of high multiplicity with lower energy than
has each state of low multiplicity. The familiar solution' for the singlet and triplet energies, '~= e+

and 'e= ~, of the hydrogenic molecule

e~ —— t P rPp'(V. p+ Vp + V '+ V")Q 'Pz'%fp P.')/(&&&')

gives, to the degree of accuracy 5', the triplet-singlet separation:

b& 1& 2 I P sP b(2 V e+ Vab)P cP b +~~l y ey b(2 V c+ Vab)y aP b

I Heitler and London, Zeits. f. Physik 44, 455 (1927).
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Neglecting Ss in the denominator of (4), the singlet-triplet separation is measured by the exchange
integral (3.3). Taking into account the S terms, the separation is measured by (5), which lacks
V s, but contains instead a correction term —2S'J'p p 'Vs —S'J'p 'ib 'U'pabpab which is es-
sentially positive (favoring ferromagnetism), and for Hs approximately equal to the lacking V s
term. In the equilateral triatomic molecule, the energy difference between the quartet and the
coincident doublets is

4s 2e — 3 ~ p apeb(2 Vaa+ Vab)paap b 3S2 I p apab(2 Vaa+ Vab)lb aIb b

+2S P aP b(V' b+ U a+ Vab)P aP b (6)

Here we have neglected terms in the third power of the overlapping. In the regular tetratomic
molecule, the corresponding energy differences are

3~ —'e= —6E',

ay b(2 V a+ Vab)P ag b 6S2~ f aP b(2 V a+ Vab)P aP b

1.4S I P aP b(V b+V a+Vab)P aP b

There are three triplet states with equal energy, and likewise two singlets.

)Note: Suffice it merely to outline the derivation of these results. The calculation has been organized for more general
cases by Slater. ' For the three-electron case he gives expressions for the energies which simplify immediately for our
equilateral molecule to

's =
1 (abc }H }abc) —3(abc }H }bac) }{I+3S'),

's = (abc }H }abc)

In the four-electron case, the quintet is had as the diagonal element for his state I (reference 4, page 1125}.The singlets
fall together because the symmetry in our tetratomic molecule makes P = Q =R. Among the states D, B, and F, the non-
diagonal elements are zero and the diagonal elements are equal, so the triplets coincide and are be = {D

~
H

~
D). lt happens

also that the energy sum rule for the states with Mg =0, 1, and 2, holds to the degree of approximation S', and determines
the energies, once the degeneracy has been established.

's =
1 (abed (H }abed) 6(abed [H

~

—abdc) }(I+6S')
's= }(abed }H}abed) 2(abed }H(abc—d) }(I+2S')
's = (abed }H }abed)

The low-multiplicity energies are of interest in the question of saturated valence. The degeneracy
of like multiplicities is the analog of a sharp distribution replacing Heisenberg's "Gaussian distri-
bution " or the Bloch-Bethe spreading.

Comparison of (5), (6), and (7) shows that the "criterion for ferromagnetism" depends increasingly
on the terms in 5' as the number of atoms in the molecule increases. This fact, as well as the above
examination of Eq. (2), makes it seem very probable that the lack of orthogonality is very important
in so large a molecule as a crystal. The integrals arising from the lack of orthogonality are such as
to decrease the energy of the states of high multiplicity, so this seems in the molecular analog to
be a tendency toward "ferromagnetism. "

4 J. C. Slater, Phys. Rev. 38, j]09 (1931).


