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Collision of Two Light Quanta
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The recombination of free electrons and free positrons
and its connection with the Compton effect have been
treated by Dirac before the experimental discovery of the
positron. In the present note are given analogous calcula-
tions for the production of positron electron pairs as a
result of the collision of two light quanta. The angular
distribution of the ejected pairs is calculated for different

polarizations, and formulas are given for the angular dis-
tribution of photons due to recombination. The results are
applied to the collision of high energy photons of cosmic
radiation with the temperature radiation of interstellar
space. The effect on the absorption of such. quanta is found
to be negligibly small.

WO simultaneously acting light waves with
vector potentials

A;j=a;*exp { —(wit—k;1)}
+a;exp {i(wit—kx)} (1)

are considered as acting on an electron. Under
the influence of the waves a single electron wave
function ¥ is changed, and the perturbed
function may be expanded according to powers
of a, a*. The phenomena of pair production and
of recombination have to do with the terms in
ar*as* and aia,, respectively, as is obvious from
the theory of quantization of light waves. We
consider first the pair production. We let the
function ¢ represent an electron in a negative
energy state. It is convenient for practical
applications to normalize ¥® so as to have the
electron density equal to unity. It is also un-
necessary to use quantized light waves in the
pair production problem, since the results with
quantized waves are known to be identical with
those obtained by means of ordinary waves.
"As a result of the calculation one finds that at
a time ¢ after the application of the waves the
wave function contains a term which may be
interpreted as referring to an electron in a
positive energy state with a momentum and a
spin coordinate which are functions of the
original momentum and spin and of the momenta
and polarizations of the light quanta. The
density of electrons corresponding to this wave
function may be put into the form
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(€?/me?)*|a:|*|az|*B1
—exp (—utsW/h)|?/(6W)%  (2)

Here B is a dimensionless number depending on
initial momenta and spin and the polarizations
of the quanta. 6 is the difference in energy of
the initial and the final states. Thus if W
= —|W| is the energy of the electron in its
initial state and if Avy, Ay, are the energies of the
quanta, then

6W=C(P22+m262)%+W1—'hV1—hV2;
1= -Wy (3)

where p:=p:1+P:1+P; 4)

is the final momentum of the electron and
P, P, are the momenta of the quanta. The total
electron density due to the two light quanta is
obtained by summing expression (2) over all
possible states of negative energy. The equal and
opposite spin directions for every p; contribute
to the density. One is thus only interested in
the average for B over the different directions ¢
of the positron spin. This average will be called
Be. There are 2p,2dpidw;- V/h?® electronic states
of negative energy in the fundamental volume 7V
for which the momentum is p; and the direction
is within the solid angle dw;. Each of these has
a density 1/V. The number of positron electron
pairs produced per cm?® corresponding to the
absolute value of positron momentum being
between p; and p1+dp; in the direction —p; and
in solid angle dw; is thus obtained from (2) by
multiplying it by 2p2dpidw:/h3. Integrating over
dp1, and making use of

A(8W) =c[p1/Wi+pipe/ 221 Waldpy,  (5)
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which follows from (3) and (4), and substituting
|a|2=(c/2mv®) I = (hc/2nv)N, (6)

where I is the intensity of each beam and N is
the number of light quanta per cm? per second,
one obtains the probability of pair formation per
unit solid angle of the positron and per unit
volume of the space in which the light quanta
collide, as

2p1%(e?/mc?) N, N, Bt

. (7)
hvihvs[ o1/ Wi+pipe/ 1 W ]

Here (—p1), p2 are the vectors representing the
momenta of the positron and electron, pi, p2
are their absolute values and W, W, are, re-
spectively, the energies of the positron and
electron. It is convenient to express the above
probability in terms of an effective collision
area o. A convenient definition is to express (7)
as tN1Nao/c. The effective collision area ¢ thus
defined corresponds to a picture of N; light
quanta per unit area per second traveling through
space in which the quanta kw; are thought of as
being distributed with their density N./c. This
definition is arbitrary but convenient for trans-
formations to other frames of reference. It should
be noted, however, that if two beams of quanta
are shot against each other head-on then the
number of pairs produced is

A(a/Z)ledt-szdt, ®

where 4 is the common cross-section area of the
two beams, the factor 1/2 arising from the fact
that both beams travel against each other with
the velocity of light. The effective collision area
for head-on collisions when expressed in terms
of the numbers of quanta shot at each other
rather than in terms of the density of one of
them is thus ¢/2. We have

2cp12(e?/mc?)2Be

o= . (9)
hvlkV2[P1/W1+p1p2/P1W2]

The recombination probability of electrons and
positrons may also be expressed in terms of
the quantity B used in (2). One starts with an
electron being in a positive energy state and
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considers the terms in aiee according to the
method of quantizing light waves. The prob-
ability for the electron to jump into the hole
may then be calculated for this pair of light
waves. Using electron and positron states normal-
ized to 1, i.e., of density 1/V, a result is obtained
which is similar to Eq. (2). It differs from (2)
only through the replacement of every |a|? by
the initial expectation of ata. Thus the con-
tribution to the emission probability due to the
possible cooperation of a pair of light waves is
obtained by substituting

la|2=(c/2mv)I

and then letting I=hvc/V. (10)

Consider a positron with a definite spin and
momentum going through an electron distribu-
tion also having a definite spin and momentum.
In order to obtain the emission probability we
must sum expression (2) modified in accordance
with (10) over all possible pairs of light quanta.
Thus for given momenta of the light quanta
1, 2 each light quantum can have two per-
pendicular and independent directions of polar-
ization s;, s’ and s., s;, respectively, and one
obtains contributions to the emission probability
due to every possible combination of polariza-
tions. Thus one has the emission probability as
a sum of terms

(h2ct/4mvivs) (2 /me?) 2 V-28(1, 2)
X |1—exp (—itdW/B|2/(5W)?, (11)

where (1, 2) should be made to take in turn the
values B(s1, s2), B(s1, s2’), B(st, s2), B(sy, s2').
If it happens that the pair production calcu-
lation for quanta 1, 2 gives for the assigned
positron spin also the assigned electron spin
then 8(1, 2)=B(1, 2). In general, however,

| (W™, ¥ |
B(1,2)=—— 1T
( ) (‘l/v’*‘pa') (1//.7*31/«)

where ¥, V¥, are, respectively, the electron
state with specified spin and the electron state
which arises from the positron state under the
action of the light quanta 1, 2. The probability of
having recombination in which light quantum 1
has the polarization s; while the polarization of
light quantum 2 is subject to no restriction is

B(1, 2), (12)
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obtained by omitting B(s/, s2), B(s{, s2’) from
the summation. The result depends then only
on the average value

B(Sl: §2) =%[B<Slr 82)+B(Sh 32’)]'

Performing the integration over Py and allowing
P, to lie within a small solid angle of dQ; one
obtains the number of emissions per second.
This number refers to electron and positron
densities 1/V. To reduce to unit electron and
positron density the probability must be multi-
plied by V? and it must again be divided by V to
reduce to probability of emission in unit volume.
The probability of emission per second per cm?
due to unit electron and positron densities re-
stricting the emission processes to those in which
one of the light quantum pair has a direction
iI’l dQl iS

(ﬁ)2< N P P
2¢ B(s1, s ———[1— ] Q. (1
mc? b Vo P1P2 '

In obtaining the total emission probability from
this expression one should be careful not to sum
over s; and then to integrate over dQ; without
dividing the result by two. Otherwise one counts
every pair of quanta twice: one time in the
order 1, 2 and another time in the order 2, 1.
Letting

B(51, 52) =3[ B(s1, 52) +B(s1’, 52) ]

the total emission probability is

(é)2 o5 (1222 "aan. (15)
2cl — fﬁ S, § ,_( —w——*) Q.
’WLC2 b Vo P1P2 '

One is usually interested in the passage of
positrons with random spins through electron
distributions having random spins, and in this
case B(5;, S2) should be averaged over these
spins. Similarly, in the production of pairs one
is usually interested in the average of (9) for
quanta having random polarizations. One should
be careful not to suppose that the average thus
entering in (9) [B°] is equal to the average of
B(51, 32) which we call 8(5y, 52). In fact, using (12)

(12)

(14)

B(51, 52) =1B° (16)

Thus the total emission probability in all direc-
tions per unit volume per second due to unit
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positron and electron densities is

(o) S

and for light quanta with random polarizations
the “‘density collision cross section” is

=2 ( )chl =[ +plp2] dor. (18)
mc? h2vive Wi p1W,

If the momenta of the electron and positron are
equal and opposite the probability (17) is

) aQ, (A7)

Lo(e?/me?)? f Bedg, (17

and (18"

E=(ez/mc2)2(cp/W)f§”dw1.

The quantity B was calculated as in Dirac’s
paper. The method used by him can be applied
to any initial state of a free electron. The initial
wave functions for an electron having an energy
mc? cosh § a momentum p=mc(p/p) sinh 6 and
two independent spin directions are given by
the first two columns of [ —cosh 6+ (p/p)a sinh 6
+ p3 ](1+p3). Following the procedure of Dirac!
the calculation of ¥® with such an initial wave
function reduces to mechanical operations. The
answer comes out as a four row four column
matrix, the last two columns of which are auto-
matically zero. The first two columns are the
wave functions arising under the influence of (1)
from the wave functions represented by the
first two columns of [ —cosh 6+ (p/p)a sinh 6
+p3](1+p3). In this manner one can obtain the
spin properties of ¥® as well as its density. At
present there seem to be no applications for the
spin relations between the initial and final states,
and we give therefore only the results for the
density. The results take a simple form in the
reference system in which the total momentum
is zero. In the results listed below the common
line of the two quanta is taken to be the x-axis.
The direction cosines of the produced positron
are called A, p, ». We let the energy of the

1 P. A. M. Dirac, Proc. Camb. Phil. Soc. 24, 361 (1930).

Although Eq. (28) of Dirac's paper appears to refer to
the problem here discussed it does not actually do so,
because the negative energy state is kept fixed and the
frequency of the quantum is varied.
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electron as well as that of the positron be
W=mc? cosh 6 and

C=cosh 0, S=sinh 6. (19)
We obtain
(&1lly, &ally)
B” — [SZ_ ZS2<IJ2—' “2) —S4<V2_"}4L2)2
+.52C2(1 —A2)]C-2(C?*—2S?)—2, (20.1)
(&1]ly, &2[|2)
B, =[C*—4S4u%?
+52C2(1 —AY)JC2(C?2—N2S%)~%  (20.2)

Averaging over the angle which one of the electric
intensities makes with the y-axis

Be=(S?/2)[C2 43— 2N —NST]C2(C? —N2S%)~2;
Bie=3[C*4-2C2—1—2\ES2— NS4 C2
X(C?—228%)~%  (20.3)

If one of the quanta is polarized along vy and

the other at random

B(8,, &) =:[Ct42C2—2— 2252 — 454
+2(u2—p?)S¥]C2(C?—N2S?)~2 (204)

If both quanta are polarized at random

B(8, 8) =1[C*+2C?—2—2A2S?

—NSY]C2(C*— 0282 (20.5)

For all of the above six conditions Eq. (9)
reduces to

o= (e?*/mc*)?B tanh 0 9"

and the number of pairs in which the positron
has the direction (A, u, ») produced per unit
solid angle per unit volume per second is
N.Nqyo/c. By integration one obtains the number
of pairs in all solid angles. The values of ¢ which
correspond to the two cases (20.3) are

) =27 (et/mc?) [ —SC3—3§SC5—30C~*

+20C-1+420C-2], (21.1)
71 =2m(e?/mc?) 2 — SC—3—$SC—5—30C*
+20C-4420C-?], (21.2)

and for random polarizations

G. BREIT AND ]J.

A. WHEELER

7 =2 (e2/me?) [ — SC~3—SC-5—§C—*
+20C-4+20C*]. (21.3)

Formulas (21.1), (21.2) apply also to (20.1),
(20.2). It should be remembered that Eqgs. (21)
apply to the ‘“‘density collision cross section’
defined in terms of Ny Nys/c and that the total
number of pair producing collisions for two
beams of quanta each containing # quanta is
nimsa/(24) in accordance with Eq. (8).2

If the pair production conditions described by
Egs. (20), (21) are viewed from a moving frame
of reference, the number of pairs produced per
unit volume per unit time remains the same
because pair production is an event in four
dimensional space and the density of events is
Lorentz invariant. Thus

NNy o'dw; = N1 Nsodws, (22)

where N’ is the number of quanta per cm? per
sec. in the new frame of reference and ¢’ is the
“density collision cross section’’ per unit positron
solid angle in that frame. For any two light
quanta it is possible to perform a Lorentz trans-
formation so that they appear to be equal and
opposite. The only case in which this is impossible
is that of quanta travelling in the same direction.
However, this case is of no interest because it
leads to no pair production. If the frequencies
of the quanta are »,/, vs’ and the angle between
their directions is ¢ then the frequency of either
in the frames of zero total momentum is 1 =vs=»
= (Vl/Vzl)‘”z sin (ga/Z) and N1,= (Vl’/Vl)Nl, Ng'
= (v4'/v9) N,. Hence

o'dw,’ =sin? (¢/2)a((vi'vs’)? sin (¢/2))dw:. (23)

The velocity with which the primed system of
reference is moving with respect to the un-
primed system is —c*(Py+Py)/(hvd +hvy).
From (23) and (20) one can obtain the angular
distribution of positrons and electrons by calcu-
lating dwi’/dw: by means of the usual formulas

2 In a forthcoming issue of the Proc. Roy. Soc. the pair
production due to collisions of vy-rays and electrons with
the electric fields of atoms is treated successfully by
Williams by means of Eq. (21.3) which was published in
an abstract of a paper read at the Washington meetin
of the Physical Society (Phys. Rev. 45, 766(A) (1934)).
The formula in the abstract gives an incorrect value of o
which is twice as large as that given here. Correct results
?re o)btained by Williams using #i#30/(24) and ¢ as in

21.3).
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for the transformation of momentum and energy.
The collision cross section for pair production
over all angles depends only on S'¢’dw; and
one may thus use Egs. (21) for the calculation
of these cross sections for any angle between
light quanta by applying

7 =sin? (¢/2)5((n/»)} sin (¢/2)). (23')

The polarizations of the light quanta are changed
by the Lorentz transformation and thus only
(21.3) has in general a simple meaning.?

Using Eq. (17’), comparing it with Eq. (18)
and Eq. (21.3), one obtains the probability of
recombination per unit volume per second as

¢pepp(3/2)(C/S)

in the frame of zero momentum in terms of the
electron and positron densities p,, p,. Trans-
forming to a frame in which the electrons are
at rest one has

e’='(1.._62)§p” Pp,’_‘(l‘l‘ﬁZ)(l_—ﬁz)w%Ppy ﬁ:v/‘:
(14857 p,' =[C?/(C*+5%) Jo'ps".

and Pebp =

As for pair productions the number of recom-
binations per unit volume per unit time is
Lorentz invariant and thus in K’ (system where
electron is at rest) this number per unit electron
and positron density is '

c(a/2)C3/[S(C*H-S%].

3 Two light waves polarized parallel or perpendicular to
each other retain their relative polarization when viewed
from another frame of reference if they travel in the same
direction. If, however, they travel in opposite directions
the relative polarlzatlon is in general changed. On the
other hand, an unpolarized beam remains unpolarized
when viewed from any frame of reference. Thus Eq. (21.3)
in conjunction with (23’) always applies to the collision of
a quantum with quanta having random polarizations.

For quanta colliding head-on the relative polarizations
are the same as in the frame of zero momentum, and for
such quanta Eq. (23’) with ¢ as given by Egs. (21.1), (21.2)
may be applied directly to. the calculation of collisions
between quanta polarized parallel or perpendicular to
each other whether the total momentum is zero or not.
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This is Dirac’s recombination formula with
Dirac’s a=cosh 26. One could also derive (21.3)
from Dirac’s recombination formula and the
relations (17), (18’). The other formulas (20),
(21) require, however, the more detailed calcu-
lations, the results of which were reported
above.

As has been reported at the Washington
meeting, pair production due to collisions of
cosmic rays with the temperature radiation of
interstellar space is much too small to be of any
interest. We do not give the explicit calculations,
since the result is due to the orders of magnitude
rather than exact relations. It is also hopeless to
try to observe the pair formation in laboratory
experiments with two beams of x-rays or y-rays
meeting each other on account of the smallness
of ¢ and the insufficiently large available densities
of quanta. In the considerations of Williams,
however, the large nuclear electric fields lead to
large densities of quanta in moving frames of
reference. This, together with the large number
of nucleii available in unit volume of ordinary
materials, increases the effect to observable
amounts. Analyzing the field of the nucleus into
quanta by a procedure similar to that of v.
Weizsicker,* he finds that if one quantum kv
per cm? is incident on a nucleus of charge Ze then
the number of pairs produced is®

@/t

o(§) =4/m) 2% f a(C) log {(£/2)}C-1}C-4dC,

where ¢(C) is given by Eq. (21.3), Av=mc?¢ and
a=2me*/hc. The evaluation of the integral shows

that ¢(£) is in asymptotic agreement with the
corresponding formula of Heitler and Sauter®

for high &.

4 C. F. v. Weizsicker, Zeits. f. Physik 88, 612 (1934).

5 We are very much indebted to Dr. E. J, Williams for
permission to quote his results.

6 W. Heitler and F. Sauter, Nature 132, 892 (1933).
Cf. also J. R. Oppenheimer and M. S. Plesset, Phys. Rev.
44, 53 (1933).



