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On the Interaction of Electrons in Metals
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The energy of interaction between free electrons in an
electron gas is considered. The interaction energy of
electrons with parallel spin is known to be that of the
space charges plus the exchange integrals, and these terms
modify the shape of the wave functions but slightly. The
interaction of the electrons with antiparallel spin, contains,
in addition to the interaction of uniformly distributed
space charges, another term. This term is due to the

fact that the electrons repell each other and try to keep
as far apart as possible. The total energy of the system
will be decreased through the corresponding modification
of the wave function. In the present paper it is attempted
to calculate this "correlation energy" by an approximation
method which is, essentially, a development of the energy
by means of the Rayleigh-Schrodinger perturbation theory
in a power series of e'.

HE attempt has been made in previous
work' to give a more general expression

for the wave function of free electrons in metals
than that provided by Hartree's method of the
self-consistent 6eld' ' or Fock's equations. The
form of the wave function assumed in Fock's
equations for a system of 2n electrons, occupying
m doubly-degenerate states is
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where x stands for three Cartesian coordinates
of electrons with upward spin, and y for those
of electrons with downward spin. The P„are
the solutions of a Schrodinger equation in which
the potential of the charge distribution of the
other electrons enters as well as the potential
arising from the ions.

In a metal the charge distribution of all
electrons is practically unaltered by removing
one so that the second quantity may be replaced
by the former and the potential for a given

electron at the point I, is given by adding to the
Coulomb field of the ions the 6elds of all electrons
with parallel and with antiparallel spin. , The
former distribution may be obtained by inserting
u for x„ in (1) and integrating over all coordinates
except x& and I, while the latter is obtained by
a similar operation with the exception that the
integration should be carried out over all
coordinates except y& and N.

Actually, it had been shown in' 4 that the
wave functions f„of the free electrons in a
Na-lattice are very nearly plane waves e' '"'*~i

where I. is the cube edge of the crystal and v

stands for a set of three integers, v x denotes
the scalar product of s and x. Hence the charge
distribution of the electrons with opposite spin
is practically uniform, that of the electrons with
parallel spin uniform with a "hole" around N. '

In no wave function of the type (1) is there a
statistical correlation between the positions of
electrons with antiparallel spin. The purpose of
the aforementioned generalization of (1) is to
allow for such correlations. This will lead to an
improvement of the wave function and, therefore,
to a lowering of the energy value. This energy
gain will be called "correlation energy. "

2.
The new form of the wave function, assumed in' was
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and H. Bethe, Geiger-Scheel's Handbuch der Physik,
Vol. 24, 2nd part, 2nd edition, p. 406.
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which contains the functions P„(yq . y„; x) which are different functions of x for dilferent configura-
tions yq, . , y„of the electrons with opposite spin, instead of the P„(x). It is proposed to find
the best wave function, i.e., that with the lowest total energy of the form' (2). The y&, , y„ in
P, (y&

. y„; x)-are to be viewed merely as parameters. (Cf. Eq. (23) ref. 1.) The total energy of the
wave function (2) was previously calculated and relative to the solution of Fock's equations yielded
the following energy

1 h' t. BP„(y; x&)
&~=—

l~ dylyl' 2 "— 2 2 0, (y;») dxl
2m, vv' a J Qy„

(3)

where ~y~ denotes the second determinant of (1), the summation ~ runs over all 3N coordinates y'
and that over v and v over all occupied states, i.e., over all indices occurring in the wave functions
in (1) or (2); P„(y; x) stands for P„(y& y„;x) and dy for dyj dy„. The quantities e„are the integrals

~, (yi y ) = Jr p.(y;»)*I U —(h'/2m)(~, , +4„,+ +6„„)}p„(y;x&)dx&

+J"P, ( xg)*(h'/2') A.,P„(x,)dxg, (3a)

where again U(yq y„; x) is the difference between the potentials at the point x of a charge distribu-
tion corresponding to P&(y), $2(y), , P„(y), on the one hand, and point charges at y&, , y„,
on the other.

It is necessary now to assume for f„(y&, , y„; x) the form

4' (y' x) = k.(x) {I+f.(y~ x)+f.—(y2 x)+ . —. +f.(y x) I—
and that if v and v' are both occupied states

(4)

Jt4'"(y' x~)*(~4.(y; x~)/~y. )dx = 0 (4a)

so that the second term in (3) vanishes. Both (4) and (4a) will turn out to be correct in the approxi-
mation to be used. By means of (4) it is possible to transform (3a) so as to get rid of all derivatives
with respect to the y, after which one may minimize (3) by minimizing e„(y&, ~ ~ ~, y„) for every
combination of the y. This would lead to a differential equation for the f, (y& y; x) in which the
y would be merely parameters. (The solutions P„(x) of Fock's equations which also enter into this
equation are supposed to be known. ) The result of the transformation is especially simple if one uses
«r f,(x) =e'~'"'*', namely,

~, (y& y„)= "P„(y;x)*{U —(h, '/m) (6,—(2~iv/I) grad, ) }P, (y; x)dx. (3b)

In addition to the energy contribution (3) which is negative and was calculated in' there is a
further one which is generally positive. This arises from the fact that the probabilities of the relative
distances of electrons with upward spin are changed by the transition from the f,(x) to the
P„(y&, . , y„; x). Since the latter will be large for x s, which lie in regions comparatively free from
y's, the distribution of the x's will not be uniform throughout space and they will be nearer together
than they were under the previous assumption.

The form (2) of the wave function is certainly not the
correct one. It does not belong even to one single multi-
plicity but is a linear combination of functions of different
"multiplicities" (belonging to different representations of
of the symmetric group). If, however, the functions

p„{y1~ .y„; x) are not too dif'ferent from the functions
P„{x),they all belong to very low multiplicities. This is the
only case, anyway, in which the present approximation is
good and it can be expected that the real wave function
is in this case near to (2).
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where

In order to evaluate this energy change, one may first calculate the probability of two electrons
with parallel spin being at the points xI and x~, respectively, if the complete wave function is given
by (1).Under the approximate assumption that P„(xl =&0(X)e' '"'*'z one obtains for this in the way
given in reference 5,

()
(sin (r/d) —(r/d) cos (r/d) q

'

(r/d) ' )
(5a)

is the probability of the distance
~
x~ —x~

~

= r for free electrons with parallel spin,

d = (vo/3x')'= (4/97r) 'r, = 0 521r,. (6)

is 1/(2n. ) times the wave-length of the fastest electron, vo is the atomic volume and r, the radius of the
sphere with this volume. If we make the assumption p„(y, x) =p„(y, x)e'""& "& *~z, an expression of
the form (5) is valid for the wave function (2) as well as for (1) and the change of mutual potential
energy of the electrons with upward spin arising from the transition from (1) to (2) is

(7)

where

e„'(y, y„)= Jt dx, dx2(ne'/2r) { ~ P„(y; x&) P„(p; xu)
~

—
~
P„(»)$,(x2)

~

'
j g(&). (7a)

The ~ enters once again because the interaction of a pair of electrons should be counted once only.
In order to be able to evaluate the integral (7a), g(r) has been replaced by

1 —e ""'"(1—+1.6r/d+ 1.2 (r/d) '),

which, as is shown in I'ig. 1, runs rather near to g(r).

(8)

3.

The task of Section 4 will be to calculate the
wave functions P„(y~ .y; x) which minimize
the sum of expressions (3b) and (7a) and to
calculate A~+82 corresponding to these wave
functions. Before doing this, however, an esti-
mate of the order of magnitude of the effect to
be expected should be given. This can be taken
from calculations of atomic spectra by the
method of Fock's equation or Hartree's Geld,

and their comparison with experimental results.
The best result in this connection seems to be
that on the normal state of He, where Fock's
equation is identical with Hartree's. The dis-
crepancy here isr 0.077Ry (Rydberg units) for
both electrons, or 12 Cal. per electron. This
must be the amount of correlation energy in He.

The situation i somewhat more complicated
in the calculation of the terms of 0++, 0+, and
0 by Hartree and Black, s since Hartree's
method has been used instead of Fock's, and
also because in the latter cases more than two
electrons play important roles. For 0++ the
differences between observed values (in brackets)
and theory are

'P(4.050)0.074; 'D(3.868)0.090;
'S(3.658)0.176.

If we denote the radial wave function for the
electrons by P(r), these terms correspond to the
linear combinations P(r)P(r') multiplied by

xy' —yx'; (x+~y) (x'+~y'); xx'+yy'+ze'.

In the 6rst case the correlation energy is very
small, since the electrons are probably far away

7 Cf. D. R. Hartree and A. L. Ingman, Mem. of the
Manchester Lit. and Phil. Soc. 77, 69, 8/ (1933).

D. R. Hartree and M. M. Black, Proc. Roy. Soc.
A139, 311 (1933).
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Although the actual wave functions f„(x) in
the Na lattice are actually different from plane
waves ~'~'v'~~~ in the Hartree-Fock approxima-
tion, we shall use plane waves for t/y„(x) in the
subsequent calculation. Since only integrals over
the unperturbed functions occur in the perturba-
tion calculation, this will not introduce a great
error, because the P„(x) are extremely near to
plane waves in much the greatest part of the
volume.

The whole following calculation will be per-
formed in the approximation which corresponds
to the second approximation m the RayTetgh=
Sc~hrod'in er erturbetion t eery. e were
functions will be developed into a Fourier series

from each other anyway, because their spins are
parallel. In such cases in the theory of metals
we do not take into account any correlation
energy at all. The discrepancy in this case may,
to a considerable extent, be due to the use of
H@rtree's instead of Fock's method, and. cer-
tainly would be further diminished by the use
of the latter. On the other hand, in the case of
singlet's, Hartree's equations correspond much
more closely to Fock's equation and the increased
discrepancy of about 0 050Ry is probably due
to the neglect of the correlation energy. It is
not quite clear, however, why it is so much
greater in the '5 than in the 'D term.

A comparison of experimental and theoretical
values in 0+ and 0 points in a similar direction,
the correlation energy is smaller thou'gh in these
cases by a factor of the order 2. It is evident
that it must diminish eventually if one goes
over to more and more loosely bound electrons,
since because of the lower electron densities the
total interaction energy diminishes and the
correlation energy is only the non-appearance
of part of this.

If one goes over to a metal like Na, on first
sight the effect could be expected (because of
the low electron density) to be much smaller
than in He, about as great as in 0. This will

not be quite so, however, because the fluctuations
in the potential of the electrons with downward

spin will be greatly increased by their great
number. The effect to be calculated in the next
section will be about equal, therefore, to the
effect per electron in He.

(y X)
—I e (/r2wtv z/I +g & S2w /w/eLt) (9)

&vv'+ O'v'v +~ 0'vp&v'p (10)

By Schmidt's method one can build a set of
orthogonal P„(y; x) such that a„, =0 for v& v'

O.S

Fry. 2,

~'~'v'~'~ being taken as unperturbed function and
V(yh, , y„; x) the perturbation. The n.„,
which are functions of the y, are supposed to be
small, so that third order terms of u and V will

be neglected for the energy, and second order
terms for the wave function.

For the actual calculation it can be seen, first
of all, that one can replace a set of iP„(y; x) by
any orthogonal linear combination of them with-
out affecting the final result. The orthogonality
condition between g„(y; x) and P„(y; x) gives
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if v is occupied. It then follows under omission
of the last term in (10) that n., =0 if i and i'
are both occupied states, whence the summation
over p, in (9) must be extended only over the
unoccupied states. It is then seen at once that
(4a) is satisfied in our approximation.

In order to calculate e„(yi y„) one must first
calculate the matrix elements of U(yi, , y„;x).
The matrix elements V„„(yi, , y„; x) = Uop will

not be zero for all values of the y, but they
evidently will not change the wave functions
and merely give a contribution to the energy.
The average value over all configurations of this
contribution is zero, :however, since the mean
value of the potential of different configurations
of charges is equal to the potential of the mean
charges. Therefore, we shall set U.,(yi, , y„;x)
=0. For pNv we have

V»(yi y» x) =L ' f e'~'(/' "'*/—
U(y; x)dx

= —(1/4ir'(/(( —i)'L) ~
e'~"(/' "& */~AV(y; x)dx

because of Poisson's equation.
For e„, (3b) yields

n—(s2/x (/i i«) 2L) P(«2««((/« —«) ~ y «L«/

«=1

4x'h'
~«(y&' ' 'y««) = 2( «/«U«/«+ «u*U«s*)+Z~«v*~«u' Uus'+2 (@ /(' ~) I (('«el

7/(P tsI 2
(12)

In order to calculate the e„'(y& y ) by means of (7a), the charge distribution for P„(y; x) will first
be found:

(y
~ x) !

2 —L—3+L—3g (& 2 («((«/«« «) ~ «'/&—+& 8( 2 ((«««/«).««/L) +J—8+& o&,s2««((p —/«) ~ /L« (13)

Now g(r) is 1 minus the function of the "hole, " which decreases rapidly with increasing r. The 1,
inserted into (7a), simply gives the energy difference of a uniform charge distribution and that
corresponding to P„(y; x), namely,

!
2 0!p p (I p g // p

4 eier'L ' +R Q
y 4' (p, —p) /L 2«—««47r (/( /«) /L

unocc.

(14a)

in which the terms higher than the second order in a are omitted, and R means that the real part
of the following expression is to be taken. The second sum must be taken only over those p, 's for whj. ch
2v —p is unoccupied, while p itself is an unoccupied state in al/ summations. For the calculation of the
other part of (7a), arising from the function of the hole, one sets xi+ r for x2 in (7a), introduces (13),
and performs the integration over xI. The result

2L- R/(P! n„„!'+ P n„„o{„2„„}le"'("/'"/-
2v p

unocc.

must be multiplied with r/e'/2r and the function of the hole g(r) —1, which must be taken from (8),
and integrated over r Setting 0..= 2ir(/( —v)d/L, this yields

3.751.0634 hard'ne' // ~ ( 1
R! &I~"I'+ & ~"~"-.! ! + + !. (14b)

2.56L & ~ 2 —g ) («. 1+&r /2. 56 (1+a /2. 56) (1+a /2. 56) )
unocc

Added to (14a) this gives with help of the relation 47rr, '/3=v(/
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.'(y . y.)=, .—&( Zl „I'+ 2 " ~ .—.
)
"( ),3'~l r, (. ~ 2.-~

unocc.

0.415
0'

0'(1+0'/2. 56) (1+.0'/2. 56) ' (1+0'/2 56).'

022'(o) is given graphically in Fig. 2.
This formula for the increase of potential energy between electrons with upward spin is not

exact arid may be viewed as containing two parts: First (14a), the increase of the potential of the
space charges, due to the less even charge distribution for P, (y; x) than for P„(x). This increase is
lowered by the second part (14b), caused by the greater efficiency of the Fermi hole in a non-uniform
charge distribution. The first neglection was made in setting p„(y; x) =e2 '(' ")'*'zp„ly; x) when
calculating e„'. This tends to increase the e„' especially for those v, for which it is large anyway,
because it overemphasizes the unevenness in the charge distribution. The second neglection was to.
keep no terms higher than the second order terms in n. This certainly decreases c„', because part
of the uneveness in the charge density is due to the higher terms, especially to those of the fourth
order. Finally, the normalization constant, which is smaller than 1, enters in the second power in
(14) and only in the first in (12). Its omission again increases (14). In the whole these errors will
about compensate.

The final quantity to be minimized is, after omission of the higher'order terms,

2„+ 0,'=RQ I2n„„V„„+(t„„+t„„')
~
cx„„~2+t„„'0(,„n„2„„I, (15)

where
4' 2h2

fvip — (P, P ' V) p

mL, 2 t

2* 8 (22r(p, —2)d)

322ri r, 4 I (15a)

V,„is given in (11), 2 (0) in (14), 2 is an occupied state, the last term in (15) should be taken only
if 2) —p is an unoccupied state. By setting the derivative of (15) with respect to n,„*equal to zero,
one obtains

V,„*+(3„,+t„')n„„=0 (16a)

if 2v —p is occupied. If it is unoccupied

V.„*+(t,„+t,„')(2,„+t.„'a„2„„0, ——V,„*+(t„2„„+t„,') n, 2, ,*+t„,'0.„„=0. (16b)

The last equation is obtained by differentiating (15) with respect to n„„„2a dnconsidering that
U„2„„=U„„*and t,2, „'=3,„'. Solving (16), one finds if 2v —

)(( is occupied

and
n„„=—V„„*/(t„+t,„')

n„„=—V„„*t„2„„/L(&„„+t„„'))'„2„„+i„„t„,'j
(17a)

(17b)

if 2v —p is unoccupied, while p is, of course, always unoccupied. These formulas show that the
$,(yi, , y; x) do have the form (4) with

02
p

02v((v —
Vp) ~ (2—)/Lv

f(y x)=
I Z, , + 2

2rI. ) 2.—~ (ii —v)2(t„„+t„„')
unocc.OCC.

~2 7r i( v—p, ) ~ ( y—z) / L

() P) (kvtv+~vp +$vvfvp /fv2v v))—
Inserting (17) into (15) one obtains for the total energy

2.+2.'= —2
2v Pv f„pv+f„pv 2v Pv (fv—v+fvtv )fv2v +f—ppvkp„lv
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Instead of the second term one could write half of the sum of the terms for p and 2 v —p, which makes
it somewhat more symmetric.

It would be rather difficult to perform the summation over p, in (19) for an arbitrary set of y&,

, y„. Fortunately only the mean value of (19) with the weight
I y I'/e! is needed and this can be

computed quite easily. Since the t do not depend on the y, one finds

1

n!~

e4 n

I e2+/(P, v) ~ /vL
——v )/c

I y I

e2vi(v&vs+ ~ +v~v~'//Ldy

~2(p, —v) 4L& „ /, =g J

e4

I P 1 —P S(v —p+v„—v

w'(p —v)4L' &.=i

(20)

The first term comes from ~ =), the second from Ii &). In the second, the summation over 'A can be
carried out, and it yields 1 if v —p+v, is an occupied state, zero otherwise. The whole bracket is,
therefore, equal to the number of occupied states v', for which v+ v' —p, is not occupied. Fig. 3 shows
a cross section of the v -space through the origin and the point v —p. The radius of the circles is
(3n/4n) & =L/2md. The sphere through the weak circle contains the points v —/a+ v' and the hatched
part is unoccupied. As a consequence, it is

1 f e4n
q(2m (p —v)d/L),

n! & m'(p —v)I.'

and hence

q(o) =

4 16

for Ial»
(21)

1 r 2Ry
(e,+e.') i~ I'd~= —

jln!~ 37r3

I ~+ pl»
I

rr —pl&1

r/(a)do. 2Ry

o'[o'+ o" p+ca'(a) ] 3~'
I ~+ pl»

r/(o. )d a.

a'[o' (a. p) —'+2ca'e'(a) ]
(22)

Here p = 2~vd/L, a = 2~(p —v)d/L and the summation over p, has been replaced by an integration
over 0-. The total energy is expressed in Rydberg units. The constant t. is

c= (2 '/3'~*) (e'md'/h'r, ) = 0.1106r,/aa

when expressed as function of the radius of the "s-sphere" in Bohr units ao.

(22a)

Fra. 3. Cross section of v' space. Fio. 4. Section of g space.
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Fit . 5. Note: (1—p2)2 should read (1—p')"-. FiG. 6.

In order to perform the integration of (22), one may first introduce elliptic coordinates oi =
~

o. ~,
os= ~cr+p~ = ~27rpd/L~ in the o-space, using as centers the origin and the point —p (cf. Fig. 4).
The first integral is to be extended over the horizontally, the second over the obliquely hatched
region. The first will be a sum of two integrals (a) and (b) in Fig. 5, in both of which i1(o) =3o~/4
—oP/16. The second integral is a sum of three integrals (c), (d) and (e), and in the first two of
them the same expression is valid for q(o) while q(o) = 1 in the last. For do one writes 2m oidoiomdo~/p,
oi' for o', and o" p =-', (o2' —oi' —p'). The integration over om can be carried out simply and gives the
five integrals

4Ry
p P 3' p

2cc'(o,) +2o,'+2oip
ln

2co'(o i) + o i'+ 1 —p'

(3o'i o i ) do'i

( 4 16) oi'

4Ry '+& 2co'(o i) +2 o i2+2 o i p
+ ln

37r'p ~ o pm)i 2ce'(o, )+3a.,'+p' —1

4Ry '+' 2~»+ ~i'+ p' —&

+
3''p (g 2) l 20"» —o-g' —p'+1

(3o-& o-&'q do-&

I, 4 16)oP
(3oi

0 4 16) oi2o

V+p4Ry

3%' p y+P v p

/3o& o&'y doi 4Ry " ii+ p
In

& 4 16) o, 'n 3~'p &, v —p g 2V

where v stands for (2co (oi) +oi2) '. A calculation of this quantity for r, =4 shows that it is practically
equal 0.~ if o-g &2 and the last integral can be evaluated accordingly. It yields

2+p 1 Ry (
/ln y—= ]1y—/.

3ir'p 48 2p') 2 —p 2p 9m' E 20)

The other integrals were evaluated numerically and the results are plotted against p. Fig. 6 shows
the plots for r, = 1, 2, 4, 8. From this, the mean value of the correlation energy which is the mean value
of —

~ Ji
p with the weight p, was calculated, and plotted against r, . The ~ enters, because the whole

energy correction is present only for half of the electrons, that is, those with upward spin. In Fig. /

the upper curve represents the values calculated in this way. The energy is given in multiples of e g'r, .
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6.
One must remember, of course, that the

preceding calculation is only an approximate
one. Even if one confines oneself to wave
functions of the form (2), the upper curve of
Fig. 7 gives the correlation energy in first
approximation only. The neglections are due to
three causes: first to the use of an unnormalized
wave function, second to the neglection of the
terms with higher than the second power of o.

in e„when going over from (12) to (14a) and
third to the non-complete orthogonality of the
wave functions employed. Our approximation
is good if the a.'s are small. One gets an idea
about the accuracy of the approximation by
calculating Q„J'In„„~'~y~'dy/n! (which is the
reciprocal square of the normalization constant
minus one), though an idea only, since P„~n„„~'
should really be small for all configurations of
the y, not only its mean value. A calculation of
the former quantity shows' that it stays well

below one, except for large r, and for p which
are very near to 1. It is in these cases that our
approximation must be expected to break down.

The real value of the correlation energy will

be smaller in these cases than the calculated one.
The correction with the normalization constant
could easily be taken into account, as has been
shown at another place. " It always decreases
the correlation energy, not very much, however,
as the magnitude of the normalization constant
or the formulas in" show. The second neglection
is probably more dangerous and also more
laborious to correct. It has been done for one
point (r, =4) only and for this one very roughly.
The second neglection also increased the calcu-
lated value of the correlation energy, since it
amounts to taking 1 —2f instead of (1 f)' for-
the probability of the electron being at a certain
point, and the minima of 1 —2f are much
deeper than those of (1—2f)' (the maxima are
lower but less important).

' The greatest part of the numerical work has been done
by Dr. M. Vermes of Budapest. A table of the calculated
values is given here:

If the electrons had no kinetic energy, they
would settle in configurations which correspond
to the absolute minima of the potential energy.
These are closed-packed lattice configurations,
with energies very near to that of the body-
centered lattice. Here, every electron is very
nearly surrounded with a spherical hole of
radius r, and the potential energy is smaller
than in the random configuration by the amount
0.75 =e'/r, . This would be the sum of the correla-
tion energy and that due to the Fermi hole. Since
the latter one is," ' 0 458e'/. r„ the maximum
amount of the correlation energy is 0.292e' /r, .
This value will be attained only if the kinetic
energy can be neglected, i.e. , for r, = ~, and
represents the asymptote to the real correlation
energy curve, which is attempted to be drawn
into Fig. 7. It apPears to run much higher than
one would have thought without calculation.
I believe it to be in error everywhere by less than
20 percent.

The dotted line at 0.142e'/r, corresponds to a
correlation energy as great as assumed in the
first calculation' giving 0 6e'/r, t. ogether with
the energy of the Fermi hole.

The calculated constants of the Na lattice with
the correlation energy of Fig. 7 and the other
quaritities as in reference 1 are as follows: lattice
constant 4.62A as compared with the observed
value of 4.23A. The binding energy associated
with this is 26.1 Calories, to be compared with
the observed value of 26.9. The calculated value
of the binding energy for the observed lattice

0.292

C l's
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0
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0.006
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' To appear short]y in the Bull. of the Hung. Acad. "F.Bloch, Zeits. f. Physik 5'7, 545 (1929).
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constant is 22.3 Cal. As far as the lattice constant
goes, one must remember, however, that both
the correlation energy and that due to the Fermi
hole are calculated for a flat wave function and
the wave functions are flat only for r, =4 and
its neighborhood.

The magnitude of the correlation energy is
important for questions of paramagnetism and
ferromagnetism as well as for questions of lattice
energy. It modifies Bloch's original theory on

the ferromagnetism of free electrons" in such a
way that it yields ferromagnetism in fewer cases
than in its original form. " I hope to return to
this question at another time,

I wish to express my gratitude to Dr. F. Seitz
for his kind help in connection with the prepara-
tion of this manuscript.

"A paper of S. Schubin and S. Wonsowsky, Proc. Roy.
Soc. A145, 159 (1934) which appeared recently, points in
the same direction.
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Thermal Expansion and the Ferromagnetic Change in Volume of Nickel

CLARKE WILLIAMS, COlQtSSa University

(Received October 11, 1934)

The coefficient of thermal expansion is measured at intervals of 2.5'C between 200'C and
500'C for single and polycrystalline specimens of nickel of varying known degrees of purity.
The data yield the value 3.24&0.15)&10 4 for the ferromagnetic change in volume per unit
volume of pure nickel.

INTRQDUcTIQN

HEN the coefficient of thermal expansion
~ ~

~

~

of nickel is plotted as a function of tern-
perature the resulting graph has a hump which
starts at about 200'C and terminates in the
neighborhood of the Curie point. The area under
the graph represents a change of length (and
hence of volume), and the area under the hump
may properly be taken as a measure of the
change in volume associated with those inter-
atomic forces (or energies) in terms of which the
ferromagnetism of the material finds its expla-
nation. Fowler and Kapitza' were the first to
point out that Heisenberg's theory of ferromag-
netism is competent to o6er a quantitative
description of this phenomenon. Their calculation
has been extended by Powell, ' who obtained an
expression relating the change in volume per unit
volume to the exchange energy between pairs of
electrons belonging to neighboring atoms. The
observations upon which Powell based his nu-

merical estimate of the former quantity were

' Fowler and Kapitza, Proc. Roy. Soc. A124, 1 (1929),' Powell, Proc, Phys. Sod, 42, 390 (1930),

obtained by Colby, ' who worked with poly-
crystalline nickel of unspecified purity. It seemed
worth while to repeat Colby's measurements
upon single and polycrystalline nickel of varying
known degrees of purity, and to extend them
over a greater range of temperature in order to
increase the precision of the base line from which
the hump is reckoned. The present paper is a
report based upon these experiments.

APPARATUs AND METHoD

The dilatometer (Fig. 1') is constructed entirely
of fused quartz. A knife edge, A, and a table, 8,
rest upon a flat plate, C. The top of the table is

ground flat and polished, and carries a ground
roller about 1 mm in diameter. The specimen, 5,
is a circular cylinder about 5 mm in diameter and

6 cm to 7 cm long. A tiny lateral scratch is made
near one end and the other end is polished. The
scratch engages the knife edge and the pclished
end rests on the roller. Mirrors M2 and M4, of
gold sputtered on quartz, are fused to the ends of
the roller. These mirrors are rotated slightly with

& Qolby, Phys. Rev, 30, 306 (1910),


