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The Effect of Crystalline Electric Fields on the Paramagnetic Susceptibility
of Cupric Salts
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(Received December 6, 1933)

The paramagnetic susceptibility of the cupric ion in
the hexahydrate sulphates Cu(NH4)2(SO4)2' . 6H20 and
CuK2(SO4)„: 6H20 has been computed on the assumption
that the crystalline field has monoclinic symmetry but
deviates only slightly from cubic symmetry. The computed
variation of the magnitudes of the principal susceptibilities
with temperature agrees with the data over the limited
range of experimental measurements. The mean suscepti-
bility should follow quite closely the simple formula
g=A jT+8, even if the individual susceptibilities do not.
This agrees very well with the observations of de Haas
and Gorter on the mean susceptibility of CuSO4. 5H&O
for the temperature range 14'K to 290'K. In a rhombic
fiekl, such as was previously used by Schlapp and Penney
for calculations on Co++ and Ni++, the directions of the

principal magnetic axes are independent of temperature,
while the more general monoclinic field gives a rotation of
the magnetic axes as the temperature is varied. The
calculated variation of the direction of the principal axes
with temperature in Cu++ is in qualitative accord with the
observations of Bartlett, but the numerical agreement is
not very good. The introduction of an exceedingly asym-
metrical diamagnetic correction greatly improves the
agreement for the potassium salt, but more likely, the
large rotations observed by Bartlett are due to allotropic
changes, since the temperature range is not far below the
temperatures at which dehydration and decomposition
take place. From the choice of parameters which give
agreement with the magnetic data, conclusions are drawn
about the structures of these crystals.

INTRODUCTION

HE paramagnetic susceptibility of the ions
of the iron group has recently received

considerable theoretical attention. The general
theory of the quenching of the magnetic contribu-
tion of the orbit by crystalline fields of the
Bethe-Kramers type has been outlined by Van
Vleck in his recent book, ' confirming the hypoth-
esis of Stoner and Bose. Detailed calculations
have been carried out for Co, Ni and Cr by
Schlapp and Penney' with very good results.
This paper gives the results of calculations on
Cu. Schlapp and Penney assumed that the po-
tential field in the crystal could be represented
by a predominant field of cubic symmetry upon
which was superposed a small field of rhombic
symmetry. The axes of the two fields were as-
sumed to coincide so that the resulting field had
rhombic symmetry. Our procedure is more gen-
eral as we assume the axes of the rhombic field

' J. H. Van Vleck, Electric and 3fagnetic Suscepti-
bilities, Oxford Press (1932). See especially Chapter XI.

'R. Schlapp and W. G. Penney, Phys. Rev. 42, 666
{1932).For Co, Ni and Cr, as well as for Cu, the affix++
is to be understood whenever the ion is mentioned.

to be rotated about the common s'-axis through
an angle 0. away from the axes of the cubic field.
This gives a resultant field of monoclinic sym-
metry which agrees better with the crystallo-
graphic symmetry, and allows the principal mag-
netic axes to vary in direction with temperature.

The assumed Hamiltonian is therefore:

H =D (x4+y4+z4) + I Ax" +By"—(A+B)z"
I

+A'(L S)+P@ (L+2S). (1)

The first two terms are respectively the con-
tributions of the cubic and rhombic fields,
the respective axes being orientated so that
cos (x, x') =cos (y, y') = cos n, and cos (z, z') = 1.
These two terms will be designated as the cubic
and rhombic terms. The third term is the orbit-
spin interaction and the last is the Zeeman term
due to the external magnetic field g). Also, P is
the Bohr magneton ek/47rrnc, and A' is the orbit-
spin coupling coefficient which, according to La-
porte, ' has the value —852 cm —' for Cu++. L and

'O. Laporte, Zeits. f. Physik 4'7, 761 (1928). He gives
the multiplet separation of the lowest term as 2130 cm ',
which gives A' the value —852 cm '.
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8 are angular momentum vectors associated with
the quantum numbers L and 5 of the orbit and
spin, which have the values 2 and -'„respectively.
The rhombic term of the Hamiltonian may be
expressed as follows in terms of the axes of the
cubic field and the angle o, .

(A cos' m+8 sin' a)x'+ (A sin' 0.+8 cos' n)y'

—(A+8)z'+(A —B)xy sin 2n. (2)
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We may first consider the problem qualita-
tively. The cubic field is assumed so large that
its effect is predominant. Bethe' has shown by
group theory, that under the inAuence of an elec-
tric field of cubic symmetry, the fivefold de-
generate representation of the orbital rotation
group for L = 2 divides into two irreducible
representations F3 and I'& which are respectively
doubly and triply degenerate. In order to obtain
agreement with experiment it is necessary to
assume that the lowest energy level belongs to
the representation F3. This also agrees with the
conclusions of Van Vleck. "

The introduction of the electron spin of course
complicates the problem, doubling the number
of states. Even after the introduction of the
orbit-spin forces many of the states coincide, for
a well-known theorem of Kramers tells us that,
in a system with an odd number of electrons,
there is always at least a twofold degeneracy.
Fig. 1 shows how the energy levels arising from
a 'D configuration behave in the presence of the
various fields. The right half of the diagram is
labelled with Bethe's notation, while on the left
the notation corresponds to that of Mulliken. '
It is particularly to be noted that when the two-
fold level, F3, is increased to a fourfold one by
the introduction of the spin, none of the four
components separate until rhombic or magnetic
field terms are included. In the language of group
theory, D~ X F3 = Fs, where DI, is the rotation
group for the spin, I'3 is a doubly degenerate
representation of the single-valued cubic group,
and I"8 is a fourfold degenerate representation of
the double-valued cubic group which is char-

4 H. Bethe, Ann. d. Physik 3, 133 (1929}.
' J. H. Van Vleck, Phys. Rev. 41, 208 (1932}.

R. S. Mulliken, Phys. Rev. 43, 288 (1933},

A'

FiG. 1. The diagram shows how the energy levels arising
from a 'D configuration are influenced by the various
fields. At either side of the diagram, the large separation
produced by the cubic field is shown. At the left side, the
rhombic field is superposed to give a resulting field of
rhombic or monoclinic symmetry which removes the
orbital degeneracy and yields five states. The inclusion of
the spin produces no additional splitting until an external
magnetic field is applied. Then all degeneracy is removed
and the number of states is doubled. Proceeding now from
the right side of th'e figure, the superposition of the orbit-
spin forces on the cubic field removes only part of the
degeneracy, and there are only six states even after the
application of the magnetic field. The complete solution
considers the combination of these two effects. Only the
states branching from F3 are normal states.

acteristic of half-integral quantum numbers. '
The degeneracy is completely removed only by
the simultaneous application of an electric field
of rhombic (or monoclinic) symmetry and a
magnetic field, the latter removing the Kramers
degeneracy. Without the magnetic field, but in-
cluding the electric field terms, the whole prob-
lern has a twofold degeneracy. The components
which are due to the magnetic field may be dis-
tinguished by the superscripts + or —,while
the five levels in the absence of the field are
designated by Roman or Arabic numerals with-
out the superscript.

For the calculation of the magnetic suscepti-
bility, we must know the energies of the lowest
states (I and II in Fig. 1) and how these energies
are aA'ected by the magnetic field. The contribu-
tion of each state to the susceptibility is propor-
tional to the population of that state, which, in
turn, is proportional to the appropriate Boltz-
mann factor exp ( —W;/kT). Therefore the three
upper states, having negligible population, will
aA'ect the susceptibility only as they modify the
energies of the lower states.

' This relation is the analog of Eq. (1}of Schlapp and
Penney's paper, reference 2.
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THE MATRIX ELEMENTS

The matrix elements of the electric held may be determined for a one-electron system by direct
quadrature using central wave functions. Since it is sufhcient to consider only elements that are
diagonal in L, the radial factor enters merely as a constant. Cu++ has a O' 'D conhguration, and
considerations similar to those underlying the Pauli reciprocity theorem tell us that it is equivalent
to a one-electron system with the sign of the proportionality factors changed. ' Most of the matrix
elements which we need for the crystalline potential have been given by Schlapp and Penney. '
However, we also need the elements of xy, vis. .'

[xy](Mr W2, Mr) = W ,' rr[(L-W-Mr+2)(L~Mr+1)(L~Mr)(L~Mr. 1)], —

[xy](Mr. ', Mr) =0, Mr. '4 Mr&2, r = —2rs/(2L+3)(2L —1).
(3)

Then the nonvanishing matrix elements of the rhombic term (2) are:

[Ax"+By"—(A+B)s"](Mr, , Mr) = [Ax'+By' —(A+B)s'](Mr. , Mr)

= —', r(A+B) (3Mr.' L' —I.)—
[Ax"+By"—(A+B)s"](Mr.&2, Mr) = [(A B)(x' co—s 2rr+xy sin 2rt)](Mr&2, 3Ir)

= —4r(A —B)[(L+Mr,+2)(I+Mr+1)(I.~Mr)(L+3IIr. 1)]'exp (+2—sn).

The matrix elements of (L S) are also given by Schlapp and Penney. We need only add the matrix
elements of the Zeeman term. Introducing the dehnitions:

one finds
r =—p(L+2S);

pO (L+2S) =@dr.+o„lr„+Sj.fr.,

[P@ (L+28)](MrMs , Mr Ms) ='I't (Mr+2Ms),

[P@ (L+2S)](Mr.+1, Ms, MrMs) = —',(R,~fks) [L(L+1)—Mr. (Mr, +1)]',
[p@ (L+2S)](Mr., Ms+1; 3IIrMs) = (k*~r'kv)[$(S+1) —Ms(3IIs&1)]'.

THE SECULAR MATRIX

The secular matrix H, shown in Fig. 2, is
diagonal in the elements of the cubic field. This
results from the choice of the system of represen-
tation in which the C part of the orbital wave

8 This change in sign accounts for the minus sign in our
definitions of v and q' in (3) and (7). For a general discus-
sion of the sign of q' see reference S.

'See reference 2, p. 672. Their a corresponds to our T.

In their first statement on p. 673, we may note the fol-

lowing minor correction: g and a should be replaced by
q'/ki and a/c1, respectively, where k1 and c1 are the
constants computed for a one-electron system. For Cu++

the ratios are negative. The value of c1 is the same as —~,
while

&1——$3y4/2 (2L+5) (4L2 —9)(2I —1)j;

functions are proportional" to sin 3f1.4 and
cos Mr.C rather than to exp (r',3IIr,C). It should
perhaps be pointed out here that the matrix
elements defined above are those appropriate to
the exponential form of the wave function. "The
following definitions have been introduced in

"This is not a general statement but is true for the
case L=2, as was demonstrated by Bethe.

"The secular matrix H is easily obtained from the
matrix elements given above by first setting up the matrix
H in the M&M8 system of quantization. Then the unitary
transformation S H, S gives the matrix H which is
diagonal in the cubic field if S contains factors of the form

1 1. 1
2 s

1

for each pair of values (Air, (
and —)Mr. (. We retain the

cf. the last equation on p. 201 of Penney and Schlapp, spin matrices which are appropriate to the exponential
Phys. Rev. 41 {1932). form.
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Fro. 2. The H matrix. The terms in F are due to the cubic field, those in A to the orbit-spin forces, and those in
@ to the magnetic field. The other terms arise from the generalized rhombic term (2). The various symbols used are all
defined in (6) and (7).

setting up the matrix in Fig. 2.

a = —r(A+8)/2;
J =24''D.

g =2 3'b cos 2o, ,

f = 3b sin 2o, ,
'

p4 = 3a+3'*il/2;

b = —r(A 8)/2;—
g' = r4/12—6;

)=2 3"b sin 2n;

p4 = —6a;

P4 ——3a —
3 lrl /2.

. (7)

In the matrix H, the terms in A' arise from the
orbit-spin forces, those in R from the magnetic
field, and those in Ii from the cubic field. The
other terms are due to the rhombic term in the
crystalline field. Above the matrix we have indi-
cated the relations between the matrix elements
and the various group representations previously
discussed. At the head of each column, are given
the values of Ml, and 2U1~ appropriate to the
exponential representation from which H was
derived. These numbers serve to identify the
matrix elements, but it must be remembered
that, after the transformation to the trigono-
metric system of representation, 3EII. is no longer
a good quantum number as regards sign.

When we proceed to the reduction of H, we
note first that in the absence of the magnetic
field the tenth degree matrix factors into two

identical quintics. If a magnetic field is applied
along the s-axis, the matrix still factors into two
quintics (h.+ and A ) which now differ in the
sign of terms involving k. This simplifies matters
greatly in the case 0.=0, i.e., if the axes of the
rhombic and cubic terms coincide, so that the
resultant field has rhombic symmetry. Then it
is possible to solve a quintic and obtain the
principal susceptibility which corresponds to the
application of the magnetic field along the z-axis.
The other two principal susceptibilities are
readily obtained from the first result by the
cyclic permutation of the rhombic field param-
eters A, B and —(A+8). In the general case
that n/0, i.e. , that the resultant field is mono-
clinic, this procedure fails, as the direction of the
moment induced by the magnetic field directed
along the coordinate axes may not agree with
the direction of the applied field. That is, the
magnetic axes (for which the direction of the
induced moment is the same as that of the ap-
plied field) will not agree either with the axes
of the cubic field or with those of the rhombic
field but will lie in some intermediate position.
When the magnetic field is applied in the xy
plane, the secular matrix no longer factors. We
then have to use a procedure somewhat similar
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to that developed by Kramers" in his most
recent calculations on tysonite.

As we have already pointed out, we shall be
satisfied to know the energy values of the states
arising from only the configuration I'3. The e6ect
on these states of the levels arising from F5 may
be computed by perturbation theory. However,
since there are matrix elements between nearly
degenerate states, the energy values cannot be
obtained by the direct application of standard
series perturbation technique. The procedure
which we shall use and the derivation of the
third order perturbation formulas for off-diagonal
elements are given in the next section.

PERTURBATION TECHNIQUE

The H matrix is of the form H=HO+)H~,
where Ho (the matrix of the cubic 6eld) is diag-
onal and degenerate. The matrix H~, which con-
tains the elements of the rhombic term, the
orbit-spin interaction, and the magnetic field,
has elements also on the main diagonal. In the
zeroth approximation (X =0), H factors into two
parts y8 and y~ (Fig. 3) each of which has several
equal roots. R,eferring to Fig. 1, we see that y3

FIG. 3.

should have four roots corresponding to the four
levels arising from I'3, and F5 should represent
the six levels arising from I'5. We wish to know
the roots of ya to the order X'. Let m and n (with
or without primes) refer to the elements of y8
and p5, respectively. We seek a unitary trans-
formation matrix S=1+)S~+) 'S2 such that
H~ = S 'HS has no elements of the form Hv(m, n)
to the order X'. This is a sufficiently good approxi-
mation unless we want the energy to the order
)'. We require that S& shall be of the form
S~(m, n) and that the elements of S2 be chosen
to make S unitary. Then it is not difficult to
show that"

where

and

Hg(me) H~(me) H~(nm')
Sg(m, n) =— $2(mm') = —-', P

Ho(mm) Ho(nn—) hv(me) ~ hv(mn)hv(m'e)

II2(mm') =Ho(mm') 5„"'+H,( mm') +H2" (mm')+II2"'(mm'),

Hg(me)H~(nm')
II "(mm') = g

hv(m'n)
(lo)

II,"'(mm') = —-'

m" A

II (mm")H (m"n)H (em') —
2 Z

hv(me) hv(m'n)

H&(mn)H~(em") H~(m"m')

hv(me) hv(m"e)

n n'

Hg(me) Hg(ne')Hg(e'm')
(&&)

hv(mtn) hv(m'n')

DETERMINATION OF THE ENERGY VALUES

By means of the perturbation formulas given above the tenth degree matrix is reduced to one of
the fourth degree representing the states I and II of Fig. 1. The result, H&, is shown schematically
in Fig. 4, where the terms which vanish with the magnetic field have been designated by the letter k.

"H. A. Kramers, Proc. Amst. Acad. Sci. 35, 1,272 (1932).
"The matrix elements of S& are not uniquely defined until we impose an additional condition. It is convenient,

but not necessary, to require that the S& be Hermitian; S& is never Hermitian.
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f(1, 1)+h(1, 1) f(1, 2)+h(1, 2)

f(2, 1)+h(2, 1) f(2, 2)+h(2, 2)

h(2, 1) h(2 —,2)

h(1, 1) h(1, 2)

h(1, 2 )

h(2, 2 )

h(1, 1—
)

h(2, 1 )

f(2, 2)+h(2, 2 ) f(1, 2)+h(2, 1 )

f(2 1)+h(1 2 ) f(1 1)+h(1 1 ).
Frt-. 4. The H& matrix.

Q'e now apply a unitary transformation S2 'H&S2=H3, such that H3 is diagonal in the absence of a
magnetic field. The transformation S2 is easily found as, in the absence of a magnetic field, H2
factors into two identical quadratics. Let the resulting matrix elements be represented by f (i, j)i&

and h (i, j). Another transformation (essentially the application of Eq. (10)) eliminates all elements
of the form h'(1, 2) and h'(1, 2 ) and gives us a new matrix H4 with elements only along the two
main diagonals. The final energy values are obtained by the solution of two quadratics of the form:

f"(i, i)+h" (i, 4') —W

h"(i, i)

h"(i, i )

f"(i, i)+h"(i—,i ) —W
=0 i=1, 2. (12)

The two roots of either determinant differ only in the sign of g). The energy values have such a form
that they may conveniently be expressed as follows in terms of the direction cosines 1, m and n, of
the magnetic field:

where
Wi = (1/d) ~—OP Vi+8'0'u&&, W2 = + (1/d) a@pV2+@'p'w2,

V = {2(P+rrP)+B;(I2 m')+C;lm—+E;n'}'r

u& =2 &'&(I'+n1')+B &'&(P m') y C—&'&lm-&r E &'&n'
(14)

The coefficients which appear in V& and m& are defined by:

Ai ——1+2R(2 —ud)+R'{2 3ud 2—u'd' —i&d' tan—' 2a+ (1o+2 du') } &

Bi —3'*R&ld——{2+R(3 2ud+2—oud) },
Ci = —2 3' R'Pd {2ud —o (3 —4ud) },
Ei ——1+4R(1+ud) +R' {—1+6ud+4u'd'+4o rj2d'(1 —tan' 24&.) },

2,&'& =Rd {o.(2 ud)+-,'—R(1+2u'd')(o' 1) ——,'R—»'d' tan' 2u},

B &' &=&—3' R&ld'{o.—Rud(1 o')}-
C &' &= &—3' R'$d' {2ud —o'(3 —4ud) }

E &' i&2Rd {o.(1+ud) +Ro'rPd'(1 —tan' 2n) —R»'d' },

(15)

where 2/d is the final separation of the states I and II produced by the rhombic field; 2u is the
difference between the diagonal elements of H2, i.e. , 2u equals f(1, 1) f(2, 2),—and is approximately
equal to 12a; F is the separation of I'3 and I'4 produced by the cubic field; R = A'/Jl, and o = 1/dA'.
The coeKcients which appear in V2 and w2 may be obtained from (15) by changing the sign of d
(and consequently of o) throughout.

CALCULATION OF TICE PRINCIPAL SUSCEPTIBILITIES

The components of the magnetic moment vector may be calculated by the relation:

M, = Nk T(B/8@,)g;e ~"~ r/p e ~I =x, y, z. (16)



EF F E CT OF CRYSTALL I N E ELECTR I C F I EL DS 93

Here we have supposed the energy expressed in terms of the x, y and s components of the magnetic
field, whereas previously we have written the energy values in terms of the absolute value of the
magnetic field and its direction cosines referred to the cubic field axes. This should cause no confusion,
as we may replace the derivative 8/BO, of (16) by its equivalent (1/O)(B/Bs), where s has the
values l, m, n, according as q=x, y, s, respectively. The magnetic axes, along which the principal
susceptibilities are defined, are those for which the direction of the induced moment is the same
as the direction of the applied field. With the notation 0=1/dkT, the partition function for our
problem is:

p;e ~"~r=2e'{1+(@'p'/2kT)[(Up/kT) —2B/i]}+2e e{1+(@'p'/2kT)[(U2'/kT) —2wmg}. (17)

In the denominator of (16) it is sufficient to consider only that portion of the energy which is inde-
pendent of O, so that the sum (17) reduces to 2(e'+e '). For the numerator of (16) we may drop
from the partition function the terms independent of @ and define a new qus. ntity Z which is a
homogeneous quadratic function of g), and may be written in the form:

where
Z=—(OP/k T)'{A(P+m')+ 8(L' m')+—Clm+ En'}

A= {Ai—2kTA&"'}e'+{Ay—2kTA &'&}e—' (19)

and similar expressions for B, C and E.
Let us choose a new set of coordinates, x", y", s, for which the direction cosines of the magnetic

field are I", m" and n, and cos (x, x")=cos p. If we require the term in I"m" to vanish when Z is
referred to the new axes, the angle it will be defined by the relation tan 2&=—C/28 and then

Z' = (@P/k T)' {(A+ [8'+C'/4 j'*)P"+ (A [8'+C—'/45'*) m"'+ En' } (20)

The magnetic axes will coincide with the coordinate axes x", y", s, and, by (16), the principal
susceptibilities will be given by the expression:"

x k T/NP'= M= {k'T'/2@—;P'(e'+ e ') }8Z'/8-@; i=x", y", s. (21)

By knowing the experimental values for the principal susceptibilities, it is possible to determine
the parameters 1/d, R, Nd and n which appear in (20), and thus obtain some information about the
magnitude and type of symmetry of the crystalline fields.

TEMPERATURE ROTATION OF THE MAGNETIC AXES

Since the coefficients C and 8, whose ratio determines the direction of the principal magnetic
moment, are functions of temperature, it follows that the direction of the principal moment in the
crystal is also a function of temperature. The angle which the direction of maximum susceptibility
makes with the axis of the cubic field is given by the relation tan 2&= C/28.

Experiments on magnetic susceptibility always furnish the resultant susceptibility, and the total
paramagnetism of the metal ion is obtained by adding a correction equal to the diamagnetism of the
anion and the water of hydration. In the case of the cupric hexahydrate sulphates, this diamagnetic
correction is about ten percent of the total value at room temperature. For want of any information
to the contrary, the diamagnetic correction is usually assumed to be the same for each of the three
principal subsceptibilities, but there is no inherent reason why this must be true.

"We find it convenient to discuss our results for the susceptibilities in terms of the quantity M= ykT/NP', which
is 1/3 of the "effective magneton number. " If Curie's law is obeyed M is a constant, and if the "spin-only"
formula of Bose and Stoner is valid, the value of this constant is unity. The difference 31—1 is a measure of the
magnetic contribution of the orbit, and the variation of M with temperature measures the deviation from Curie's law.



Let us instead assume that one of the diamagnetic axes coincides with the z-axis of the crystalline
fields, and that the other two diamagnetic axes lie in the xy plane with no particular correlation to
the paramagnetic axes. Then we may introduce into the energy expression (13) a term

@'O'G =/&'|3'[G (1'+m'+')+G (P »&')—+G lm] (22)

which is the same for both states. G& is the mean diamagnetic correction and may be neglected if we
use the experimental results which have been corrected in the usual way. The quantities G2 and G3

may be included in the sum (18) by redefining the coefficients:

B= {Bi 2kT—(B&&'&+G2) }e'+{B2—2kT(B2&"+G~) }e ',

C= {Ci —2kT(C&&'&+G3) }e~+{C2 —2kT(C~&" +G») }e '. (23)

The addition of these diamagnetic terms will modify both the formulas for the principal suscepti-
bilities and the formula for the direction of the principal moment, for the resulting magnetic axes
will be different from the axes of either the diamagnetic or paramagnetic parts alone. It is conceivable
that reasonably small values of G2 and G3 may have an appreciable effect on the variation of the
magnetic axes with temperature without greatly changing the values for the principal susceptibilities.
If we write

G2 ——6g2Rbd/A' and G3 —— 6ggR'b—d/A', (24)

the explicit formula for the direction of the magnetic axis is:

sin 2n{2ud(1 —tanh i&/0) —3o.(1 kT/A')+—40ud(1 kT/A') ta—nh 8} g3kT/A'—
tan 2@=~A

cos 2n(1 kT/A') —tanh 0+g2kT/A'
(25)

In general, then, there should be some variation of the direction of the magnetic axes with tempera-
ture. The direction of the magnetic axes will be constant in two particular cases: (1) when the axes
of the rhombic and cubic terms coincide with the diamagnetic axes, i.e. , when g»=n= )=0, the
magnetic axes will coincide with the axes of the cubic field; (2) when the axes of the rhombic term
make an angle of 45' with the cubic axes, and there is no diamagnetic asymmetry (»=g2=0), the
magnetic axes will make a constant angle of 45' with the axes of the cubic field.

It will be shown in the next section, that the above formula for the rotation of the magnetic
axes with temperature is not entirely satisfactory. We have therefore repeated the calculations so
as to ascertain the effect of a still more general rhombic term with components of higher degree in
the crystalline potential. One finds that, after the addition of a fourth degree term of the form
Dx"+Fy", no further generality is secured by the addition of still higher order terms since the
secular matrix then has as many independent arbitrary constants as is possible for a field of mono-
clinic symmetry. The calculations, therefore, were made by modifying the fourth degree terms, but
the results are appropriate to the most general monoclinic field. The calculations are not included
here because the results differ so slightly from those which we have described, but we will gladly
furnish details to interested readers. It will suffice to point out the changes produced by the inclusion
of the higher order rhombic terms. The H matrix would look like Fig. 2 except that the term
II(2, —,'; —2, —,') would be (—A' —2R i p) where p is a new c—onstant, and the constants r&, $, 1, and
the P; would have slightly di8erent definitions from those given in (7); in particular, $ and f' would
now be independent of each other. The solution proceeds as before but results in the addition of
higher order terms in the coefficients defined in (15). These higher order terms have only negligible
effect on the principal susceptibilities, but one of these terms becomes important in Eq. (25) in the
limiting case when g=g2=0, as it may not vanish. Thus C may be a function of T, not constant,
even in this limiting case. We conclude, however, that the rhombic term (2) is sufficiently general for
all practical purposes.
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term turns out to be approximately of the form
A(x"—y").

Fig. 7 shows the agreement between the com-
puted and observed values for the direction of
the principal magnetic axes as a function of tem-
perature. The experimental angles are referred
to the crystallographic c-axis. Good agreement is
obtained for the potassium salt by assuming:

FIG. 7. Direction of the axis of maximum susceptibility
as a function of temperature for crystals of CuK2(SO4)2-
6H20 (upper curve) and for Cu(NH4)2(SO2)2 ~ 6H20 (lower
curve). The angles are referred to the crystallographic
c-axis. Solid lines are computed curves. Experimental
values: circles by Bartlett, triangles by Rabi, crossed
circles by Krishnan and colleagues.

that the axis of the cubic field makes an angle
of 110' 45' with the crystallographic axis, that
g2 =0.15, and that g3 = —7.5, with the other
crystal field parameters given above. This corre-
sponds to a diamagnetic asymmetry of about
40 percent of the mean diamagnetic correction.
Even this large diamagnetic asymmetry does not
give a rotation of the magnetic axes of the magni-
tude observed for the ammonium compound.
Of course, it is possible to choose parameters
which will give the desired rotation if we do not
try to fit the susceptibility data at the same time.
It seems quite evident that some additional
factor must be introduced to account for the
large rotation of magnetic axes with temperature.

Fig. 8 shows that the assumption of a crystal-
line field of predominantly cubic symmetry is
also consistent with the mean susceptibility of
Cus04 . 5H20. The experimental points are due
to de Haas and Gorter" and the computed curve
assumes that the rhombic and cubic fields
produce energy separations of 212 and 18,500
wave numbers, respectively, with tan 20 =4 and
Nd =0.3.

CQNcLUsIoN

The method outlined above is capable of giving
good agreement with the experimental results
on the variation of the principal susceptibilities
with temperature. It also furnishes us some in-
formation about the type and magnitude of the
electric field within the crystal. This information
may be used to supplement the x-ray data to
obtain more information about the actual crystal
structure than can be obtained by x-ray analysis
alone. This is particularly true in the case of
crystals of low symmetry, where the x-ray data
are difficult to interpret.

The two cupric hexahydrate sulphates which
we have studied belong to the class called the
Tutton salts. X-ray data on the cupric Tutton
salts appear to be lacking, but the analysis of
Mg(NH4) 2(SO4) &. 6H20by Hofmann" shows that
the six molecules of water are located at the
vertices of a regular octahedron with the metal
ion, Mg++, at the center. Incidentally, this ar-
rangement of the water molecules in the Tutton

"AV. J. de Haas and C. J. Gorter, Leiden Comm. 210d
(1930).

'9 W. Hofmann, Z. Krist. '18, 319 (1931}.




