The Spectrum of Fluorine, F II, F III, F IV

I. S. BOWEN, Norman Bridge Laboratory of Physics, California Institute of Technology (Received September 27, 1933)

The spectrum of fluorine extending from 125A to 620A has been obtained by using a two-meter grazing-incidence spectrograph. A large number of these lines, including nearly all of the stronger ones, have been classified as transitions in the F II, F III and F IV ions. This has made

IN the present investigation new plates of the fluorine spectrum were obtained extending over the range from 125A to 620A. The source was a vacuum spark between hollow aluminum electrodes into which LiF had been fused. The spectrograph was of the grazing-incidence type using a two-meter radius glass grating which was ruled with 960 lines per mm on an engine built and operated by Mr. Julius Pearson of the California Institute shop. The various stages of ionization were partially differentiated by the introduction of self-induction into the spark circuit. Oxygen and aluminum wave-lengths determined by Edlén were used as standards.

The observed lines that it has been possible to classify in the present investigation as transitions between terms of F IV, F III and F II are listed in Tables I, III and V, respectively. possible the classification of additional lines measured by Dingle in the longer wave-length regions. These analyses yield the following ionization potentials: F II 34.81 volts, F III 62.35 volts, F IV 87.34 volts.

Tables II, IV and VI give the term values obtained from the analyses of the spectra of these ions. For the sake of completeness terms located by earlier authors have been included with, however, some minor changes in the absolute values as discussed below. These analyses account for nearly all of the strong extreme ultraviolet lines.

In Table II the values of the triplet terms of F IV were fixed by extrapolating the values of the terms of the s^2p3d configuration from the corresponding terms in C I, N II and O III. The value thus obtained should be correct to a very few thousand frequency units. The singlet terms were somewhat less accurately obtained by an extrapolation of the relative positions of the singlet and triplet terms of the s^2p^2 configuration of these same ions.

TABLE I. Classified lines of F IV.

Int.	λ(Vac.)	ν	Classification	Int.	λ(Vac.)	ν	Classification
$ \begin{array}{c} 1\\ 1\\ 1\\ 3\\ 2\\ 3\\ 4\\ 1\\ 3\\ 5\\ 2\\ 3\\ 3\\ 3\\ 5\\ 2\\ 3\\ 3\\ 5\\ 2\\ 3\\ 3\\ 5\\ 2\\ 3\\ 3\\ 5\\ 2\\ 3\\ 3\\ 5\\ 2\\ 3\\ 3\\ 5\\ 2\\ 3\\ 3\\ 3\\ 5\\ 2\\ 3\\ 3\\ 5\\ 2\\ 3\\ 3\\ 3\\ 5\\ 2\\ 3\\ 3\\ 3\\ 5\\ 2\\ 3\\ 3\\ 3\\ 5\\ 2\\ 3\\ 3\\ 3\\ 5\\ 2\\ 3\\ 3\\ 3\\ 5\\ 2\\ 3\\ 3\\ 3\\ 5\\ 2\\ 3\\ 3\\ 3\\ 5\\ 2\\ 3\\ 3\\ 3\\ 5\\ 2\\ 3\\ 3\\ 3\\ 5\\ 2\\ 3\\ 3\\ 3\\ 5\\ 2\\ 3\\ 3\\ 3\\ 5\\ 2\\ 3\\ 3\\ 3\\ 3\\ 3\\ 5\\ 2\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\$	199.763 199.836 199.923 199.996 200.086 201.008 201.066 201.160 201.232 239.864 240.016 240.094 240.163 240.280 240.384	$\begin{array}{c} 500593\\ 500410\\ 500193\\ 500010\\ 499785\\ 497493\\ 497349\\ 497117\\ 496939\\ 416903\\ 416639\\ 416504\\ 416384\\ 416181\\ 416001 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 3 6 7 8 7 4 8 5 7 7 4 5 5	$\begin{array}{c} 251.026\\ 270.222\\ 419.662\\ 420.061^*\\ 420.743^*\\ 430.742\\ 490.607\\ 491.048\\ 570.643^*\\ 571.357^*\\ 572.640^*\\ 676.06^*\\ 677.17^*\\ 679.19^*\\ \end{array}$	$\begin{array}{c} 398365\\ 370066\\ 238287\\ 238061\\ 237675\\ 232158\\ 203829\\ 203646\\ 175241\\ 175022\\ 174630\\ 147916\\ 147643\\ 147234 \end{array}$	$\begin{array}{c} s^2p^2 \ ^1D \ -s^2p3s \ ^1P\\ s^2p^2 \ ^1S \ -s^2p3s \ ^1P\\ s^2p^2 \ ^3P_0 \ -sp^3 \ ^3S\\ s^2p^2 \ ^3P_1 \ -sp^3 \ ^3S\\ s^2p^2 \ ^3P_2 \ -sp^3 \ ^3S\\ s^2p^2 \ ^1D \ -sp^3 \ ^1P\\ s^2p^2 \ ^1D \ -sp^3 \ ^1P\\ s^2p^2 \ ^1D \ -sp^3 \ ^1P\\ s^2p^2 \ ^3P_0 \ -sp^3 \ ^3P\\ s^2p^2 \ ^3P_1 \ -sp^3 \ ^3P\\ s^2p^2 \ ^3P_2 \ -sp^3 \ ^3P\\ s^2p^2 \ ^3P_1 \ -sp^3 \ ^3P\\ s^2p^2 \ ^3P_1 \ -sp^3 \ ^3D_1\\ s^2p^2 \ ^3P_1 \ -sp^3 \ ^3D_2\\ s^2p^2 \ ^3P_1 \ -sp^3 \ ^3D_2\\ s^2p^2 \ ^3P_1 \ -sp^3 \ ^3D_3\\ \end{array}$

* Previously classified by Bowen (reference 2).

$s^2p3s \ {}^3P_0 \ 291593 \ s^2p3s \ {}^3P_1 \ 291379 \ s^2p3s \ {}^3P_2 \ 290878 \ s^2p3s \ {}^1P \ 284835$	$\frac{s^2 p^2 {}^3 P_0}{s^2 p^2 {}^3 P_1}}{s^2 p^2 {}^3 P_2}}{s^2 p^2 {}^1 D}$	708000 707774 707388 683200 654881	$\begin{array}{c} sp^{5-3}D_{4}\\ sp^{5-3}D_{2}\\ sp^{5-3}D_{2}\\ sp^{5-3}D_{2}\\ sp^{5-3}P_{3}\\ sp^{5-3}P_{3}\\ sp^{5-3}P_{3}\\ sp^{5-3}P_{3}\\ sp^{5-3}D_{2}\\ s^{2}p_{3}d-3D_{2}\\ s^{2}p_{3}d-3D_{2}\\ s^{2}p_{3}d-3D_{3}\\ s^{2}p_{3}d-3P_{0}\\ s^{2$	560154 560101 560084 532756 479554 469713 451042 210507 210433 210271 207592 207371 207181
---	---	--	--	--

TABLE II. Term values in F IV.

In F III, Dingle¹ had classified a large number of lines as transitions between terms arising from the addition of a 3s, a 3p or a 3d electron to the ${}^{3}P$ state of the core and Bowen² had identified a group of strong lines involving the $s^{2}p^{3}$ and sp^{4} configurations. In the present analyses a large number of extreme ultraviolet lines have been identified as transitions to these low levels of the $s^{2}p^{3}$ configuration from the high levels found by Dingle and also from a large group of additional high levels that had not previously been located. Among others, all of the terms caused by the addition of a 3s, 3p or 3d electron to the ${}^{1}D$ state of the core were found. The location of these terms made it possible to classify many of the strong unclassified lines in Dingle's list as

TABLE III. Classified lines in F III.

Int.	λ(Vac.)	ν		Classification	Int.	λ(Vac.)	ν	Clas	sification
2	214.788	465575	s2p3 4S	$-s^2p^2(^3P)5d \ ^4P_{\frac{1}{2},1\frac{1}{2}}$	8	656.86*	152239	s2p3 4S	-sp4 4P11
2	214.857	465426	$S^{2}p^{3} 4S$	$-s^2p^2(^3P)5d \ ^4P_{2\frac{1}{2}}$	8	658.34*	151897	S2p3 4S	-sp4 4P21
3	226.083	442315	$s^2 p^3 4S$	$-s^2p^2(^{3}P)4d \ ^{4}P_{\frac{1}{2},\frac{1}{2}}$	0	1071.66	93313	$s^2 p^2 ({}^3P) \bar{3} p \; {}^4D_{2\frac{1}{2}}$	$-s^{\bar{2}}p^{2}(^{3}P)4d \ ^{4}P_{1}$
3	226.169	442147	$s^2 p^3 {}^4S$	$-s^2p^2(^3P)4d \ ^4P_{2\frac{1}{2}}$	0	1099.10	90984	$s^2 p^2 ({}^3P) 3p {}^4P_{11}$	$-s^2p^2(^{3}P)4d \ ^{4}P_{13}$
0	243.397	410851	$s^2 p^3 \ ^2 D$	$-s^2p^2(^{3}P)4d^{-2}D$	0	1101.55	90781	$s^2p^2(^3P)3p \ ^4P_{1\frac{1}{2}}$	$2\frac{1}{2} - s^2 p^2 ({}^{3}P) 4d \ {}^{4}P_{2\frac{1}{2}}, 1\frac{1}{2}$
3	244.786	408520	$s^2 p^3 {}^2D_{2\frac{1}{2}}$	$-s^2p^2(^{3}P)4d \ ^2F_{3\frac{1}{2}}$	0	1103.64	90609	$s^2p^2(^3P)3p \ ^4P_{2\frac{1}{2}}$	$-s^2p^2(^{3}P)4d \ ^{4}P_{24}$
3	245.020	408130	$s^2 p^3 {}^2D_{1\frac{1}{2}}$	$-s^2p^2({}^3P)4d {}^2F_{23}$		$\lambda(Air)$			
0	245.876	406709	$s^{2}p^{3} ^{2}D$	$-s^2p^2(1D)4s^2D$	2	2455.81	40707.4	$s^2 p^2 ({}^3P) 3 p \ {}^4D_{1\frac{1}{2}}$	$-s^2p^2(^{3}P)3d \ ^2P_{1\frac{1}{2}}$
4	254.178	393425	S2p3 2P	$-s^2p^2(^{3}P)4d^{-2}D$	17	2470.279	40469.02	$s^2p^2(1D)$ 3s $2D_{2\frac{1}{2}}$	$-s^2p^2(D)3p^2P_{1\frac{1}{2}}$
4	233.718	391050	S2 Do 45	$-s^2p^2(^{3}P)3d^{4}P_{\frac{1}{2}}$	2	2470.48	40465.8	$s^2 p^2 ({}^1D) 3s {}^2D_{1\frac{1}{2}}$	$-s^2p^2(D)3p^2P_{1\frac{1}{2}}$
5	233.113	390909	S2p 45	$-S^{2}p^{2}(^{\circ}P) 3d ^{\circ}P_{11}$	0	2478.709	40331.40	$s^2 p^2 ({}^1D) 3s {}^2D_{1\frac{1}{2}}$	$-s^2p^2(1D)3p^2P_1$
ç	255.800	200070	52po *S	$-S^{2}p^{2}(^{\circ}P) Sa^{*}P_{21}^{2}$	1	2492.58	40107.0	$s^2p^2(^{3}P)3p ^{4}P_{21}$	$-s^2p^2({}^{3}P)3d {}^{2}F_{3\frac{1}{2}}$
1	250.556	290079	S200 45	$-S^{2}p^{2}(^{\circ}P)Sa^{\circ}D_{2}^{\circ}, 1_{2}^{\circ}, 2_{2}^{\circ}$		2543.4	39305.7	$S^2 p^2 (^1D) 3p ^2F_{3\frac{1}{2}}$	$-s^2p^2(1D)3d^2D_{21}$
3	250.892	204154	52po 2F	S ² p ² (1D) 2d 2D		2590.5	38501.9	$S^{2}p^{2}(^{\circ}P) 3p *P_{1}$	-s ² p ² (°P)3d ² P
3	260.312	294044	$S^{2}p^{0} = D_{2\frac{1}{2}}$	-3*p*(1D) 3d 2F 11	I Y .	2002.9	38407.2	$S^2 p^2 (^{\circ}P) 3p ^{\circ}P_{11}$	-S ² p ² (°P) 3d ² P
2	260.587	302077	243 2D	$-3^{2}p^{2}(3D) 4a^{2}D^{2}$	2	2010.8	38291.0	$S^{2}p^{2}(^{\circ}P) Sp *P_{1}$	-S ² p ² (^o P) Sd ² P 1
õ	261 720	382075	243 2D	$-3^{2}p^{-}(1)$ $+3^{-}1$ $-3^{2}h^{2}(1D)$ $+3^{-}1$	7	2617.3	20002.00	$3^{\mu}p^{\nu}(^{\nu}F) 3p^{\nu}F 1_{4}$	$-3^{2}p^{2}(0F)34^{2}F_{1\frac{1}{2}}$
6	263 809	370062	5203 2D	$-s^{2}b^{2}(1D) 3d^{2}E$	6	2625.000	38016 02	$S^{\mu}p^{\mu}(D) Sp^{\mu}p^{2}$	$-s^2p^2(1D)3d^2G_{31}$
3	270 670	369454	52 b3 2P	$-s^2b^2(1D) 3d^2S$		2630.03	37008 1	$s^{2}p^{2}(1D) 3p^{2}P^{3}_{3}$	$-3^{2}p^{2}(2D)3d^{2}P_{1}$
2	272.701	366702	S203 2P	$-s^2b^2(1D)3d^2P_{11}$	i	2634.8	37042 2	$s^{2}p^{2}(1D) 3p^{2}D_{11}$	$-s^2h^2(1D) 3d^2P_{11}$
ĩ	272.755	366629	5203 2P	$-s^2b^2(1D)3d^2P_1$		2639.05	37881 1	s2h2(1D) 3h 2D11	$-s^2b^2(1D) 3d^2P_1$
2	272.910	366421	52 D3 2P	$-s^2 p^2 (^3P) 4s 2P^3$	Ô	2645 5	37788.8	$s^{2}h^{2}(^{3}P) 3h 4S^{13}$	$-s^{2}h^{2}(3P)3d^{2}D_{11}^{3}$
4	274.254	364625	S203 2P	$-s^{2}b^{2}(1D)3d^{2}D$	ž	2727.93	36646.9	s2p2(1D) 3p 2P1	$-s^2h^2(1D) 3d^2S$
4	276.776	361303	52p3 2D21	$-s^2p^2(^3P)3d^2D_{21}$	1 Ã	2737.954	36512.84	$s^2 b^2 (1D) 3 b 2P_{11}^2$	$-s^2p^2(1D)3d^2S$
3	276.887	361158	$s^2 p^3 2 D_{1\frac{1}{2}}$	$-s^2p^2(^{3}P)3d ^{2}D_{11}^{3}$	ŝ	2747.870	36381.08	$s^2 p^2 (1D) 3 p {}^2F_{21}$	$-s^{2}p^{2}(1D)3d^{2}F_{24}$
7	279.685	357545	S2p3 2D21	$-s^2\hat{p}^2({}^3P)3d \; {}^2F_{3\frac{1}{2}}$	1	2751.8	36329.1	$s^2b^2(1D)3b 2F_{21}$	$-s^2p^2(1D) 3d {}^2F_{31}$
7	280.002	357140	$s^2 p^3 {}^2D_{1\frac{1}{2}}$	$-s^2p^2(^3P)3d \ ^2F_{2\frac{1}{3}}$	1	2752.8	36315.9	$s^2p^2(1D) 3p {}^2F_{3k}$	$-s^2p^2(1D)3d {}^2F_{2k}$
1	280.804	356120	$s^2 p^3 {}^2D_{2\frac{1}{2}}$	$-s^2p^2(^{3}P)3d \ ^{4}D_{3\frac{1}{2}}$	4	2755.307	36282.89	$s^2p^2(1D)3s \ ^2D_{2*}$	$-s^2 p^2 (1D) 3p \ ^2D_{11}$
1	280.897	356002	$s^2 p^3 2D$	$-s^2p^2(^{3}P)3d \ ^4D_{\frac{1}{2}, \frac{11}{2}, \frac{21}{2}}$	7	2755.556	36279.61	$s^2 p^2 (1D) 3s \ ^2D_{11}$	$-s^2p^2(1D)3p^2D_{11}$
2	281.199	355620	$s^2 p^3 {}^2D_{1\frac{1}{2}}$	$-s^2p^2(^{3}P)3d \ ^2P_{\frac{1}{2}}$	5	2756.664	36265.02	$s^2 p^2 (1D) 3 p {}^2F_{3\frac{1}{2}}$	$-s^2p^2(D)3d^2F_{3\frac{1}{2}}$
3	281.343	355438	$s^2 p^3 {}^2D_{2\frac{1}{2}}$	$-s^2p^2(^{3}P)3d \ ^2P_{1\frac{1}{2}}$	10	2759.589	36226.60	$s^2 p^2 ({}^1D) 3s {}^2D_{2\frac{1}{2}}$	$-s^2p^2(D)3p {}^2D_{2\frac{1}{2}}$
4	290.838	343834	$s^{2}p^{3} {}^{2}P$	$-s^2p^2({}^{3}P)3d {}^{2}D_{2\frac{1}{2}}$	3	2759.81	36223.7	$s^2 p^2 (1D) 3s \ ^2D_{11}$	$-s^2p^2(D)3d \ ^2D_{2\frac{1}{2}}$
3	290.941	343712	$s^2p^3 2P$	$-s^2p^2(^{3}P)3d^2D_{1\frac{1}{2}}$	4	2781.956	35935.35	$s^2 p^2 ({}^1D) 3 p {}^2D_{2\frac{1}{2}}$	$-s^2p^2(D)3d \ ^2D_{2\frac{1}{2}}$
1	295.300	338503	S ² p ³ ² P	$-s^2p^2(^{3}P) 3d \ ^4D_{\frac{1}{2},1\frac{1}{2},2\frac{1}{2}}$	12	2949.91	33889.5	$s^2 p^2 ({}^1D) 3p {}^2P_{\frac{1}{2}}$	$-s^2p^2(D)3d {}^2P_{1\frac{1}{2}}$
2	295.708	227075	S2p3 2P	-S ² p ² (°P)3d ² P ¹	2	2955.13	33829.0	$s^2 p^2 ({}^1D) 3p {}^2P_{\frac{1}{2}}$	$-s^2p^2(1D)3d^2P_1$
8	295.000	331913	52 po 2P	$-S^2p^2(^{\circ}P) 3d^2P_{11}$	2	2959.000	33111.10	$S^{2}p^{2}(^{3}P) 3p + S$	$-s^2p^2(^{3}P)3d^{2}F_{2\frac{1}{2}}$
7	315 545	316012	5°P° •5	$= 3^{2}p^{2}(3P) 33 = 122$		2901.590	33133.14	$S^{2}p^{2}(1D) = 2p^{2}p^{1}$	$-S^{2}p^{2}(D) 3d^{2}P_{12}$
6	315 759	316697	s-p5 s243 4 S	$-3^{2}p^{2}(^{3}P) 3_{5} 4P_{1}$	11	2900.89	33093.5	$S^{\mu}p^{\mu}(D) = p^{\mu}p^{\mu}p^{\mu}p^{\mu}p^{\mu}p^{\mu}p^{\mu}p^{\mu}$	$-S^2p^2(1D) 3d^2F_1$
70	322.657	309927	\$243 2D	$-s^2h^2(1D) 3s^2D$	17	3034.34	32944.3	$S^{2}p^{2}(D) = D_{2}$	$-s^2p^2(D)3d^2F_{2\frac{1}{2}}$
4	341.926	292461	s243 2P	$-s^2b^2(1D) 3s^2D$	6	3039.234	32887 04	$s^{2}p^{2}(1D) 3p^{2}D_{22}$	$= s^2 h^2 (1D) 3d^2 F_{21}$
5	343.895	290786	s2 p3 2 Do1	$-s^2 h^2 (^3P) 3s^2 P_{11}$	110	3042 808	32854.85	$s^{2}p^{2}(1D) 3s^{2}D_{12}$	$-s^2 h^2(1D) 3h^2 F_{22}$
4	344.387	290371	$S^2 D^3 2 D_{11}^2$	$-s^2 p^2 ({}^3P) 3s {}^2P_1$	12	3048.80	32790.3	$s^{2}h^{2}(1D)$ 3 $s^{2}D_{2}$	$-s^2h^2(1D) 3h 2F_{01}$
5	365.864	273326	S2D3 2P	$-s^2 p^2 (^3P) 3s^2 P_{11}$	โล้	3049,139	32786.64	$s^2 h^2 (1D) 3s^2 D_{11}$	$-s^2h^2(1D) 3h 2F_{01}$
4	366.384	272938	$s^2 b^3 2P$	$-s^2 p^2 (^3P) 3s 2P_1^2$	4	3154.387	31692.74	$s^2 h^2 (1D) 3h^2 P_{11}$	$-s^2 h^2 (1D) 3d^2 D_{21}$
9	429.496*	232831	$s^2 p^3 {}^2D_{1\frac{1}{2}}$	-sp4 2P1	î	3357.82	29772.7	s2p2(3P)3p 2P1	$-s^2 p^2 ({}^{3}P) 3d {}^{4}D_{1}$
10D	430.173*	232465	$s^2p^3 {}^2D_{14}$	$2\frac{1}{2} - sp^4 2P_{1\frac{1}{2}}$	1	3367.65	29685.8	s2p2(3P)3p 2P11	$-s^2p^2(^3P)3d ^4D_1^3$
6	464.302*	215377	$s^2 p^3 {}^2P$	-sp4 2P1	1	3372.24	29645.3	s2p2(3P)3p 2P11	$-s^2p^2(^3P)(^3d 4D_{11})$
8	465.132*	214993	$s^2 p^3 \ ^2 P$	-sp4 2P14	2	3401.62	29389.4	$s^2p^2(^3P)$ 3p 2P_4	$-s^2p^2(^3P)3d^2P_*$
10D	567.712*	176146	$s^2 p^3 ^2D$	$-sp^{4} 2D$	3	3411.66	29302.8	$s^2 p^2 ({}^3P) 3 p {}^2P_{14}$	$-s^2 p^2 (^3P) 3d ^2P_1^2$
4	630.17*	158687	$s^2 p^3 \ ^2 P$	$-sp^{4} 2D$	2	3426.34	29177.3	s ² p ² (³ P) 3p ² P ₄	$-s^2 p^2 (^3P) 3d ^2P_{1\frac{1}{2}}$
7	056.10*	152416	s²p³ 4S	-sp4 4P1	4	3436.57	29090.5	$s^2p^2(^3P) 3p ^2P_{1\frac{1}{2}}$	$-s^2p^2(^{3}P)3d \ ^2P_{1\frac{1}{2}}$

* Previously classified by Bowen (reference 2). Wave-lengths above 2000A are taken from Dingle's list of unclassified lines (references 1 and 3).

¹H. Dingle, Proc. Roy. Soc. A122, 144 (1929).

² I. S. Bowen, Phys. Rev. 29, 245 (1927).

I. S. BOWEN

TABLE IV. Term values in F III.

		$s^2p^{3}^4S$ $s^2p^3^2D_{2rac{1}{2}}$ $s^2p^3^2D_{1rac{1}{2}}$ $s^2p^3^2P$	505404 471329 471298 453857	$sp^{4} {}^{4}P_{2\frac{1}{2}}$ $sp^{4} {}^{4}P_{1\frac{1}{2}}$ $sp^{4} {}^{4}P_{\frac{1}{2}}$ $sp^{4} {}^{2}D$ $sp^{4} {}^{2}P_{1\frac{1}{2}}$	353507 353165 352988 295169 238864
$s^2 p^2 ({}^3P) 3s {}^4P_{\frac{1}{2}}$ $s^2 p^2 ({}^3P) 3s {}^4P_{1\frac{1}{2}}$ $s^2 p^2 ({}^3P) 3s {}^4P_{2\frac{1}{2}}$ $s^2 p^2 ({}^3P) 3s {}^2P_{\frac{1}{2}}$ $s^2 p^2 ({}^3P) 3s {}^2P_{1\frac{1}{2}}$ $s^2 p^2 ({}^1D) 3s {}^2D_{2\frac{1}{2}}$ $s^2 p^2 ({}^1D) 3s {}^2D_{1\frac{1}{2}}$	188702.7 188491.4 188172.5 180920.1 180535.6 161393.8 161390.5	$s^{2}p^{3} 2P$ $s^{2}p^{2}(^{3}P) 3p 2S$ $s^{2}p^{2}(^{3}P) 3p 4D_{1}$ $s^{2}p^{2}(^{3}P) 3p 4D_{2}$ $s^{2}p^{2}(^{3}P) 3p 4D_{2}$ $s^{2}p^{2}(^{3}P) 3p 4D_{2}$ $s^{2}p^{2}(^{3}P) 3p 4D_{3}$ $s^{2}p^{2}(^{3}P) 3p 4P_{4}$ $s^{2}p^{2}(^{3}P) 3p 4P_{4}$ $s^{2}p^{2}(^{3}P) 3p 4P_{2}$ $s^{2}p^{2}(^{3}P) 3p 2P_{1}$ $s^{2}p^{2}(^{3}P) 3p 2P_{2}$	453857 160971.6 156709.5 156594.6 156404.9 156146.0 154175.9 154081.6 153892.9 149430.4 149040.0 147933.0 145063.8 144976.9 128603.8 128539.0 125110.9 121059.1 120924.8	$\begin{array}{c} sp^4 \ ^2D\\ sp^4 \ ^2D_1\\ sp^4 \ ^2P_1\\ sp^4 \ ^2P_4\\ sp^2 \ ^2P_1\ ^3d \ ^4P_{11}\\ sp^4 \ ^2p^2 \ ^3P_1\ ^3d \ ^4P_{12}\\ sp^4 \ ^3P_4\ ^3P_4\ ^3P_4\\ sp^2 \ ^3P_1\ ^3d \ ^4P_{13}\\ sp^2 \ ^3P_1\ ^3d \ ^4P_{14}\\ sp^2 \ ^3P_1\ ^3d \ ^3P_{14}\\ sp^2 \ ^3P_1\ ^3P_{14}\\ sp^2 \ ^3P_{14}\ ^3P_{14}\ ^3P_{14}\\ sp^3 \ ^3P_{14}\ ^3P_{14}\ ^3P_{14}\\ sp^3 \ ^3P_{14}\ ^3P_{14}\ ^3P_{14}\\ sp^3 \ ^3P_{14}\ ^3$	$\begin{array}{c} 295169\\ 238864\\ 238474\\ 118152.7\\ 118043.8\\ 117888.2\\ 117684.5\\ 115886.5\\ 115674.3\\ 115334.3\\ 115331.7\\ 115291.6\\ 115201.6\\ 114577.7\\ 114436.0\\ 114364.8\\ 114154.4\\ 113784.5\\ 110143.9\\ 110025.9\\ 92273.9\\ 92273.9\\ 92273.9\\ 92222.9\\ 90523.0\\ 90519.9\\ 89231.9\\ 87229.4\\ 87160.1\end{array}$
s ² p ² (³ P)4s ² P s ² p ² (¹ D)4s ² D	87436 64596		•	$\begin{array}{c} s^2 p^2 {}^{(1}D) 3d \ ^2S \\ s^2 p^2 {}^{(3}P) 4d \ ^4P_{2i} \\ s^2 p^2 {}^{(3}P) 4d \ ^2F_{2i} \\ s^2 p^2 {}^{(3}P) 4d \ ^4P_{1i} \\ s^2 p^2 {}^{(3}P) 4d \ ^2F_{3i} \\ s^2 p^2 {}^{(3}P) 4d \ ^2D \end{array}$	84412.1 63284 63168 63095 62809 60447
				$s^{2} \tilde{p}^{2} ({}^{3}P) 5d {}^{4}P_{2\frac{1}{2}} \\ s^{2} p^{2} ({}^{3}P) 5d {}^{4}P_{1\frac{1}{2}}, \frac{1}{2}$	39978 39829

TABLE V. Classified lines in F II.

Int.	λ(Vac.)	ν	Classification	Int.	λ(Vac.)	ν	Classification
Int. 0 2 1 1 1 1 0 2 1 0 1 0 1 4 5 4 1 1 1 1 1 1 1 0 2 1 1 1 1 1 0 2 1 1 1 1 1 1 1 1 0 2 1 1 1 1 1 0 2 1 1 1 0 2 1 1 1 0 2 1 1 1 0 2 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} \lambda(Vac.)\\ \hline 353,452\\ 375,300\\ 375,434\\ 375,718\\ 375,793\\ 375,928\\ 376,686\\ 377,140\\ 380,902\\ 393,664\\ 394,194\\ 400,579\\ 405,644\\ 407,053\\ 407,511\\ 417,891\\ 417,891\\ 422,012\\ \end{array}$	v 282924 266454 266358 266157 266104 266008 265473 265154 262535 254024 253682 249639 246522 245668 245392 239297 236960	$\begin{array}{c} \text{Classification} \\ \hline s^2p^4 {}^3P_2 & -s^2p^3({}^2P) 3d {}^3P_2 \\ s^2p^4 {}^3P_2 & -s^2p^3({}^2D) 3d {}^3P_2 \\ s^2p^4 {}^3P_2 & -s^2p^3({}^2D) 3d {}^3P_2 \\ s^2p^4 {}^3P_1 & -s^2p^3({}^2D) 3d {}^3D_3 \\ s^2p^4 {}^3P_1 & -s^2p^3({}^2D) 3d {}^3D_2 \\ s^2p^4 {}^3P_2 & -s^2p^3({}^2D) 3d {}^3D_2 \\ s^2p^4 {}^3P_1 & -s^2p^3({}^2D) 3d {}^3D \\ s^2p^4 {}^3P_1 & -s^2p^3({}^2D) 3d {}^3D \\ s^2p^4 {}^3D & -s^2p^3({}^2D) 3d {}^1P \\ s^2p^4 {}^1D & -s^2p^3({}^2D) 3d {}^1P \\ s^2p^4 {}^1D & -s^2p^3({}^2D) 3d {}^1P \\ s^2p^4 {}^3D & -s^2p^3({}^3D) 3d {}^3D \\ s^2p^4 {}^3D & -s^2p^3({}^3D$	Int. 3 1 6 6 5 3 8 4 6 6 4 3 3 8 7 9 4	$\begin{array}{c} \lambda(\text{Vac.})\\ \hline\\ 436.288\\ 436.578\\ 457.183\\ 457.183\\ 471.990\\ 472.710\\ 473.021\\ 484.650\\ 513.637\\ 514.942\\ 546.846*\\ 547.873*\\ 548.324*\\ 548.511\\ 605.67*\\ 606.27*\\ 606.81*\\ 606.85*\\ \end{array}$	ν 229206 229054 218731 211869 211546 211407 206334 194690 194197 182867 182524 182374 182374 182312 165106 164943 164796	Classification $s^2p^4 {}^{3}P_1 - s^2p^3({}^{2}P)3s {}^{3}P$ $s^2p^4 {}^{3}P_0 - s^2p^3({}^{2}P)3s {}^{3}P$ $s^2p^4 {}^{3}P_0 - s^2p^3({}^{2}D)3s {}^{3}D_3$ $s^2p^4 {}^{3}P_1 - s^2p^3({}^{2}D)3s {}^{3}D_3$ $s^2p^4 {}^{3}P_0 - s^2p^3({}^{2}D)3s {}^{3}D_1$ $s^2p^4 {}^{1}D - s^2p^3({}^{2}D)3s {}^{3}D_1$ $s^2p^4 {}^{1}D - s^2p^3({}^{2}D)3s {}^{3}D_1$ $s^2p^4 {}^{1}D - s^2p^3({}^{2}D)3s {}^{3}D_1$ $s^2p^4 {}^{3}P_0 - s^2p^3({}^{2}D)3s {}^{1}D$ $s^2p^4 {}^{3}P_2 - s^2p^3({}^{4}S)3s {}^{3}S$ $s^2p^4 {}^{3}P_1 - s^2p^3({}^{4}S)3s {}^{3}S$ $s^2p^4 {}^{3}P_0 - s^2p^3({}^{2}D)3s {}^{1}P$ $s^2p^4 {}^{3}P_2 - sp^5 {}^{3}P_1$ $s^2p^4 {}^{3}P_1 - sp^5 {}^{3}P_0$ $s^2p^4 {}^{3}P_2 - sp^5 {}^{3}P_2$ $s^2p^4 {}^{3}P_2 - sp^5 {}^{3}P_2$
0 5	422.650	236602	$s^{2}p^{4} {}^{3}P_{1} - s^{2}p^{3}(4S)4s {}^{3}S$ $s^{2}p^{4} {}^{3}P_{2} - s^{2}p^{3}(4S)3d {}^{3}D_{2}$	7	607.48* 608.06*	164614	$s^{2}p^{4} \ {}^{3}P_{0} - sp^{5} \ {}^{3}P_{1}$ $s^{2}p^{4} \ {}^{3}P_{1} - sp^{5} \ {}^{3}P_{1}$
5 3 4	$\begin{array}{c} 431.541 \\ 431.812 \\ 435.640 \end{array}$	231728 231582 229547	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	4 6 2	λ (Air) 3739.60 4083.919 5173.16	26733.2 24479.39 19325.2	$s_{P} = \frac{s_{P} + s_{P} + s_{P} + s_{P}}{s_{P} + s_{P} + s_{$

* Previously classified by Bowen (reference 2). Wave-lengths above 2000A are taken from Dingle's list of unclassified lines (reference 3).

$s^{2}p^{3}(^{4}S)3s \ ^{5}S$ $s^{2}p^{3}(^{4}S)3s \ ^{3}D_{3} \ ^{3}D_{3} \ ^{3}p^{2}p^{3}(^{2}D)3s \ ^{3}D_{1} \ ^{3}p^{2}p^{3}(^{2}D)3s \ ^{3}D_{1} \ ^{3}p^{2}p^{3}(^{2}D)3s \ ^{1}D \ ^{3}p^{2}p^{3}(^{2}P)3s \ ^{1}P \ ^{3}p^{2}p^{3}(^{2}P)3s \ ^{3}P_{1} \ ^{3}p^{2}p^{3}(^{2}P)3s \ ^{3}P_{1} \ ^{3}p^{2}p^{3}(^{2}P)3s \ ^{3}P_{0} \ ^{3}p^{2}p^{3}(^{2}P)3s \ ^{3}P_{0} \ ^{3}p^{3}p^{3}(^{2}P)3s \ ^{3}P_{0} \ ^{3}p^{3}p^{3}(^{2}P)s \ ^{3}p^{3}(^{2}P)s \ ^{3}p^{3}p^{3}(^{2}P)s \ ^{3}p^{3}(^{2}P)s \ ^{3$	$\begin{array}{c} 105536.00\\ 99325.0\\ 70323.58\\ 70302.51\\ 70289.48\\ 66200.4\\ 54045.2\\ 52648.37\\ 52646.76\\ 52644.10\\ \end{array}$	$\begin{array}{c} s^2p^4 ^3P_2 \\ s^2p^4 ^3P_1 \\ s^2p^4 ^3P_0 \\ s^2p^4 ^1S \\ s^2p^4 ^1S \\ s^2p^3 ^4S) ^3p_1 \\ s^2p^3 ^4S) ^3p_2 \\ s^2p^3 ^4S) ^3p_1 \\ s^2p^3 ^4P) ^3p_1 \\ s^2p^3 ^4P) $	$\begin{array}{c} 282193\\ 281850\\ 281701\\ 260393\\ 236355\\ 79580.55\\ 79580.55\\ 79580.22\\ 79549.67\\ 74490.29\\ 74487.29\\ 74487.29\\ 74485.59\\ 46017.13\\ 45994.63\\ 45627.1\\ 44682.29\\ 44681.48\\ 44680.83\\ 42946.6\\ 42097.10\\ 42036.86\\ 42097.10\\ 42036.86\\ 42010.29\\ 34986.3\\ 28886.0\\ 27496.90\\ 27481.84\\ 27475.24\\ 25667.4\\ 24945.3\\ 24930.4\\ 24906.5\\ 22343.4\\ 14935.0\\ \end{array}$	$\begin{array}{c} sp^{5} 3P_{2} \\ sp^{5} 3P_{1} \\ sp^{5} 3P_{0} \\ sp^{5} 3P_{0} \\ sp^{5} 1P \\ \end{array}$	$\begin{array}{c} 117395\\ 117089\\ 116907\\ 41668.4\\ \\ 51032.12\\ 51031.21\\ 51030.01\\ 51029.33\\ 51028.81\\ 50126.02\\ 50125.22\\ 50123.14\\ 17695.5\\ 17237.08\\ 17231.57\\ 17224.29\\ 16717.50\\ 16691.46\\ 16673.06\\ 15829.51\\ 15735.93\\ 15691.08\\ 15673.85\\ 15000.0\\ 14721.5\\ 13869.9\\ 4111.4\\ -697.8\\ -714.2\\ -748.7\\ -2136.0\\ -2951.4\\ -4502.7\\ \end{array}$
s ² p ³ (⁴ S)4s ⁵ S s ² p ³ (⁴ S)4s ³ S s ² p ³ (² D)4s ¹ D	46879.05 45228.57 10761.8			$\frac{s^{2}p^{3}(^{2}P)^{3}d}{s^{2}p^{3}(^{2}P)^{3}d}\frac{^{3}D_{2}}{^{3}D_{1}}$ $\frac{s^{2}p^{3}(^{4}S)^{3}d}{s^{2}D}$ $\frac{s^{2}p^{3}(^{4}S)^{4}f}{s^{2}p^{3}(^{4}S)^{4}f}$	$-4507.4 \\ -4508.1 \\ 28169. \\ \hline 27642.9 \\ 27487.1 \\ \hline$

TABLE VI. Term values in F II.

transitions between them. As in several cases these high terms included two or three members of a series, it was possible to fix the absolute values of the terms with a much greater accuracy than had hitherto been possible. Furthermore, the identification of fourteen intercombination lines made it possible to fix the relative positions of the doublets and quartets. These results called for a shift of +6300 frequency units in Dingle's quartet term values and of +5534.5units in his doublets. The relative positions of the terms based on the ^{1}D and on the ^{3}P term of the core may be in error by as much as ten frequency units as the only connections between them involve lines of about 300A wave-length.

For the sake of completeness the term values found by Dingle, corrected as mentioned above, are included in Table IV. The positions of the $s^2\rho^2({}^3P)3d^2P$ terms, tentatively fixed by Dingle

on rather meager evidence, were not confirmed by lines connecting them with the ${}^{2}P$ and ${}^{2}D$ states of the $s^2 p^3$ configuration. The extreme ultraviolet lines, listed in Table III, point to another position, namely that indicated in Table IV. Unfortunately the lines that should connect the terms in this new position with $s^2 p^2 ({}^3P) 3p {}^2P$ fall outside the range of the Table of F III lines given by Dingle. In his Table of F II lines,³ however, there are a group of four lines, listed at the end of Table III of this article, at exactly the right position and having the correct relative intensity. The separation of the $s^2 p^2 ({}^3P) 3d {}^2P$ terms found in this way is the same as that adopted by Dingle, thus indicating that his identifications of $s^2 p^2 ({}^{3}P) 3 p {}^{2}S$ $-s^2 p^2({}^{3}P) 3d {}^{2}P$ were correct but those of

³ H, Dingle, Proc. Roy. Soc. A128, 600 (1930).

 $s^2p^2({}^3P)3s \; {}^2P-s^2p^2({}^3P)3p \; {}^2S$ were not. If this rearrangement is valid the latter lines should fall in the green where they may have failed to appear because of lack of plate sensitivity. The new arrangement is supported by the fact that it makes the relative position of the terms of both the $s^2p^2({}^3P)3p$ and $s^2p^2({}^3P)3d$ configurations very similar to that of the corresponding terms in O II.

Dingle³ has also classified a large number of visible and near ultraviolet lines in F II. By utilizing the present data it has been possible to identify many of the extreme ultraviolet lines as transitions between high level terms, including those found by Dingle and the terms of the s^2p^4 configuration. These new lines connect all of Dingle's triplet levels together and also all of

his singlet levels, although no intercombinations between the two systems have been found. These connections and other relationships in the newly identified lines indicate that Dingle's levels should be shifted as follows: triplets of families A and B should be increased by $+2000 \text{ cm}^{-1}$, of family C by $+2530 \text{ cm}^{-1}$; singlets of family B by $+1000 \text{ cm}^{-1}$, and of family C by $+3610 \text{ cm}^{-1}$. The quintets remain unchanged. One or two minor changes in Dingle's identification of lines were made on the basis of additional evidence now available. Table VI includes all levels that have been fixed, those taken from Dingle's list being shifted as indicated above.

These analyses indicate that the ionization potential of F II is 34.81 volts, of F III, 62.35 volts and of F IV, 87.34 volts.