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The Numerical Solution of Schrodinger's Equation

G. E. KIMBALL AND G. H. SHORTLEY, Massachusetts Institute of Technology

(Received February 26, 1934)

Schrodinger's equation may be approximated to any
desired'accuracy by a difference equation over a lattice
covering the region of integration. -The solutions of this
difference equation minimize a certain quadratic form
(analogous to the energy integral J'P*HP) subject to
certairi normalization and, for the higher states, orthogo-
nality conditions. A practical numerical method is devel-

oped for the solution of this variation problem. By altering

the values of a rough solution at each lattice point in
turn by a simple improvement formula, the value of the
quadratic form is continually decreased until the desired
minimum is reached. Illustrations of the method are given
for one-dimensional problems. Practical details are given
for handling two-dimensional lattices, in particular for
the solution of the problem of one electron in an axially
symmetric field.

INTRoDUcTIQN
' ~OR only the simplest problems of quantum

mechanics can Schrodinger's equation be
solved exactly. Numerical solutions of any
problem in which the variables are separable can
be found by applying the ordinary methods of
numerical integration to the separated equations,
but for those problems in which the variables
cannot be separated no direct method of solution
has been given. Problems of this type have
hitherto always been treated by the use of analy-
tical approximations such as perturbation theory
and the Ritz variation method.

Methods have been developed for the numer-
ical solution of non-separable differential equa-
tions, subject to given boundary conditions,
which do not involve the determination of eigen-
values. ' These methods all depend on replacing
the continuum over which the differential equa-
tion is to be integrated by a discrete set of lattice
points and the differential equation itself by a
difference equation which is equivalent to a set
of nonhomogeneous linear algebraic equations.

It has been shown' that a differential equation
of the eigenvalue type may similarly be replaced
by a difference equation which is equivalent to
a set of homogeneous linear algebraic equations
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containing a parameter. The values of this
parameter for which the homogeneous equations
have non-trivial solutions approach the eigen-
values and the corresponding solutions approach
the eigenfunctions of the differential equation as
the lattice spacing decreases to zero. The deter-
mination of these solutions has been reduced'
to the problem of minimizing a certain quadratic
form (which is analogous to the energy integral
J'/*HE) subject to certain normalization and,
for the higher states, orthogonality conditions.
We here develop a practical numerical method of
solving this variation problem. By altering the
values of a rough solution at each lattice point
in turn according to formula (12), the value of
the quadratic form is continually decreased until
the desired minimum is reached. In this respect
the method is similar to the procedure' for the
solution of Laplace's difference equation in n-
dimensions by successively replacing the values
of a rough solution by the arithmetic means of
the 2n neighboring values. While we shall discuss
the procedure in particular for Schrodinger's
equation in coordinate systems in which the
Laplacian is a simple sum of second derivatives,
the method is readily extended to other eigen-
value equations and other types of coordinate
system.

GENERAL THEoRY

Having chosen a suitable lattice, not neces-
sarily uniform, composed say of N points
(boundary points at which /=0 not included),
we consider from now on only the values P~, P2,
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~(~)b')4') =El" (2)

of linear homogeneous algebraic equations. For
example, if i is a point in an n-dimensional cubic
lattice with spacing A, and a, b, c, the 2n
adjacent points, the i'" equation of (2) has the
form

h'h —'((P +P),+ ~ ~ —(2n+h'O' U,)P;]=EP;.
(3)

To each point is given a weight c; equal (with
certain exceptions which we shall discuss later)
to the volume of the "unit cell" of the lattice
at i, so that the integral J'@P over the given
region is approximated by the sum Zc, g;))(;. The
lowest solution of (2) is then that function @

which minimizes the ratio

Ey —LZ(„)c, b„@,@,] /LZ(, ) c,@, ],
and the corresponding E& is the lowest eigen-
value. This is true only if the quadratic form in
the numerator of (4) is symmetric, i.e. , if

Ci~ij= C~5ji ~

We shall now give a method of determining
numerically the lowest state of (2). Let us choose
any function as a rough approximation to the
solution and then change each point in turn in
such a way as to lower E at each step. The con-
dition for the vanishing of BE~/Bp„suggests that
E will be lowered by replacing p„by

(b„' = $Z(;)'b„y;]/[—b„„Eq], (6—)

where Z' denotes summation over all values of
j except j=P. This amounts to satisfying the P""
equation of the set (2). We shall now show that
this change actually lowers E if the lattice is not
too coarse.

Let AQ„= Q„'—p„. Then

p

c.(~4.)' 2c'&.(~&.)'
(b —E ) —— + . (7)

Zc, g;2 (Zc;$,2)'

If the number of lattice points is large,
c„(Ap„)'/Zc;@,2 is small compared to unity. In

. . P))( of P at the la.ttice points. The solutions of
Schrodinger's equation

—h 'V'f+ UP=EP (1)
are then approximated by the solutions of a set

this case we need consider only the first term of
(7), a,nd E will be decreased by the change in p„
if b» —E~ is positive. But 6» —E& may certainly
be made positive by using a sufficiently fine
lattice since 5» is a constant plus a positive term
of order 1/h'h', where h is the lattice spacing,
while E& approaches a limit as hm0.

Therefore, if we take a lattice suSciently fine
to make b» —E~ positive for all points for our
initial rough approximation, we may con-
tinuously decrease E by using (6) as an improve-
ment formula point by point on our function.
As E converges to the true lowest eigenvalue,
the function must converge to the true lowest
eigenstate, for only for an eigenfunction can Ag
and hence AE approach zero.

It is not necessary to recalculate E& after each
improvement by formula (6); it may be shown
that if the change in @ is small compared to p
itsejf, the whole lattice may profitably be run
over using a single value of Z&.

We shall now develop a similar method for the
calculation of the states of higher energy.
Suppose that we know the )(( states P(, P,
of lowest energy, and seek the (@+1)" state
P"+'. Let the states P be normalized so that

&4" 4"=&-p,

gb; f,P=EPP,P.
Then f)'+' is that state orthogonal to P',
which gives the lowest value of E in (4).

For any function p, let us use the notation

Zc,g;f, =3l, (10)

and to avoid confusion with sums over the
lattice points 1. X, let the repetition of the
index a in a term denote summation over n= ].,~, p,. Then the function

is orthogonal to f', , P)' and may, if it does
not vanish identically, be considered as a rough
approximation to f"+' Since the ene. rgy EX=E~
is calculated for a. state orthogonal to ))t',

it must be greater than the energy E"+' (or
equal if x is proportional to P&+').

If we can find a function @' such that E~ &E~,
we can consider x' a better approximation than
x to P)'+". Hence let us seek an improvement
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= —2/3h', bg, ;+g= —1/3h', b;, = V,+1/h', if f —1
is at a distance b andi+1 at a distance 2k fromm

The improvement formula (6) or (13) becomes
for our two types of point, respectively,

With a table of the denominators in thyrse

formulas at hand the improvement of p can be
carried out extremely rapidly. In actual practice
it is never necessary to recalculate E@ until the
whole set of points has been improved, while in
the latter stages the function may be safely
improved a large number of times with the
same E~, since E~ converges to its final value
much more quickly than p itself.

The process of improvement is illustrated in
Fig. 4. Starting from the parabolic arch marked
0, five successive improvements from left to
right gave the curves marked 1, 2, 3, 4, 5, the
energy being recalculated after each complete
improvement. These energies are shown in Fig. 1.
The final result is shown as the curve marked ~
and the final energy as E . Each of these curves
has been normalized to the same value (0.4)
before plotting.

The convergence of the eigenfunction and
eigenvalue to that of the differential equation
as the lattice spacing is decreased is illustrated
in Fig. 2, where the final eigenvalues and func-

tions are shown for the lattice of Fig. 1 and for
lattices of half, double, and quadruple this
spacing. The circles represent the final function
for lattice spacing starting at 0.2, and this
function differs from the continuous solution,
re ", by less than one-half percent, i.e. , less than
the accuracy of the plot, at any point.

Fig. 3 shows the rapidity of improvement in
the calculation of the 2s state. The parabola of
Fig. 1 was used again as a starting function.
When orthogonalized to the ground state, this
gave the curve marked 0. Since 35=0 for this
curve, the improvement formula (13) was used,
the improvement being carried through from left
to right without altering E or M. The result was
then orthogonalized and plotted as curve f. This
process was repeated four times. The fourth
approximation here is considerably closer to the
final curve than it was in Fig. 1 because the
initial curve had a more correct shape.

Practically, the computation of f for any of
these lattices is much more rapid than these
plots would indicate because with such a
process of improvement, one is permitted to do
anything he pleases to the function. The im-

provement of the function can be made at the
rate of several points per minute, and is much
simpler than the calculation of the energy, so
that in practice one can profitably use the same
energy several times, or at least as long as
regions of the curve are sinking in absolute value.

0 .8 /2 /. 5 2.4 ' DZ 4.0 4.8 6.4
FIG. 2. Convergence of the solution of the difference equation to that of the differential equation as the lattice spacing is

decreased for the 1s state of hydrogen. The energy is tabulated as a function of the finest interval. To the accuracy of the
plot (about one-half percent), the circles represent both the solution of the difference equation for the 0.2 lattice and the
solution of the differential equation.
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FIG. 3. The improvement of the 2s state of hydrogen. The is state is shown by the light curve.

However, really rapid convergence is obtained
by using the formula twice to find out how the
function is moving at each point and then alter-
ing the function by hand several times the
amount of its last motion. Since the improvement
formula quickly eliminates sharp irregularities,
this process of "hand tooling" enables one to
reach the final value of the function very
quickly. All computation is facilitated by the
fact that errors, unless of a size to be immedi-
ately obvious, are unimportant and soon cor-
rected so that no calculation need be checked.

APPLICATION TO TWO-DIMENSIONAL

PRQBLEMs

In two-dimensional problems even more use
may be made of the device of increasing the
lattice spacing in regions where P is flat in order
to reduce the number of points. Thus the number
of lattice points can be made a fraction of the
product of the numbers along the two rectangular
axes. We must then consider the coefficients to
be used for points in the region where the lattice
constant changes. For the square lattice shown
in Fig. 4, Table I gives a representative set of
b's and c's; these satisfy the condition (5) and
are such that the two quadratic forms occurring
in (4) approach the corresponding integrals of a

TABLE I. This table gk es cv, h k'(b» —7'v), and —h'k'b» (~ &p)
for a representative set of points in Fig. 4.

cv v
a

1 d 1
9/4 g
3/2 i
3/2 j
4 m
4 n

5 c d e f g ~ j
1 4 1 1

Y3 ' N
1 3 1

N 1 3
ne

M, Ys

k l m n o y q

Y3
Y6 Y6

Y4 1 Y4 Y4
Ql Y4 1 /l4 Y4

given continuo@. s function p as the number of
points is successively quadrupled by halving
all intervals. If the left-hand column of points
in Fig. 4 are along a boundary where 8$/Bn is
to vanish, we take c„=qh, b„„=b„,= —1/b'k',
b, g= —2/b, 'k', b,„=V„+4/b'k'.

The corresponding improvement formulas
obtained from (6) are seen to be little more
complicated than for one dimension. The
amount of labor involved in an improvement or
a calculation of energy in any number of dimen-
sions is essentially proportional to the number
of lattice points used. Practically, we have
found it convenient in two dimensions to draw
on heavy paper a square to represent each
lattice point of color to indicate the type of
formula used. In this square are placed perma-
nent entries of V;, (4+8'O'V~) or the corre-
sponding form for the color in question, and the
weights to be used in summing h'k'p, Zb;;p; and
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p to the equation

O'S O'S

~ ~ ~ ~ ~ o& og

0 ~ 0 ~ ~ ~ C o~

~s ~ ~ ~ o& o o)

,r ~ t ~ ~ ~,e ~k

pe

~U ~ ~ i+ y ~ ~ ~ 0

o ~ o~ ~ ~ o) ~ ~

I-h-I ~Z'h ~
FIG. 4.

when determining the energy. In penci:1 is
entered 4+&'k'( V; E) or the —corresponding
form, and the last four or five @ s so that the
changes may be watched. Older p s are erased
as space is needed for new ones. With experience
in hand-tooling, it is feasible in this way to
solve a lattice of several hundred points in a
couple of weeks. Smaller lattices giving more
approximate values of the energy and the func-
tion may be solved in much less time, since
halving the lattice constant quarters the work.
Two computers are required, one to read and the
other to operate the machine.

The axially symmetric one-electron problem

Schrodinger's equation in atomic units for the
motion of one electron in an axially symmetric
field is reduced, in cylindrical coordinates r, z,

Of ' Oz

by the transformation

0 = LS(r, &)/r'3c*'"".

This two-dimensional equation may be handled
by the methods outlined if we replace V by the
eRective potential ( V—1/4r'+ X'/r') and use
the boundary condition S=0 when r = 0. If we
make a power series expansion near the axis
r=0 we find that S starts as r"+: so that our
parabolic approximation will be valid near r=0
for all ) except ) =0.

For ) =0, if the bottom row of lattice points
in Fig. 4 is along the line r=0, the second
derivative at the point v can be approximated by
putting a curve of the form a+Pr' through
S,/k'* and S„/(2k)'. This gives b,„=—2&/3h',
b„= V,+10/3k', and c„=3/2'*.

If the potential V is both axially symmetric
and an even function of z, S will either be an
even or odd function of z, and the two types of
functions may be obtained separately by using
the boundary conditions BS/Bs=0 and S=0,
respectively, when z=0. If V has a first-order
pole along the axis r= 0 the necessity of differen-
tiating along a radius passing through the pole
is best avoided by using a lattice such that no
lattice line passes through the pole.

We have checked the practicability of these
formulas by a calculation of the ground state
of the hydrogen molecule ion on a coarse lattice,
with results in satisfactory agreement with the
known values. We ar proceeding with the
application of this method to the calculation of
eigenfunctions for other diatomic molecules.


