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Electronic Energy Bands in Metals
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The method of Wigner and Seitz is extended to the
computation of the excited bands of electrons in a metal,
with particular applications to sodium. Instead of using
simply one s wave function, as Wigner and Seitz do, a
combination of eight separate functions is used, one s,
three p, three d, and one f. Boundary conditions for an
arbitrary electron momentum are satisfied at the mid-
points of the lines connecting an atom with its eight
nearest neighbors. The solution is carried out for an
arbitrary direction of propagation in one of the principal
planes. Energy levels and wave functions are determined
as functions of internuclear distance, leading to the

following qualitative results: At the observed distance of
separation, energy levels are given with remarkable
accuracy by the Fermi-Sommerfeld theory, the gaps fall
approximately where they should as computed from
de Broglie waves, and the wave functions act accurately
like plane waves in the region between atoms, but Huctuate
violently, like s, p, ~ ~ functions, near the nuclei. Gaps
in energy are precisely filled up, though in each definite
direction of propagation there are gaps. As the internuclear
distance increases, gaps in energy appear at definite
points, the allowed regions shrinking to zero breadth
about the atomic energy levels at infinite separation.

INTRQDUcTIoN

w IGNER and Seitz' have proposed an
important improvement in the methods

of finding wave functions for electrons in periodic
force fields, such as one encounters in metals.
Previous methods had proceeded by perturba-
tion theory, 'a good account of these methods is
found in the excellent article by Sommerfeld
and Bethe' in the Handbgch der Physik. Many of
the results quoted in that article will be assumed
familiar to the reader, as well as the paper of
Wigner and Seitz. The advance of Wigner and
Seitz lay in their observation that the potential
field acting on an electron in a metal is very
approximately spherically symmetrical in the
neighborhood of a nucleus, so that the wave
equations can be solved by separation of vari-
ables, and numerical integration of the equation
for the radial function, as in problems of isolated
atoms. Only the boundary conditions distinguish
the problem from an atomic one. They imagine
the crystal to be made up of closepacked cells,
one surrounding each nucleus, approximately
spheres but bounded by planes so that they
exactly fill the space. Then the wave function
must satisfy the condition that it be continuous

' Wigner and Seitz, Phys. Rev. 43, 804 (1933).
'Sommerfeld and Bethe, Handbuch der Physik, Vol.

XXIV, 2nd Ed.

with continuous derivative in going from one cell
to the next. Further, they consider only the
lowest electron level, for which the wave function
is periodic, repeating in each cell. It is easy to
see that their conditions then demand that the
normal derivative of the wave function be zero
around the surface of the cell, which they
approximate by using a spherical cell of the
same volume as the actual one, and making the
radial derivative of the wave function zero on
the surface of the sphere. By applying this
condition they obtain an energy level as function
of internuclear distance (or of radius of the
sphere), showing a minimum near the observed
internuclear distance, and which they could
bring into connection with the heat of dissoci-
ation of the crystal. They estimate the excited
energy levels, corresponding to electrons having
linear momentum of translation through the
crystal, from the Fermi distribution, adding the
kinetic energy of free electrons to the energy
derived for the lowest state, and correctly
pointing out that the actual band of energy
levels will necessarily be narrower than the band
so computed. It is the purpose of the present
paper to extend the method of Wigner and Seitz
to an actual calculation of these excited energy
levels.
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1, FORMULATION OF BOUNDARY CONDITIONS

Consider a wave which is modulated, in

passing through the crystal, according to the
plane wave function exp (i(k r)), so that k/2~
is a vector along the wave normal, equal numer-

ically to the wave number, and kh/2s would be
the mechanical momentum, if the wave repre-
sented a free electron. Then according to a
theorem of Bloch (for this and similar references,
see Sommerfeld and Bethe' ), if we go from one
point in the lattice to an equivalent point in
another cell, the wave function is multiplied by
the factor exp (i(k r;;)), where r;; is the vector
from the nucleus' of the first cell to the nucleus

j of the second. In particular, consider one cell
and an adjacent cell, so that r;; is not only the
distance between adjacent nuclei, but the per-
pendicular distance between the opposite faces
of the cell, which are cut at right angles by the
line joining the nuclei in question. Going from a
point of one of these faces to the perpendicularly
(not diametrically) opposite point of the other
is then such a translation as we have considered.
Our boundary condition then is: in going from a
point of the surface of the cell to the perpen-
dicularly opposite point, the wave function must
be multiplied by exp (i(k r)), where r represents
the perpendicular distance between faces. Simi-
larly, each of the three components of the
gradient must be multiplied by the same factor.
The latter condition can be restated. The tan-
gential components of gradient will be auto-
matically taken care of, so that we consider
only the normal components. We note that the
absolute direction in space which is along the
outer normal for one face is along the inner
normal for the other. Thus we require that the
derivative along the outer normal be multiplied

by [—exp (i(k r;;))] in going from one point
to the perpendicularly opposite point. This is
the general and exact boundary condition.

Our problem is to solve a spherically sym-
metrical wave equation, subject to the boundary
condition stated above on the surface of a poly-
hedral cell. The problem is in essence soluble.
We may separate variables, and solve the equa-
tion in a series of products of spherical harmonics
of the angle, multiplied by functions of r, the
coefficients of the series being arbitrary. Such a

solution can be found for any energy value, and
for any energy value we can satisfy the one
boundary condition that the function be finite
at the origin, though except for the characteristic
values of the equation these solutions will
become exponentially infinite at infinity. This
however does not concern us, since we work in
finite cells. It is now in principle possible to
choose the infinite number of coefficients so as
to satisfy the boundary conditions. The pro-
cedure, however, is impracticable, and here we
introduce an approximation. We try to get the
approximate solution by summing a finite
number out of the infinite series of solutions, and
consequently we can satisfy the boundary con-
ditions, not at every point of the surface, but
only at certairi discrete points. In the actual
calculations described, we have dealt with a
body centered cubic lattice, and we have satisfied
the boundary conditions at the eight midpoints
of the lines joining an atom to its eight nearest
neighbors; that is to say, referring to 8'. and S.
Fig. 1, at the centers of the eight hexagonal faces
of the cell. Corresponding to this, we require
only eight wave functions; and using the con-
ventional spectroscopic notation for l values, we
find that this demands one s function, three p's,
three d's, and one f It now pr. oves to be the case
that we can satisfy the boundary conditions at
the centers of faces particularly easily, for then
corresponding points are diametrically opposed
(at opposite ends of a line passing through the
nucleus) as well as perpendicularly.

Let u be the wave function we are considering,
a function of three coordinates. Let it be a sum
of an even part u, which is unchanged on going
from one point to the diametrically opposite
point, and an odd part u„whose sign changes.
Then if the function is u, —u„at the midpoint
of one face, it will be u, +u„at the opposite
point, and similarly if its normal derivative is
u, ' —u„' at one midpoint, it will be u, '+u ' at
the opposite point, where primes indicate normal
derivatives. Hence our boundary conditions may
be stated as

(u, +u„)= [exp (i(k r)) j(u, u„), —

(u, '+u ') = —[exp (i(k r))g(u, ' —u„'),

where the u's are to be computed at the mid-
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FIG. 1. Energy bands for sodium. Symbols Ia—IIb represent type of state allowed
in each band.

points of faces, r is the vector joining midpoints,
and there are in our case four such conditions,
for the four pairs of opposite faces.

The equations above can be easily transformed
to a more usable form. The first one gives at once

1+exp (i(k r))-= -i cot (k r/2),
1 —exp (i(k r))

and the second gives

ug'/u '=i tan (k r/2).

Since it is allowable to multiply the whole
solution by an arbitrary factor, let us assume
that I, is real. Then the equations demand that
N„be pure imaginary, so long as k is real, which
is necessary for real, undamped propagation. If

~
u„I is the absolute magnitude of u, we then

have u„=i~u ~, so that the equations above
may be combined in the form

Iu [/u, = —u, '/Iu ]'=tan (k r/2).

The four equations of this sort give eight equa-
tions in all to be satisfied for the boundary
conditions.

To satisfy these conditions, it proves to be
necessary to build up u, as a sum of four inde-
pendent functions, and similarly for I„.Now all

the spherical harmonics can be written in such
form that they have the same magnitude at each
of the eight midpoints in question, differing only
in sign. There are then just eight different types
of function: (1) a function which has the same
value at all eight points; (2) three functions in
which there is a change of sign on refiection in
one of the three coordinate planes; (3) three
functions in which there is a change of sign on
refiection in one of the three coordinate lines;
(4) one function which changes sign on reflection
through the origin. Any one of these types can be
set up in an infinite number of ways from the
infinite number of wave functions at our dis-
posal. But we assume that, at any rate for states
of low energy, we shall get a good approximation
by taking in each case only the lowest state of
the required symmetry. Thus we take in case
(1) an s function, in (2) the three P functions
with spherical harmonics x/r, y/r, s/r, in (3)
the three d functions with spherical harmonics
xy/r', ys/r', zx/r', and in (4) the one f function
xyz/r' It is obviou. s that in building up our
solution from these functions, we cannot hope to
reproduce correctly the energy levels originating
in any atomic level except an s or p; for we omit
entirely two of the five d, and six of the seven f,
functions.
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Let R=r/2 be the distance from a nucleus to
the midpoint where we satisfy boundary con-
ditions. Let s, p, d, f represent the values of the
radial parts of the corresponding functions, at
this distance R from the nucleus. Then, if we

put in the suitable values of x/R, etc. , for the
corresponding midpoints, we have

u, =
A s+3(Bxy+ Cys+Dsx) d/R',

1
u

I
=3*(Ex+Fy+Gs)p/R+H(3) &xys f/R

In particular, we have four pairs of midpoints.
-Let us compute the values of the I's in succession
for the four points whose coordinates x/R, etc. ,
are 3 '* times (111), (11—.1), (1—11), (1—1—1).
We have, for instance for the second, u, =As
+(B C D)d—, lu—l

=(E+F G)p Hf. —For-
setting up the equations, we need also the quan-
tities tan (k R). Remembering that the com-
ponents of R are each &R/3'*, the second of
these quantities for instance is tan ((k,+k„
—k,)R/3~). Let us name the four tangents, in
the order stated above, E', L, M', N. Then our
eight equations describing the boundary con-
ditions become

K(As+ (B+C+D)d) —(E+F+G)P IZf=0, —

I (As+ (B C D)d) ——(E+F —G)P+Hf = 0, —

M(As+( B—C+D)d—) —(E F+G)p+Hf= 0—,

X(As+ ( B+C D)d)——(E F G—)P Hf—=—0, —

(As'+ (B+C+D)d')
+K((E+F+G)p'+Hf') = 0,

(As'+(B C D)d')——
+L((E+F G)P' Hf') = O—, —

(A s'+ ( B C+D)d—')—
+M((E—F+G)p' Hf') = 0, —

(A s'+ ( B+C D)d')— —
+&((E F G)p'+Hf') =—o. —

These are eight simultaneous linear homogeneous
equations for the eight coe%cients A H, and
as such they have no non-vanishing solutions
unless the determinant of their coefficients is zero.
This gives a single relation between the four
quantities X, L, 3f, N. A second relation between
these quantities arises from the fact that they

are derived from only three independent vari-
ables, the three components of k. With these two
relations between X, L, M', N, only two of them
may be taken to be arbitrary. We may for
instance assume arbitrarily two variables deter-
mining the direction of k, so that for each energy,
internuclear distance, and wave normal, the
equations determine the magnitude of the
electronic momentum or wave-length. The
solution corresponds to a real wave, however,
only if X, L, M, N are all real. The regions of
energy and internuclear distance where this con-
dition is satisfied correspond to the allowed bands
of energy, those where some of these quan-'
tities are complex correspond to the forbidden
bands, in which only damped waves can be
propagated.

2. PROPAGATION IN THE XP' PLANE

The equations above are too difficult to handle
in the general case. However, if we limit our-
selves to propagation in an arbitrary direction
in the xy plane, they simplify enough so that they
can be solved, and at the same time the results
are of suf6cient generality to indicate the essen-
tials of the general solution. In this case k, =o,
from which E=L, M'= N. Now we set up eight
new equations, of which the first is half the sum
of the first two above, the second half the sum
of the third and fourth above, and so on, and the
fifth to eighth are half the corresponding differ-
ences. These equations are

K(As+Bd) —(E+F)p= 0,

M(As Bd) —(E F)—p= 0, —

(As'+Bd') +K(E+F)p'= 0,

(A s' Bd') +M(E—F)p'= 0, —

K(C+D)d Gp Hf = 0, — —

M( C+D)d Gp+—Hf= 0, —

(C+D)d'+ K(Gp'+Hf') = O,

(—C+D}d'+M(Gp' Hf') = 0. —

These equations break up into two groups of
four each, the first containing the four variables
A, j9, E, I, and the second containing C, D, G, II.
They can thus be solved separately. For all

. eight variables to be different from zero demands
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that the determinant of coefficients of each of the
two sets of equations be zero, giving one more
condition than we had before, so that in general
we cannot satisfy both conditions. As a result,
we must satisfy our equations by letting all
variables of one of the two sets be zero, and
satisfying the determinantal equation connected
with the other set. This divides our solutions into
two independent sets: (I) in which A, 8, E, F
are different from zero, the others equal to zero,
and (II) in which C, D, G, IS only are different
from zero. On looking back at the significance of
the constants A H, we see that solutions of
the first class are unchanged on reHection in the
xy plane, while those of the second class change
sign on reHection. We now consider separately
the two classes.

Class I
Eliminating A, 8, E, F, between the four

equations, the determinantal equation by ele-

mentary algebraic manipulation can be put in
the form

L&'+ k(p/p') (~'/~+d'/d) j
X [3I'+ ', (p/p') (s'/s+d'/—d) j

= L2 (p/p') (~'/~ d'/d) j'—

This determines a single relation between X' and
3P, assuming that s, s', etc. , are regarded as
known, which they are if we first fix the energy
and internuclear distance. Plotting 3P against
E', it is the equation of a rectangular hyperbola,
with the 45 degree diagonal passing through the
foci, and the asymptotes at X', 3P= —2(p/p')
X (s'/s+d'/d), the two intersections with the 45
degree line coming at X'=3P= —(p/p')(s'/s),

(p/p') (d'/d). —
Let us next consider the other relation between

E and 3/I. In the present case, by assuming
propagation to take place in the xy plane, we
have already fixed one of the two variables
determining the direction of the wave normal.
Let the other be 8, the angle between this
direction and the x axis. Then k,= k cos 8,
k„=k sin 8, where k is the magnitude of the
vector, so that

X= tan (k,+k„)R/3', 3l= tan (k —k,)R/3',

from which, eliminating k and E. by easy trigo-
nometrical manipulation, (tan ' 3f)/(tan ' X)
= tan (45' —8). This equation between X and 3f
must be solved simultaneously with the hyper-
bolic equation above, determining X and M' as
functions of 8, and hence determining k, the
magnitude of the momentum, as a function of
direction of the wave normal. The solution is
most easily carried out graphically, plot ting both
equations in the X' —3II' plane. The first equa-
tion, as we have seen, is that of a hyperbola.
The second gives curves, proceeding out from
the origin in a more or less radial manner. On
account of the symmetry, we can get all possible
types of propagation by merely considering
angles 8 between 0 and 45 degrees. For 8=0,
M= E, so that the curve is the 45 degree diagonal
in the X' —3P space. For 8=45 degrees, 3I=O,
so that the curve is the axis of abscissas. For
intermediate angles, the curve lies between these
values. Further, in order to have real propaga-
tion, X and 3f must b real, so that X' and 3II'
are positive. Hence we consider only the inter-
sections of the two curves in the first quadrant.
With these descriptions of the curves, the fol-
lowing facts become evident. The equations can
have no, one, or two real solutions. If both
intersections of the hyperbola with the 45 degree
diagonal come for negative X' and 3II', there are
no real solutions. This is the case if —(p/p') (s'/s)
and —(p/p')(d'/d) are both negative, or if s'/s,
p'/p, and d'/d all have the same sign. If one of
these conditions is satisfied, but not the other,
there will be one real solution. In this case one
branch of the hyperbola cuts the first quadrant.
If it cuts both 45 degree line and axis of abscissa,
there will be real propagation for all directions;
this is true if the asymptotes come for negative
X' and 3P, or if 2(p/p')(s'/s+d'/d) —is—nega-
tive. In the contrary case, however, the hyper-
bola will cut the 45 degree line but not the axis
of abscissas, so that there will be real propagation
for a certain range of angles about 8= 0, but no
real propagation in the neighborhood of 45
degrees. Finally if both intersections of the
hyperbola with the diagonal are positive, there
will be two real solutions. One of these, coming
from the positive branch of the hyperbola, will
necessarily have real propagation for a limited
range of angles only, while the other, coming
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from the negative branch, which must cut both
axes, will have propagation for all directions.

Class II
The discussion is throughout similar to that

of class I. The determinantal equation is

Ã'+ l (d'ld) (p/p'+flf')]
x [jd'+ ,'(d'l-d)(p/p'+flf') 3

= Ll(d'/d)(pl p' flf'-) 3'

The asymptotes come at K', 3P= ——', (d'/d)
X (P/P'+ f/f'), the intersections with the 45
degree line at K' = 3/I' = —(d'/d) (flf'),
—(d'/d)(p/p'). If these values are substituted
for the corresponding ones of class I, the same
discussion applies in the present case.

For both cases, once X and 3II are determined
as functions of 8, the linear equations can be
solved for the coefficients, A, 8, E, Ii, or C, D,
6, II, and the whole wave functions can be set
up. Of course, only the ratios of coefficients are
determined, the absolute values coming from the
normalization condition. The solution is per-
fectly straightforward, and it is unnecessary to
reproduce it here.

3. R,HsvLvs

With the same potential curve for sodium
employed by Wigner and Seitz, calculations have
been made for s, p, d, f wave functions connected
with a variety of energies. From these, we get
s'/s, p'/p, etc. , as functions of internuclear
distance for each energy used. We can then
construct Fig. 1, in which energies are plotted
as functions of internuclear distance, and in
which the curves are those on which s'= 0, p' = 0,
etc. , and s= 0, p=0, etc. The lowest curve s'= 0
is that of Wigner and Seitz. These curves divide
the space into different regions, within each of
which the equations have a definite number of
real solutions; for it is obvious that such a
quantity as —(p/p')(s'/s), whose sign deter-
mines the number of solutions, will change sign
when either s', p', s, or p changes sign by going
through zero. We see that for large distances, the
allowed regions are narrow bands surrounding
each energy level of the isolated atom, the bands
broadening as the atoms come together, until
they touch or overlap. As indicated in Fig. 1, it

is convenient to divide the solutions into their
four types, two of class I, two of class II, in
which —(p/p')(s'/s) is positive for class Ia,
—(p/p')(d'/d) is positive for classes Ib and IIa,
and —(f/f')(d'/d) is positive for class IIb, so
that Ib and IIa always occur together in the same
region. Then we note the following fact from
Fig. 1:as the energy bands broaden, and attempt
to overlap, two solutions of different type can
overlap without interfering with each other;
but two solutions of the same type not only do
not overlap, but are forced entirely out of the
overlapping part of the band. An example is seen
in the overlapping of the 3s and 3p bands, in
which among the three solutions of 3p, there is
one, of type Ia, which has the same symmetry as
the 3s solution. This type is absent in the over-
lapping region, only the other two 3p functions
occurring in this region. Several other examples
are evident in the figure. This effect is similar to
that found in second order perturbation theory,
in which terms of different symmetry do not
perturb each other, but terms of the same sym-
metry repel. Another fact follows from Fig. 1, if
it is extended to larger internuclear distances:
while one state originates from each atomic s
level, three from each p level, as we should
suppose, only three originate from each d level,
instead of 6ve, and only one from each f level,
instead of seven. This was to be expected, as we
mentioned earlier, on account of using but eight
functions to set up our approximate solution. It
means, however,

' that above the lowest line
d'= 0 we must expect to have missing states, not
given by our approximation, so that we can
place no great credence in any results of the
method for higher energies. At the actual
distance of separation, this means that but three
states, the 3s and two of the 3p, may be expected
to be reliable. A next step in the improvement of
the method would consist in using, not eight,
but fourteen functions, satisfying conditions at
the midpoints of lines to the eight nearest and
six next nearest neighbors, or at the center of
each face of the cell. This would be quite feasible,
and should extend the correct results to decidedly
higher energies.

The we11-known gaps in energy appear at
large distances in Fig. 1, as the gaps between
energy levels arising from differerit atomic
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FIG. 2. Two inner Brillouin zones, showing energy contours,
approximately normal distance of separation,

states. For smaller distances they are not evident
in the figure, the allowed states filling all energy
levels without gaps in energy. The gaps come
about if we consider only a particular direction
of propagation; the allowed bands in this ease
would not fill up the whole regions in Fig. 1, and
in general there would be gaps separating the
regions. This situation is indicated in Fig. 2, in
which we use a space with k, as abscissa, k„as
ordinate, essentially a momentum space, and
draw contours of constant energy. In this space,
as Brillouin has shown (see Sommerfeld and
Bethe), certain zones are formed, bounded by
straight lines, and the gaps in energy come at the
boundaries of the zones. In our case these are
three dimensional zones, and in Fig. 2 we give
the sections of them made by the plane k, =0.
They resemble, but are not identical with, the
zones of two™dimensional lattices discussed by
Brillouin, Sommerfeld and Bethe. Only two out
of our three lowest zones, the 3s Ia and 3p Ib,
prove to be cut by the plane. k, = 0, when plotted
in this way. We shall not go into the method of
identifying the polygonal parts of zones with the
central zone, since this question is treated in the
references mentioned.

In Fig. 2 the gaps of energy are plainly evident:
along the 45 degree diagonal, there is no contour
for energy —0.35, the energy jumping from
about —0.37 to —0.32. If we look at the figure
in a broader way, however, we see that the lines
of constant energy are roughly circles. If the
electrons were free, the lines would be exactly

~ 3
C3

Lu

2D ZONE IST ZONE 2D ZONE

FrG. 3.Energy as function of wave number, for wave in 110
direction, showing first two zones.

circular, the energy depending only on the mag-
nitude of the momentum, not on its direction.
From the resemblance of the curves to circles,
we see that the free electron picture is not en-
tirely incorrect. The comparison is better shown
in Fig. 3, in which we plot energy as a function
of the magnitude of k, for the 1j.0 direction, or
the 45 degree direction of Fig. 2. The free electron
distribution would correspond to a parabolic
curve, the kinetic energy being proportional to
the square of the momentum. As we see, the
actual curve agrees rather closely with the free
electron parabola, which is drawn with the
correct constants. In fact, for the lower half of
the bottom zone, which alone is filled with
electrons in the normal state of the metal, the
agreement is practically perfect. This is an unex-
pected and significant result of the present cal-
culations. It has been expected that the true
curve would be represented by a parabola in its
lower part, but it was generally supposed that
the curvature of the parabola would be less than
for free electrons. As a rnatter of fact, if we draw



ENERGY BANDS I N METALS

similar curves for a distance of separation de-
cidedly greater than the normal distance, say
twice as great, we do find a decidedly smaller
curvature, the gaps becoming much larger in
proportion, and the curves for the occupied
regions much flatter, so that these regions are
narrower than for the case of the free electron
distribution, as pointed out by signer and
Seitz. But at, or even in the general neighborhood
of, the equilibrium distance, the free electron
energy is a good approximation, except in the
immediate neighborhood of the gaps. Another
point may be noticed from Fig. 3. The forbidden
energy bands are closely connected with electron
diffraction by the crystal; if electrons are thrown
at the crystal in such a direction and with such
energy that they would lie in a forbidden band
within the metal, they are totally reflected, and
form the Bragg reflected beams. The Bragg law
of reflection, which is experimentally verified for
the electrons, is correct only if the forbidden
bands come just at the places predicted by the
free electron curves. These energies and momenta
lie at the intersection of the parbola with the
vertical lines at the edges of the zones, in Fig. 3,
and it is significant that they lie within the gaps
as actually found. Thus our energy distribution
would lead to Bragg reflections, not just at one
definite angle, but through a range of angle,
resulting in a broadening, but the angle pre-
dicted by the elementary law would lie within the
actual broadened beam of directions.

The wave functions themselves show inter-
esting form. In Fig. 4, we plot the wave function
from the lowest zone, normal distance of sepa-
ration, energy —0;60, corresponding to a long
wave-length. The wave is travelling in the i10
direction, and a line is drawn through a set of
atoms in the 111 direction (the closest direction
to the wave normal in which we can find a closely
packed line of atoms). The real part of the wave
function is plotted as a function of distance along
that line, the nuclei being indicated. In the
neighborhood of the nuclei, the function has the
character of an atomic function, being like a 3s
function at the left side of the diagram, a 3p at

FsG. 4. Electronic wave function, real part, for points on a
line in 1j.i direction.

the right. In the imaginary part of the wave
function, the role of 3s and 3P would be inter-
changed. But now we note that in between
nuclei the wave function follows close to a sinu-
soidal curve, which is drawn for comparison. The
accuracy of the agreement is another unexpected
result of the present calculation. It has been
checked by cutting through the same wave in
other directions, and also by considering waves
of other wave-lengths. It means that in all that
part of the metal when the valence electron is
not actually penetrating into the core of an
atom, its wave function is much like that of a
free electron, just as its energy is approximately
that of a free electron. Here again, for distances
of separation much larger than the normal
distance, we no longer have agreement with the
free electron picture. It is worth pointing out
that the essentially new results of the present
paper, namely the indication of the accuracy of
the free electron picture both in energy and in
the part of the wave function outside the atom
(but not inside), and the detailed investigation
of the nature of the energy gaps and zones (which
can be carried much further than we have in-
dicated) both depend on the possibility of actu-
ally solving the wave equation for an electron in
a periodic field without important approxima-
tions. Ke could hardly expect them to follow with
anything like the same certainty from a per-
turbation method which would be inaccurate at
the actual internuclear separation.


