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The Normal Modes and Frequencies of Vibration of the Regular Plane Hexagon
Model of the Benzene Molecule~

E. BRrGHT WiLsoN, JR., Gates Chemical Laboratory, California Institute of Technology

(Received February 6, 1934)

The thirty modes of vibration of the regular plane
hexagon model for the benzene molecule, including both
the hydrogen and carbon atoms, are derived by the group
theory method described by Wigner. From these the
twenty frequencies of vibration are calculated in terms of
a simple potentia1 function involving six force constants.
Selection rules for the Raman and infrared spectra are

listed. Seven fundamentals are permitted in the Raman
spectrum and four fundamentals in the infrared. Both
analytical and graphical descriptions of the modes of
vibration are given. These depend largely on the symmetry
of the molecule and are only in part influenced by the
choice of potential function adopted.

INTRODUCTION MATHEMATIcAL METHoDs

"N interpreting the infrared and R,aman spectra
of polyatomic molecules, it is customary to

assume that the potential function for the forces
between the atoms can be represented with suf-
ficient accuracy by retaining only the quadratic
terms in its Taylor expansion in powers of the
coordinates. With this restriction, which is
equivalent from the classical mechanical stand-
point to the assumption that the vibrations are
of small amplitude compared to the interatomic
distances, it is possible to obtain the fundamental
frequencies and normal modes of vibration of the
molecule as functions of the force constants. This
has been done by a straightforward procedure
for a number of simple cases, ' but complicated
molecules, even with high symmetry, are very
difficult to treat without more powerful methods.

Wigner' has shown that group theory greatly
simplifies the process of obtaining the normal
modes of vibration of symmetric molecules. In
this paper I have applied his method to benzene,
obtaining the normal vibrations and frequencies;
in addition, the selection rules for the infrared
and Raman spectra are given.

* Contribution No. 396.
~ D. M. Dennison, Rev, Mod. Phys. 3, 280 (1931).
«Some of these are given by K. W. F. Kohlrausch,

Der Smekal-Eaman Egekt. Springer, Berlin, 1931.
3 E. Wigner, Gottinger Nachrichten, p. 133, 1930.

in which q is the ith coordinate in ordinary
units, m; the mass of the atom whose coordinates
are concerned, and g; the new coordinate. For
small oscillations, the kinetic and potential
energies are

2T= P qP, 2U= P a;;q;q;. (2)

The problem of finding the normal modes of
vibration and frequencies is solved when the
transformation

q;= 2 4,Q~

has been obtained which transforms T and V into

2T=Q Qp', 2U=Q XgQL2. (4)

The Qq's are the nortnal coordinates and the
XI,'s are related to the frequencies vI, by the
equation

To obtain the coefficients l;I, and the frequencies

The positions of the atoms in the molecule are
described by giving the Cartesian coordinates of
each atom referred to the equilibrium position of
the atom as origin. It is convenient to change the
scale of the coordinates by the relation
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it is necessary to solve the secular equation

fa, , —a, ,7,
f
=0, (6)

in.which 8;; is unity if i equals j and zero other-
wise.

The solution of the secular equation is facili-
tated by a knowledge of the symmetry of the
molecule, which can be specified by giving the
symmetry operations which transform the mole-
cule into itself. Thus there are twenty-four sym-
metry operations which transform the regular
plane hexagon model of benzene into itself.
These include rotations about symmetry axes,
reHections in symmetry planes, inversion through
a center of symmetry, and rotations about axes
combined with reHections in planes perpendicular
to the axes. The set of such operations for a
molecule forms a point group, which has the
characteristic group property that the effect of
any two operations applied successively is
equivalent to the operation of some one member
of the group.

Since the application of a symmetry operation
R of the undistorted molecule leaves the molecule
in a condition indistinguishable from its original
position, the potential and kinetic energies are
invariant under all such operations. As may be
seen by considering Eq. (4), this restricts the
possible modes of vibration Qq. If Qq is a non-
degenerate vibration; i.e. , if ) I, has a value dis-
tinct from the other ) 's, then Q@ must be either
symmetric or antisymmetric with respect to the
symmetry operations of the point group G of the
molecule. If Qq is degenerate; i.e. , if there are
several vibrations, say Q~, Q2, Q3, with the same
frequency, then the application of a symmetry
operation will transform each of these degenerate
vibrations into a linear combination of the three.

RQz~Qz (Q& is symmetric to R), (7)

RQI,~ Qq (Qq is anti—symmetric to R), (8)

RQ~mP R~ Q (degenerate).

The sum is over all the Q 's with the same X.
The symmetry of the molecule restricts still

further the normal coordinates. In the theory of
groups it is proved that each group G has only
a certain number of irreducible representations'

4 A. Speiser, Theoric der Gruppen von end&cher Ordnung.
Springer, Berlin, 1927.

F&, F2, F„, each of which represents a type
of symmetry which is allowed for the normal
coordinates of a molecule with point group G.
Every Q& must belong to a symmetry type which
is correlated with one of the I' s belonging to G,
but for a given molecule every symmetry type F;
may not be represented among the Qq's and more
than one Qq may have the same symmetry. '

The sum of the diagonal coefficients R~~ in
the transformation of Eq. (9) is called the
character xg of the operation R when applied to
the set Qq which have the same k

XR 2 Rkk'
k

(10)

TABLE I. Ualues of p;(') for the point group D6& and of x
for benzene.

E C2 C3 C6 C2' Cg" i 0~ S6 S3 0 0,'

Rig F1
Agg F2
&Ig F3
82f, F4
E2g F5
EIg F6

~1 F7
A2 F8
&1~ F9
&~u F10
+2' Fll
@lte F1Q

1 1 1 1
1 1 1 1
1 —1
1 —1 1 —1
2 2 —1 —1
2 —2 —1

1 1 1 1
1 1 1 1
1 —1 1 —1
1 —1 1 —1
2 2 —1 —1
2 —2 —1

1 1 1—1 —1 1
1 —1 1—1 1 1
0 0 2
0 0 2

1 1 —1—1 —1 —1
1 —1 —1—1 1 —1
0 0 —2
0 0 —2

1 1 1 1
1 1 1 —1 —1

1 —1 1 —1
1 —1 —1 1

2 —1 —1 0 0—2 —1 1 0 0

—1 —1 —1 —1 —1.—1 —1 —1 1 1
1 —1 1 —1 1
1 —1 1 1 —1—2 1 1 0 0
2 1 —1 0 0

h; 1 1 2 2 3 3 1 1 2 2 3 3

36 0 0 0 —4 0 0 12 0 0 0 4

kjgj 36 0 0 0 12 0 0 12 0 0 0 12

From this de6nition and Eqs. (7) and (8) it is
clear that the character of an operation for a
non-degenerate Qz must be equal to +1 or —1.
The manner in which the symmetry of a given
normal coordinate is restricted by the knowledge
of the I'; to which it belongs is illustrated by
Table I. The numbers in this table are the char-
acters p&~'& for each symmetry operation R when

applied to a Q~ or set of Qq's with the same X

which belong to the symmetry type of I';.
Table I is for the point group D6y, to which
benzene ig assumed to belong. Wigner' has
published such tables for each of the crystallo-
graphic point groups and their construction is
described in standard works on group theory. 4
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The number n; of Qq's which have the char-
acters corresponding to F; is given by the group
theory formula

Here ¹isthe number of symmetry operations of
G, xg&'~ is the character of R in I';, and xg' is a
new quantity, the character of R when applied
to the original set of coordinates q;. Thus if

(12)

summed over all the g s, then

XB & &ii ~

There is a simple theorem which shortens the
labor of the calculation: the symmetry operations
of a group G can be divided into classes such that
xz for every member R of the same class is the
same. This applies both to xg&'~ and to xg'. If
h; is the number of operations and x; is the
character of the operations in the jth class, then
Eq. (11) becomes

and we need to calculate x for only one member
of each class. The n s give the number of Qq's

which have the symmetry properties (xs~") of
F;. We may symbolize this by writing:

1 benzene 2 n'f i

APPLIcATIoN To BENzENE

The model assumed for benzene is the usual
regular plane hexagon with the carbon and
hydrogen atoms lying in the same plane as is
shown in Fig. 1. The thirty-six g's are shown in
Fig. 2 and form systems of rectangular coor-
dinates with origin at the equilibrium position of
each atom. R;, Y;, Zi and r, , y;, si are the coor-
dinates of the ith carbon and the ith hydrogen
atom, respectively. The R;, r; point radially
outward as shown in Fig. 2, while the Z;, s; are
perpendicular to the plane of the ring.

The symmetry operations of this model are
also shown in Fig. 2; they fall into the following
twelve classes. E(h~= 1) identity; Ce(kg= 1)
rotation by er about the six-fold axis; C3(&3=2)
rotation by &2~/3 about the six-fold axis;
Ce(k4=2) rotation by &n./3 about the six-fold
axis; C2'(h&=3) rotation by er about axes I', Q,
R; C2"(k6——3) rotation by ~ about axes T, U, V;
f (h7= 1) inversion through the center of sym-
metry; 0&(&8= 1) reflection through the plane of
symmetry in the XY plane; Se(h&=2) rotatory-
reflection about the six-fold axis by A m./3;
Se(&ye= 2) rotatory-reflection about the six-fold
axis by &2~/3; or"(h~~=3) reflection through
planes D, F, G; or'(h~~=3) reflection through
planes A, 8, C. These operations form the point
group D6g

Table I gives the characters x;&'& for the twelve
irreducible representations of D6q, which has
twenty-four operations as listed above. In addi-

Six Qq's will correspond to translation and
rotation of the molecule as a whole. The sym-
metry classes to which these belong may be
found by inspection, and a new set of numbers
n obtained which gives the number of purely
internal motions of each symmetry class.

By using the symmetry of the molecule it is
possible to factor the secular Eq. (6) into a
number of equations of lower degree. Group
theory provides the theorem: the degree of the
factor of the secular equation from which the
QI, 's belonging to I'; are obtained is n and this
factor is repeated xg&'& times, where x~&'~ is the
character of the identity operation B for F;. A
corollary is, therefore, that the roots ) & of this
factor will have a multiplicity y~&'~.

FK'. 1. Model of benzene.

I

Qy
Y

Fro. 2. Coordinates and symmetry of benzene.
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tion to the symbols Fi, I'2, I'~~ for the irre-
ducible representations which were used in the
general discussion, Tisza's' symbols, A„A„,etc. ,

are given. These are more usefg. l for specific
applications since they are more descriptive.
Thus A and 8 refer to non-degenerate, Ei, E2 to
degenerate types of vibration. The subscript g
means that the vibration is symmetric with
respect to the inversion i, while I means that it
is anti-symmetric to i. A refers to vibrations that
are symmetric to rotation by 2x/n about the
n-fold axis; 8 labels vibrations which are anti-
symmetric to this operation. Table I also gives
the characters x,' of the reducibte representation;
i.e. , the g s or R;, F;, Z;, r;, y;, s,. The operation
of C2, for example, on the molecule moves every
atom to a new position. Therefore, in the trans-
formation Eq. (12), each of the r;; must be zero so
that xg' is zero for C2. The same is true for the
operations belonging to the classes C3, C6, C2", i,
86, S3, and 0-y". This illustrates that it is only
the unshifted atoms which contribute to
Thus reHection of the molecule through the plane
of symmetry A shifts all but the atoms Ci, C4,

~i, II4. For these:

+x + r+
5

+

+
Qy

+
3

r

Y
+ r x + r

Y =Y= Y

ARgmAi, Argmrg,

A V&-+ —F&, Ay&-+ —y&,

+N +r ~
17 gp, a . gaga

AZgmZg, Azgmsg.

with similar equations for C4, II4. The sum of the
coefficients r;; is thus +4.

When the values of h;x and x, &'& from Table I
are substituted in Eq. (14), the result is obtained
that:

F, „,=2F +2F +2F +4F +2F
(1) (1) (1) (2) (2)

+2r.+2r, +2r„+2r„+4r„. (17)
(1) (1) (1) (2) (2)

The figures in parentheses indicate the multi-
plicities of the frequencies derived from the
corresponding I";.

Before interpreting this in terms of frequencies
and factors of the secular equation, it is con-

' L. Tisza, Zeits. f. Physik 82, 48 (1933).

Fio. 3. Modes of vibration of benzene. 6a', 7a', 8a', 9a'
must be combined to give four true modes, and 18a', 19a',
20a' must be similarly combined.

venient to eliminate the QA,
"s which refer to

translation and rotation of .the molecule as a
whole, since they do not enter into the calculation
of the frequencies. In Fig. 3, which shows the
modes of vibration of benzene, P, Z, coy,

represent translation and rotation with respect
to the F and Z axes, and the remaining trans-
lation and rotation are of course related to F
and coy by a rotation about the six-fold axis. The
symmetry properties of these motions, obtained
by inspection, show that Q. belongs to F8 and

Q~, to I'2, while Q„Q„and Q~, Q~„are two sets
of degenerate modes belonging to I'~2 and I'6,

respectively. When these are taken out, we
obtain:
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F benzene= 2F1+F2+ 2F4+ 41 5+F6+FS

+2I', +2I'„+2I'„+3I'„, (18)

or, using the other type of symbols:

F benzene 2~ 1g+~2g+ 2~2g+4+2g++lg

+Am„+28'„+282„+2Z2„+3Zg„. (18a)

TAsLE II, Selection rules for fundamentals in the infrared
and Raman spectra.

Frequencies permitted in Raman spectrum:

&Iy &2r &6 y &7 p 18 g V9 ) &10

Frequencies permitted in infrared spectrum:

&11 &18 &19 &20

From this we immediately obtain the follow-
ing information: There are 20 different fre-
quencies, of which 10 are double. The secular
equation may be factored by the use of symmetry
and without regard to the type of forces involved,
into four linear factors of which two are equal
(rg rs re(2)), six quadratic factors of which two
are equal (I', r., r„r» r (2)), two equal cubic
factors (I'»(2)), and two equal quartic factors
(r~(2)).

*These lines should have a depolarization of -', .

Furthermore, this information is sufficient to
determine the modes of vibration shown in Fig. 3
and described in the next section. Additional
information which comes from the symmetry
discussion is contained in Table II, which gives
the selection rules for the Raman and infrared
spectra. These were obtained directly from the
general table given by Placzek. "

NORMAL COORDINATES FOR BENZENE

The coefficients lu; of the transformation of Eq. (3) have certain properties which assist in their
determination, such as, for example,

0 if i/j.
1 if i=j.

The inverse transformation to Eq. (3) is

Q'= Q 4'gn (2o)

By using the symmetry requirements of Eq. (17) and Table I, together with the restrictions of
Eq. (19), we obtain the following combinations Q, , which are either the normal coordinates Q;
themselves (if they belong to a linear factor of the secular equation) or functions which must be
combined with one or more others in order to obta, in the normal coordinates (if they belong to factors
of higher degree). Q& indicates the normal coordinate with frequency vy. Qyo„Qyog indicate two normal
coordinates with the same frequency vlo. Any linear combination of these two will also have the same
frequency, Q4', Qq' connected by a pa.renthesis indicate that two independent combinations of these,
with coefficients dependent on the force constants and determined by solving a quadratic factor of
the secular equation, are the normal coordinates for v4 and v5.

Qx=m'[3:(r2+r3 r, r,)+2y—&+y2 —y—, —2y4 —y&+y6$

+ V*[3'(Rg+R3—R5 —R6) +2 Tg+ F2 —Yg —2 Y4 —Y5+ Y'6$.
(I'»(2))

Qr ——m~[2r~+ rm
—rq —2r4 —r5+ r6 —3'*(ym+ya —y5 —y6) ]

+3II'*[2Rg+R2 Rg 2R4 R5+Rg ——3~( Y—2+—V3 —ir5 —Ya)]..
Qz= m'(zi+zs+zs+z4+z5+zs)+M:(Zg+Zz+Z3+Z4+Zg+Z6).

Q~, = bm&(2zg+zg z3 2z4 z5—+z6)—+a3—II&(2Zg+Z2 Z3 2Z4 —Zg+Z6). — —

Q „=bm&(zz+z3 z5 z,) +a%&(Z2+Z& —Zg —Z6).
~' G. Placzek, The Structure of 3IIolecules (edited by P. Debye), Blackie and Son, London, j.932.

(r~(2))
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Q;= bm'(yl+ys+yg+y4+yg+yg)+45~'(&1+ &2+ &3+ i'4+ +5+ +6).

Ql'= Rl+Rs+Rs+R4+Rg+Rg.

Q2 rl+r2+rs+r4+r5+r6.

(f'2)

(2r1)

Q3 45~ (yl+y2+y3+y4+ys+y6) bm (+1++2+ +3+ +4+ +5+ i 6) ~

Q4'= Zl —Zg+Zg —Z4+Zg —Z, .

Qs'= Sl —Sg+Sg —S4+Ss —Ss

(f'2)

(2r4)

Qs, ' R, Rg—+—R4 ——Rg.

Q7.'= r 1 rs+ rg—rg. —

Qs.'= ~1—2~2+ ~3+ ~4 —2~5+ i 6

Qsg =yl 2ys+ys+yg —2yg+yg.

Qgs'= Rl 2R2+R—3+R4 2R5+R—g.

Q75' ——r, 2rs+r—3+r4 2rg+r—g.

Qss'= ~1—~3+ &4 —&6

Q25 =yl —ys+y4 —ys

(4f'5(2))

Qlp = $3II (Sl+Ss —S4 —Sg) —bm&(Z1+Zg —Z4 —Zg).

Qlpg= GM (Sl Ss 2S8 —S4+Sg+2S6) —bm'(Zl —Zs —2Z3 Z4+Zg+2Zg) .

Qll= M'(Sl+Ss+Ss+S4+Ss+Sg) —n1*(Zl+Zs+Zs jZ4+Zg+Zg).

(f'6(2))

(f'3)

Q12 Rl R2+R3 R4+Rg Rg.
(2I'2)

Q13 rl r2+ r3 r4+ r5 r6.

Q14'= &1—&2+ &3—&4+ &5 —&6

Q15 yl y2+y3 y4+y5 y6 ~

(2f'lp)

Q lg~=. Z2 Zg+Zg Zg.

Q 17a S2 Ss+Sg S6

Q'1 g 5= 2Z1 —Zs —Zs+ 2Z4 —Zg —Zg.
(2I'»(2)).Q'175 ——2S1—Ss —S,+2S4 —Sg —S,.

Q'13 = 2rl+rs rs 2r4 rg+rg+3'—(ys+ys —yg —yg).

Q'12~= 2R1+Rs —Rg —2R4 —Rg+Rg+3*(F2+ Ys —Fg —Yg).

Q'gp, ——3II&[2r1+rs rg —2r4 —r5+ rg —3'—(ys+ys —ys —yg) j
—ml[2R1+Rs —Rs —2R4 —Rg+Rg —3'*(Ys+ Yg —Fg —Yg) g.

Q'185 3 (rg+rg rg rg) ——(2y—l+ys —ys —2y4 —yg+yg)

Q lgg= 3s(R2+Rs —Rg —Rg) —(2 Fl+ 7'2 —Fg —2 F'4 —Fg+ Fg).

Q'gps= M'[3&(rs+rg rs rg) y (2yl—+ys—ys 2y4 yg+
—yg)]— —

—m2[32(R2+Rs —Rg —Rg) + (2 Fl+ Ys —Ys —2 Y4 —Yg+ Yg) g.J

(3&12(2))

The above equations should be multiplied by appropriate factors in order that they may be
normalized in the sense of Eq. (19).a and b are the radii of the carbon and hydrogen rings, respectively;
while 2' and m are the masses of the carbon and hydrogen atoms.

Fig. 3 shows these modes diagrammatically. The component along any coordinate direction of the
arrow attached to a given atom gives the coefhcient of that coordinate in the above expressions.
Since these numbers are also the coefficients in the reverse transformation of Eq. (3), they represent
the amplitudes of the motions of the atoms in the corresponding modes of vibration. Plus and minus
signs refer to motions perpendicular to the plane of the paper.
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POTENTIAL EN ERGY FUNCTION

When the modes of vibration are known and
the potential energy as a quadratic function of
the coordinates is given, it is possible to calculate
the corresponding frequencies. In this treatment
a much simplified potential function was used,
involving only six force constants: E, q, ~, h, H,
k. Fig. 4 shows some of the coordinates of the
distorted molecule in terms of which the poten-
tial energy is expressed.

E' is the constant for the stretching of the
carbon-carbon bond and g is the corresponding
constant for the carbon-hydrogen bond.

2 Vg= XI (&Rg2)'+ (DR23)'+ (DR34)'

y(~R„)'+(~R„)'+(SR„)'}. (21)

2 Vg =g I (65g) '+ (652)'+ (65g)'

+(654)'+(255)'+(65,)'}. (22)

According to the quantum-mechanical view of
the structure of benzene, ' each of the carbon-
carbon bonds is of partially double bond char-
acter, which would give the bond a resistance to
twisting such as is found in ethylene. z is the
force constant for this twisting and enters into
the equations whenever the carbon atoms move
out of a plane. This is seen if any four adjacent
carbon atoms are considered and the effect on
the central bond of motion out of the plane is
calculated.

2 Va = Icc (+12 + +23 + @84 + +45'

+ 0'56 + 'p61 ) (23)

y~m is the angle of twist of %he bond between the
first and second carbon atoms, while c is the
length indicated in Fig. 1. h is the force constant
for the bending of the carbon-hydrogen bond
out of the plane of the three adjacent carbon
atoms. p, ; is the angle of this bending.

2 V4 h(b a)'(pP+qm'——+q3'—+q4'

+I 5'+I 6'). (24)

b and a are given in Fig. 1.

e Linus Pauling and G. W. Wheland, J. Chem. Phys. 1,
362 (&93S).

FrG. 4. Distorted molecu!e and coordinates used in potential
energy function.

There are several methods of representing the
other angular distortions of the bonds, one being
given by

2V =&a'I(~v )'+(~v )'+(~7 )'
+(~74)'+(~v~)'+(~re)'} (2~)

2 V6= H(b a)2(XP+X—P+XP+X42

+XP+X62), (26)

in which Ap; is the change in the carbon-carbon
bond angle at thy ith carbon and ); is the angle
of deviation of the carbon-hydrogen bond from
the bisector of the carbon-carbon bond angle
(all lying in the same plane). This is equivalent to

2V6=1+'(b —a)' Z }(~~)'+(~P)'} (2&)

with n and p given by Fig. 4, with the restriction
that An;+Dp;+Ay, =0.

The methods used to obtain the frequencies
are not restricted to the above choice of potential
function but could be applied to any homoge-
neous quadratic function of the coordinates.

CALCULATION OF THE FREQUENCIES

The procedure used to calculate the frequen-
cies from a knowledge of the modes of vibration
and the potential function is best illustrated by
an example. From Fig. 3 or the analytical equa-
tions for the normal coordinates, Q~ is seen to
come from a linear factor of the secular equation,
which means that the positions of the atoms
during this motion can be completely described
by giving the value of one coordinate, say y&.

In an infinitesimal vibration of this type the
only force constant which enters is ~, since the
carbon and hydrogen rings merely rotate with
respect to each other and are not deformed. If we
call the amplitude of the vibration at any instant
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8, then the hydrogen atoms have each undergone
a displacement y =a(M/m) lb, the carbon atoms
a displacement 7 = —b(m/M) &8, in ordinary
units. From this it can be calculated that the
potential energy of the distortion, using Eq. (26)
and the geometry of the distorted molecule, is

2 U= 6HP(a'M+ b'm)'/(a'mM) (28)

while the kinetic energy of the motion is

being to stretch the carbon-carbon bond an
amount 8 and the hydrogen-carbon bond an
amount (e —b). The potential energy for this
motion is therefore, from Eqs. (21) and (22),

2 U= 6Kb'+6q(e —b)'

=6(K+q) b' —12qeb+6qe'. (31)

The kinetic energy is:

2T= 6(a'M+b'm) (db/dt)' (29)

Substitution of these in the equation of motion
in terms of b and solution of this equation gives
for the frequency. '

v3 ——(1/2s){H(a'M+b'm)/(u'mcV)]'*. (30)

In case the frequencies come from a quadratic
equation the method is similar, except that two
amplitudes 8 and e must be used. Thus v~ and v2

come from a quadratic factor involving Q&' and
Q2', lf the amplitude of Q&' is 8, every carbon
atom is displaced a distance 8 outward; if e refers
to Q2', every hydrogen atom is moved radially
outward a distance e. None of the angles is
altered by these displacements, the only effects

2T= 6M(db/dt)2+6m(d~/dt)'.

These have a solution of the form

8=A sin X't; e=B sin X't

if the secular determinant vanishes.

—
Q =0.

This is satisfied for

The equations of motion become

6'�(d'8/dt') +6(K+q) 8 6qe = 0—

6nz(d'e/dt') +6qe —6qb= 0

(32)

(33)

(34)

Xq, 2= (1/2m3II) {mK+q(m+M) ~L{mK+q(nz+M) I' 4mllfqK)*I.

v'= X/4 m'.

(36)

(37)

The other frequencies were obtained in an exactly similar manner and are listed below, with the
exception of those which come from the cubic and quartic factors of the secular equation. These
higher degree equations are also given and may be solved numerically for any given values of the
force constants.

~~8, ~~9 and ~2O are the roots of the equation.

3(K+k) +q+HP 2/VX q Hi— ——

g +II—2m'

gl Hi'l-
—qt+Hl =0

in which i = (3b a)/2a, t=—(M+m)/m.

v6, v7, vs and v9 are the roots of the equation.

ql+Hl qP+HP —2MD—

0 4II—4m~

—16q 12(3')Hs 4K+ 108k+ 16q+9g'H —16cVP 3& {4K+12k+Hg—rtI

0 4' —3~{4K+1—2k+H)gI 36K+12k+HP —163K

in which s = (b a)/a, g= (b+3c) /a—.

=0 (39)



X4, 5
——(1/2mM) {36~m+(3—4b/a)'hm+Mh&[{36~m+(3 4—b/a)'hm+Mh}' —144mMKhj'}.

Ago
——h(b'm+a'M') /a'mM.

Xgg= h(m+M)/mM.

X~~, ~3= (1/2mM) {12km+q(m+M) &[{12km+q(m+M) }'—48mMkgj**}.

X/4, gli= (1/2mM) {3Zm+H(m+M) &[{3Xm+H(m+M) }'—12mMXH7&}.

X~8, ~~
——(1/2mM) {12~m+mhf+Mh&[(12~m+mhf+Mh)' —48mMzh]l}.

(40)

(42)

(43)

(44)

(45)

where f= (3b —2a)'/a'.
It is planned to apply'the above results to the analysis of the experimental data for benzene.
I should like to express my appreciation to Professors Linus Pauling and R. M. Badger for their

suggestions ancl criticisms.


