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Part II. Kinetic Energy and Normal Frequencies of Vibration

JeEnNY E. ROSENTHAL, Physics Department, New York University, University Heights
(Received November 24, 1933)

Part I, It is shown that the most general potential
energy function consistent with tetrahedral symmetry
involves five force constants, also that with a suitable
choice of variables this expression may be written in a
quite simple form convenient for the discussion of different
types of vibration. Special cases of potential energy such
as the “valence” force and the central force cases involving
less than five force constants are considered and their
connection with the general case discussed.

Part II, Expressions for the vibration frequencies of
molecules of the type YX;X* and YX,X,* (X* being an

isotope of X) are derived in terms of constants in the
potential energy function and the masses of the various
atoms, These expressions are valid for any value of Am/m
where m is the mass of X and m-+Am the mass of X*.
Hence the results are applicable to the isotopes of hydrogen.
While YX, has one single, one double and two triple
frequencies, the slight asymmetry introduced by X* in
YX3;X* partially removes the degeneracy giving three
single and three double frequencies. For YX,X,* the
degeneracy is completely removed and the molecule has
nine single frequencies.

HE methods used! to derive vibration frequencies of molecules of the type YXX* and VX, X*
may be extended to symmetrical tetrahedral pentatomic molecules YX;X* and VX, X,* We

begin by setting up expressions for the potential energy V and the kinetic energy 7. The normal
frequencies of vibration w are then given by the roots of the determinantal equation |[NT— V| =0
where A =47%’

Part 1

Consider a symmetrical molecule YX,. At equilibrium the X atoms form the corners of a regular
tetrahedron with the ¥ atom at the center. We study this system when it vibrates with a very small
amplitude around its position of equilibrium. Following Dennison? we assume that the potential
energy function V has the same symmetry as the geometrical configuration of the system; this will
be the only assumption used in the derivation of an expression for V.

Let the positions of the four X atoms be given by the points 4;, 4, As, A+ and let 45 be the
position of the ¥ atom. We denote by the superscript 0 the equilibrium positions of the various
atoms. Let:

AiAd;=qi=0"+6qi;; AsAi=ri=r"+ér; and LA:AsA;=29;=2(Q+ ;)

(4, 7=1, ---4,15#], ¢;;=q;:). (1)

r0=1+ 3¢ (since the equilibrium configuration is that of a regular tetrahedron) and the various é8q;;
and 6r; are taken to be small quantities of the first order.

Since the system has only nine degrees of internal freedom only nine of the ten quantities defined
by Eq. (1) are linearly independent. It is, however, convenient to use ten variables in writing V'
with the same symmetry as the geometrical configuration; one of the variables is then eliminated by
the relation which gives the linear dependence.

We have the potential energy then as a function of the mutual displacements of the particles:

V="V(8q1s, 6q15* * + 6G34, 671, + * - 874)

1E., O, Salant and J. E. Rosenthal, Phys. Rev. 42, 812
(1932).

2 D. M. Dennison, Rev, Mod. Phys. 3, 303 (1931).
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and, with force constants K;, K,- -+ Ky, it is written in the most general. symmetrical form in the
8¢i; and the é7;

V=3[K12 36¢:*+Ks 2. 36¢ii0qin+Ks 2 56q1;6¢in+Ka Z or?+Ks Z 507:67;

i, 7 i, 0, n i JFE Nl

+I<6 Z or; 6g17+K7 Z zariafﬁn]- (2)

i, I, n

We use 7#j7#n and unless otherwise indicated all summations extend from 1 to 4. ¥V may also be
written

=3[(K1—3K2) 2 30qi*+3Ka(X 30¢:)°+ (Ks—K») X $6q18¢in+ (Ks—3K5) Z or:?
2,1 7

152 g5 gl

+%K5(Z 57’i)2+K6(Z 87 (2 30¢in) + (K7 —Ks) 2. 5067:0¢in]. (3)

i n i, 7, n

This expression for the potential energy is, however, not convenient for the study of vibrations of
the system Y X, and therefore new variables in which to express 17 are introduced. As will be seen
below, these new variables are the components of vectors giving the displacements of one particle
with respect to the center of gravity of others.

We start by defining a cartesian coordinate system x, ¥, z with its origin at the center of gravity
of the tetrahedron; the xy plane is parallel to the 44,43 plane and the x axis is parallel to 4,45,
the positive direction being from 4;—A4;. We let (x;, v, 2;) represent the point 4 ;(x;=2x;°4 dx;, etc.).
We then define new variables &, 1, ¢, x, ¥, 2, #, v, s by the relations:

f=—t X, 1=3—1 Ly (=n-1Xz  s=x—i@tate), y=yi—i0styety),

Vita=2—3(statz), wu=xi—i(xetwxs), v+i¢V3=y1—3(2+tys),
—%(22'1'23):0, _q°+s=x3—x2, ys—y2=0, 23—22=(_)‘ (4)

Our problem then is to find V(& u, ¢, x, v, 2, 4, 2, s) = V(6qiz* * * 8¢34, 871+ - - 874). The old variables
are, or course, expressed in terms of x;, ¥;, 2; by:

9ii* = ("4 6q:;)* = (xi—x;)* + (yi— )+ (z:—2)* (4, j=1---4,3%]), )
rif = (0 0r0)? = (s — )+ (s — )+ (25 —2:) 2
Eliminating the various x;, v;, 2; between Eqgs. (4) and (5) we obtain the following relations:
b e = A ) AT @V EHT L (g 30T (@05,
(Pt ) —rd =2LEx 40y +1(+HV D ] [F 4 (+¢"V 5 +y7]
F2Lu+ (e /05,
§rr) =2 = 2w (o300 n T 3Lt (30 3y T~ 1wt o+ 300V 3T+ 2@+,
r? —rs? =2(q"+ ) (§+ 1+ Fu). ' (6)
Qi+ @+ g =3[+ 3+ (2+ ¢V 2T+ 3Lud+ (v+5¢°V 3)* ]+ 3(¢°+5)?,
3@+ au) — g = 2w+ (0 30V yT— T+ 0+ ™V 3T+ R+,
Qi — Gss® = 2(¢°+5) (x+3u),
@+ i+ g = 2[ 0P+ (v + 3¢V 3)* ]+ 3(¢°+5)*/2,
3 (@’ +g18’) — @’ = w2+ (v+3¢°V 3)*— 1(¢°+9)%
Qo* — q1s” = 2(¢°+ 5)u.
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Expanding and neglecting all small quantities of the second order we obtain
071+ vyt ors+ora=2z+3%vy 245V 2,
3(6r1+0ra+6rs) —brs=45/3— 32+ 20y 2/9+ 35V 3,
3(6r3+0r2) —dri=nv 2+y/v2—3uV 2435V 3,
ory—ors =2+ (¢+3x+3u),
0q14+0Gea+0gss =2V 6+v/V 3+ 35,
3(8gs4+8g24) —8qia=3yV 3+3(—v+3s5v 3)/V 3,
3q2a—8gsa=x+u/3,
812+ 613+ 6gas = (v+ 35V 3)V 3,
3(0qi2+0g1s) —0gm = — 3 (—v+35v 3)V 3,

)

012 — 0q13=U.
It follows from Eq. (7) that
(671672t 673+875) V 6 = (812t 015+ 8G14+ 6Ges + 624+ 0g3s) (8)
which is the equation of linear dependence,® and by using it we may rewrite Eq. (3) as:

V=3[k1 2 38¢i"+ke 3 50q1:8¢in+ks2 072 +ka(0r:) 2+ ks 32 3675 8950 ], 9)
T, 7 i I3

i f) el i i
making use of only five independent force constants. The k’s are related to the K’s by
. ki=K,—3}K,, ke=K;3;—K,, ks=K,—}K;, (10)
ki=3K;+3K,+ K¢V 6, k;=K;—Ks.

The form of Egs. (7) suggests that a further simplification may be obtained by introducing new co-
ordinates defined by:

a=x+4u/3, B=y—4v/3'+25/\/3, v=—2z4+Gv+s/V3)V 2,
p=x—2u/3, a=y+20/3—s/+ 3, =23+ (4v/3+2s/v 3) 2.

We then substitute? in Eq. (9) the expressions for the various 8¢.; and é7; in terms of the new variables
and we obtain:

V=3[AE+n24+ ) +B(a* 4824+ + C(p*+ 0®) +2D(a+n8+v) + Er*]
=3[ (A&+Ba®+2Dta)+ (An*+BB2+2D4B) + (A 2+ By +2D¢v) + Cp*+Co*+Er*]  (13)
=TVi(& )+ Viln, B)+ Vi(¢, v)+ Valp)+ Valo)+ V(7).

(1)

3 The exact expression which will be used later is:

2 3ogi— v 638r=2[ Zort—4(E+ 52 — 1 T $ogi? /g (8
j i i 7

2,
4 This substitution is greatly simplified by making use of the identities
a*+al+a? =3(a1+a:+a)? +3[3(a2 +a5) —a1 2+ 3(as—a0)?,

@b +asbrtashs = 3(a1+as+as) by +by+bs) +3[3(as+as) —ay L3 (b2 +-b5) — b1 ]+-3(as—as2) (bs—bs), (12)
a’*+a’ +atad =1 a+ar+as a0+ 13 +ax +a5) —a P43 502 +a5) —ai P+ 3(ae—as)*.



VIBRATIONS OF TETRAHEDRAL PENTATOMIC MOLECULES 541

This form of the potential energy function is very convenient?® for the study of the vibrations of the
molecule YX4. The constants in Eq. (13) are related to the %’s by:

A=4k;/3; B=%ki—%tkast+ks/12—%ks/ 6; C=5%(k1+%k2);

(14)
D=—§k3—k5/\/6; E=i[k1+%k2+ik3+k4+k5(3/2)%]‘

This general expression for the potential energy has the disadvantage of involving five independent
force constants while (in the absence of isotopic shifts) the spectrum of the symmetrical tetrahedral
molecule consists of only four fundamental frequencies. It is possible, however, to reduce the number
of these constants by means of suitable physical assumptions. These assumptions and the special
potential energy functions they give rise to having been discussed by Urey and Bradley,® we shall
consider here only the connection between the general expression and some special cases. The
potential energy expression which includes central forces and the forces perpendicular to the lines
of bonds is:*

V'=(aV"/3q)°(% 38qi;— 6% 2 or:)+5(92V’/3r®)° 30 6r2+3(92V"/9¢H)° X 56q:;*
%, 7 7 7 T, 7
+3fd 2 5(06Qi)%  (13)
i

The prime is used to distinguish this function from the general V. Henceforth all quantities referring
to V' (the potential energy with four force constants) will be marked by a prime. Similarly we shall
indicate by a double prime the central force case and by a triple prime the valence force case.

To compare Egs. (2) and (15) we have to express the last term in Eq. (15) in terms of the é7; and
the Bg.'j.7

rOBQH:%[éqﬁ——sin Q(én—l— Bf'j):l/COS Q=%5g”\/3 - (51’,"}‘ 67’])/\/2 (16)

Let
(a2V'/or")=f, (92V'/ag*) =14, (0V'/89)°/q" =14 (a7)

With the use of Egs. (17), (16) and (8') we may write:
V' =3[ +f —f) 2 58q:2+ (f + B/ fy +4f4) X ori2+f) 3 Soriér;
%, 7 % %, 7

—(3/2) T oridqy— 161/ (B+w+19], (18)

5 In some cases, however, it is better to define

' =(V2+8)/V3, /?'=(ﬁ¢2+7)/V3. F=n—tv2)/V3, Y =(B8-vVv2)/V3, (11
and write '

V="i(E o)+ Vilw', B)+Vi(§", v') 4 Valp) + Velo) + Va(r). (139

This change of variables is equivalent to a rotation of the y and z axes such that the y axis becomes parallel to the di-
rection 4,°4,". Hence 7/, ¢/, 8/, v’ are suitable variables in any case in which there is a preferred direction 4,°4,° in the
molecule. '

§ H. C. Urey and C. A. Bradley, Phys. Rev. 38, 1969 (1931).

%2 The last term in this expression—a sum of six terms depending on the square of the change in angle between two
bond lines—is not equivalent to the sum of four terms depending on the square of the displacement of the bond line
from its equilibrium position (the term in % in Eq. (1) of reference 6). Hence our potential energy function differs to
that extent from the expression (1) in reference 6. The only result of this difference, however, is that our frequency
w(p) (o) given by Egs. (19) and (31) depends in a different way on the ‘“valence” force constant than the correspond-
ing frequency »; in the above reference.

7Eq. (16) is obtained by differentiating 27;7; cos 2Q;; =r;2+7r;2—g;;* and retaining only the linear terms in the &7,
and 8q;;.
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comparing the coefficients in Eq. (18) with those in Eq. (2)® we obtain as the connection between the
f and the constants in Eq. (13)

A'=4(f{'+f2'=8f)/3; B =({+if+3f'+f)/12; O =iGR+—f);
D' =5(f/' =3/ +4f);  E'=(fi'+4fs)/16. (19)
Of these five quantities only four are linearly independent. The equation of linear dependence may

easily be found to be :
D'=10B'—2C"'—8E". (20)

Eq. (19) may then be solved uniquely for the various f's giving
fi'=%A4"4+20B"—4C"—16FE'; fo/=12B'+4(C’'—16E’;
fi'=—A'=5B'+C'+8E';  [i/=—yA"+4B' —4E. (21)

Additional equations of linear dependence are obtained for the central force case where f’’ =0 and
the valence force case where f3''' =f,""'=0.

Part 11

" To obtain the kinetic energy expression we begin by referring the positions of the particles to a
fixed coordinate system X YZ, which may be made to coincide with the moving system xyz by means
of a small rotation in space. The kinetic energy T is expressed in terms of the displacements 86X, 87,
8Z of the various particles from their positions of equilibrium. For the jth particle:

0X;=0x;+ ¥y, 02  0Y;=—yx, 0yt ez, 0Z;= —0x,"— ¢y,"+ bz, (22)

combining Eq. (4) with Eq. (22) we obtain the direct connection between the various 86X, 8V, 6Z
and our nine variables £, 1, ¢, %, ¥, 2, %, v, s. We have also three relations of the type:

5

5 . 5 . 5 .
> mi6X;=0; S mdY;=0; > m;dZ;=0, (23)
1 1 1

expressing the conservation of linear momentum. (#; denotes the mass of the jth particle and may
have different values for the two molecules YX;X* and YX,X,*.) The kinetic energy is, of course:

j=1XYZ

Consider first molecule Y X X*. Let ms= M, ms=m-+Am, mz=ms=m; =m. We may now substitute
in Eq. (24) for the various 6X, Y, 8Z their values in terms of £, 4, {, &, 9, 2, %, 9, & (Calculations are
greatly simplified by the symmetrical way in which the variables are defined.)

We obtain then: i

T=3m{(1—ep) ' [4u(@+ i+ + 41+ 3e— ew) (G407 1)+ G +0"0V §)*+22)
—6pe(E(@ g0 3) + 0 +0°0V )+ ¢ 1H 3L+ 32+ 482+ (024 24T}, (25)
where e=Am/(dm~+Am) and u= M/(4m~+ M). We eliminate ¢°9, ¢y and ¢°¢ by means of the equa-

tions of conservation of angular momentum (87°/36=0; dT7/3¢=0; dT/3y=0) and transform to
the new set of variables «, 8, v, p, 0, 7. We then have T in the form:

T=TN(E &, p)+TP(0, B, 6)+T2E, 7, ), (26)
where

8 Attention must be paid to the presence of a term in (£2492+4¢2).
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TOE, &, p) =3m(1+3¢/2— ep) ' [4p(143¢/2)E2 4 (14 26— en)a?+ 3 (1 +5¢/2— en) p*
; +teap— pet(a+2p)].
TO, 5, 1) =3m(l—ew) ' [4ui?+F(1+2e— ep) ¥+ (1 +e—ep) 12 —Feyi+eud 2y — )]

On account of Eq. (26). we may break up the nine rowed determinant into two three rowed ones, one
of which is squared:

27)

[INTO—VY®|}2=0, |[\T®—V®|=02 ' (28)

Expanding Eq. (28) we get the equations for the frequencies. Instead of numbering the frequencies
we shall merely indicate by a series of subscripts as to what variables, hence to what types of motion,
they correspond. Double frequencies will be indicated by two sets of subscripts each in a separate
parenthesis.

Letting 1Am/(m—+Am) = «

[0 apy, ooy — Prm2N -+ PN — P52 =0,  mN(pyry — RimN2+ Ram — Ry =0,
Pi=1A(1— ux)/p+8B(1—1x)+2«D+4C(1—x),
Py=AC(1—x—ux)/u+32BC(1—3x/2)+8xDC+2(AB—D?)(1 —ik— ux)/u,
P3=8C(AB—D*)(1—3x/2— ux)/u, | : (29)
Ri=1A(1— ux)/u+8B(1—2¢) —4kD+16E(1 —x),

Re=4AE(1 — k— ux)/u+128BE(1 — 3x) — 64xDE+2(AB— D) (1 — 2k — k) / 1,
Rs=32E(AB—D?)(1—3x— ku)/ .

It may be pointed out that whereas the results in Part I were approximate these expressions are
exact and hence valid for any value of «. In particular Eq. (29) may be used to compute isotope shifts
due to the presence of the heavy isotope of hydrogen.

If ¥*<1 Egs. (29) take the somewhat simpler form

(MmN, @ =4C(1— ) P{m*N2¢a), o9 —mA[FA (1 — uk)/u+8B(1—35k)+2«D]
+2(AB—D*)(1—3k—ux)/u}?=0,

[N — 16E (L — ) Hm*N2 1) —mA[3A (1 — u)/u+8B(1 — 26) — 4xD]
+2(AB—D*(1 —2k—xp)/u} =0.

(30)

For molecule YX,Xo*, ms=M; my=my=m; mz=ms=m-+Am. We obtain then instead of Eqgs.
(25) to (30), Egs. (25’) to (30") given below.

T=3m(1—2¢ w7 {4p(E+ i+ )+ 1(1+2¢ = 2ue) [(+q'0V §+4u/3+29%/ 3)?
+@+a°0V §440/3)*+ (6 — 29"/ 3)*]+4¢ ulE(E+q°0V 3-+44/3+29°%/V 3)
+ (4N F+45/3)+{(E—2¢°6/ 3) 1} +3m (3[4 ¢%V 3 —3u—g*%/ 3)?
+ (@46 3—20)2+ (3+q°/ 3) ]+ 3(1+2€) (1 —2¢) (2422 +¢"67) ),  (25)

where ¢’ =¢/(1+¢), & 7', ¢, a, 8', 7', p, o, 7 are suitable variables for this case in which there obviously
is a preferred direction 4;°4° in the molecule. It is also convenient to define 6'=6+v 34-2¢/+ 3,
Y'=0y2—y¢/V3 and use 9T/06' =0T /3y’ =0T/d¢=0. Then we obtain T as:

T=TYE &)+ T, )+ To(p)+T*H, B, &, 7), (26")

VA o, p) =Vi(E @)+ Valp), VO, v, ) =V1(5, v)+ Val7).
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where

Ty (& &) =3m(142¢)(1—2u€ +¢ =267 [4p(1 — )+ (1+2¢ —2p )@ +2¢ péd]],

TY(§, 7)) =3m(1—2p€ + &) [4n(1+€)¢ +F (1426~ 2pe) v~ 26 wi'5'],
Ta(p) =3m[1(1+2€)p*],

T, B, 6, ) =3m(1—2pe) (1 —2¢) " [4u(l —2¢) i+ F(1 —2ue)B"

+1(1—2p€ — 8% /34-8ue™/3) 62+ 15 (1 — 2pe’ —4e?/3+4ue/3) 2 — e (1 — p) 6y 2

— € (1=2u€)6B /N 6+5e'(1—2u) 78 /V3+4pd(1—2¢) 0 o7 §+2u (1-2€)7"7/¥ 3] (27)
The determinantal equations are:!®

[NTY = Vi| =0, INTY' = V4| =0, [INTs— V,l =0, [INT*—TV*| =0, (28")
which on expansion give: \
M oy — [2A (1 — 2k) / u+8B(1 — 3k) —4xD A+ 2(AB — D?) (1 — 3k — 2ux+4ux?) /=0,
MmNy — [3A(1—2uk) /n+8B(1 —x) +4«D JmN+2(AB—D*)(1 —k—2uk) /n=0,
My —4C(1—2x) =0,
MmN rgrony — Qu N+ Qam N2 — Qym A+ Q4 =0,
Qi=1A(1—2px)/p+ (8B+4C+16E)(1—2x),
Q:=64CE(1—2x)2+2(AB—D?)(1 —2x)(1 —2ku)/u
+4C[FA(1 =2k —2ux+34ux?)/u+-8B(1 —4x+38k%) +5164%D ]
+16E[$A(1 —2k—2ux+58ux?) /u+8B(1 —4x+34k2) —§16£2D],
03 =64CE(1 — 20)[3A4 (1 — 2k— 24ux) / u+8B(1 — 4x) ]+ 26~ Y (AB — D [4C(1 — 4 — 2+ 182
+116uk?) +16E(1 —dx—2ux+ 142 4+120ux2) ],

(29')

1=128CE(AB—D?)(1 —4x)(1 —2k—2ux)/u.

If we had assumed for the masses mys=m;=m-+Am and ms=my=m, the expressions for A
and A4y would have been interchanged. The assumption actually used has the advantage of simpli-
fying calculations.

For <1 the fourth power equation becomes

mAN? gy — [FA (1 —2ux) /u+8B(1—2k) JmN+2(4AB—D?*) (1 =2k —2pux) /u=0,

(307)
[(mAy—4C(1 —2k) J[mAn—16E(1 —2«)]=0.
Since for YX, (i.e., for k=0), the frequencies are given by
[(m*N o), ap), (sv — 34/ p+8B)ymA+2(AB—D?*)/un P =0, 31)

(MmN, @ —4C]*=0, MmNy —16E=0,

we see that the substitution of X* for X in YX, partially removes the degeneracy of the motion and
gives rise to six frequencies. For YX,X,* the degeneracy is completely removed even though two of
the frequencies differ only by terms of the order of magnitude of 2

The application of the above results to experimental data together with a discussion of the intensi-
ties is postponed until a later paper.

In conclusion I wish to thank Professor E. O. Salant for his interest and advice in this work.

0 V', B, 0, ) =Viln', )+ Valo) + V(7).



