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Vibrations of Tetrahedral Pentatomic Molecules. Part I. Potential Energy.
Part II. Kinetic Energy and Normal Frequencies of Vibration

JENNY E, RosENTHAL, Physics Depurtment, Rem. York Uriiversity, University Heights

(Received November 24, 3933)

Part I. It is shown that the most general potential
energy function consistent with tetrahedral symmetry
involves Gve force constants, also that with a suitable
choice of variables this expression may be written in a
quite simple form convenient for the discussion of different
types of vibration. Special cases of potential energy such
as the "valence" force and the central force cases involving
less than five force constants are considered and their
connection with the general case discussed.

Part EI. Expressions for the vibration frequencies of
molecules of the type YXSX* and YX2X&* (X* being an

isotope of X) are derived in terms of constants in the
potential energy function and the masses of the various
atoms. These expressions are valid for any value of hm/m
where m is the mass of X and m+6m the mass of X*.
Hence the results are applicable to the isotopes of hydrogen.
While YX4 has one single, one double and two triple
frequencies, the slight asymmetry introduced by X* in
YXIX* partially removes the degeneracy giving three
single and three double frequencies. For FXIX2* the
degeneracy is completely removed and the molecule has
nine single frequencies.

HE methods used' to derive vibration frequencies of molecules of the type VXX* and YX2X*
may be extended to symmetrical tetrahedral pentatomic molecules FX3X* and YX2X2*. We

begin by setting up expressions for the potential energy U and the kinetic energy T. The normal
frequencies of vibration co are then given by the roots of the determinantal equation

~

XT V~ =0-
where X =4''cv'.

PART I

Consider a symmetrical molecule FX4. At equilibrium the X atoms form the corners of a regular
tetrahedron with the F atom at the center. We study this system when it vibrates with a very small
amplitude around its position of equilibrium. Following Dennison' we assume that the potential
energy function U has the same symmetry as the geometrical con6guration of the system; this will

be the only assumption used in the derivation of an expression for U.

Let the positions of the four X atoms be given by the points A&, A&, 23, A4 and let A„be the
position of the Y atom. We denote by the superscript D the equilibrium positions of the various
atoms. Let:

A;A; =q;; = g'+ 8g,;; A ~A; = r, =r'+ br; and g A,A „.A; = 20;;= 2 (0+bq;;)

r =-,'Q —,g' (since the equilibrium configuration is that of a regular tetrahedron) and the various 8q, ;
and br; are taken to be small quantities of the erst order.

Since the system has only nine degrees of internal freedom only nine of the ten quantities dehned
by Eq. (1) are linearly independent. It is, however, convenient to use ten variables in writing V
with the same symmetry as the geometrical configuration; one of the variables is then eliminated by
the relation which gives the linear dependence.

We have the potential energy then as a function of the mutual displacements of the particles:

i E. O. Salant and J. E. Rosenthal, Phys. Rev. 42, 812
(&932).

' D. M. Dennison, Rev. Mod. Phys, 3, 303 (1931).
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and, with force constants E&, X2 ~ X7, it is written in the most general. symmetrical form in the
bg;; and the br;

V=-', [Kl p ;'oq; -+K2 P ', bq;;-bq; +K3 P ', bq„—bg,„+K,Q br +K, P ', br;b—r;
O7 27 ig 2Q n+1

+If3 P br, bq;;+K7 P ', br„-bq,:„] (.2)

We use i/j4n and unless otherwise indicated all summations extend from 1 to 4. V may also be
written

2 [(Kl 2K2) 2 2 bq'' + 2K2(Z 2bq'') + (K3 K2) p 2bgl, bq;. +(K4 2K;)—Z br'
s t 2 ig 2g ng 1

+-'2K„.(g br;)2+K0(g br;)(Q -', bq;„)+(K7 K,) P—!br, bg, ,]. (3)
f n j n

This expression for the potential energy is, hov ever, not convenient for the study of vibrations of
the system FX4 and therefore new variables in which to express t are introduced. As will be seen
below, these new variables are the components of vectors giving the displacements of one particle
with respect to the center of gravity of others.

We start by defining a cartesian coordinate system x, y, s with its origin at the center of gravity
of the tetrahedron; the xy plane is parallel to the A1A2A3 plane and the x axis is parallel to A2A3,
the positive direction being from A2~A3. We let (x;, y;, s,) represent the point A;(x; =x; +bx;, etc.).
We then define new variables p, 77, f', x, y, s, u, 11 s by the relations:

~ =y.- —4 2 y*, i =s3 4E—s', x = X4 —3(x3+X2+»), y = y4 —3(y3+y2+yl),

q "J 3+s s4 3(s3+s2+sl)i

sl 2 (22+ 23) go+ S = X3—X2, y3 —y2 = 0, S3—S2 ——0. (4)

u = Xl —2 (X2+X3), 77+ 2q 3 3 =yl —
2 (y2+y3)

Our problem then is to find V($, 77, l, x, y, s, u, v, s) = U(bq» bq34, brl ~ br4) The old v. ariables
are, or course, expressed in terms of x;, y;, s; by:

g' '= (q'+bq')'= (x' —x )'+(y' —y )'+(2' —- )'
'r =(r'+br)'=(x„. —x)'+(y„.—y)2+(23 —.s)2.

(2, J=~ 4 "'&i),

Eliminating the various x;, y;, s; between Eqs. (4) and (5) we obtain the following relations:

r 2+r 2+r 2+ r 2 —4(]2+S2+ f 2) + 3 [X2+y2+ (qog 2 +s)2]+ 2 [u2+ (1god 3+77)2]+1 (go+ s)2

13 (r12+ r22+ r32-) r4 22 [& +xy—+77' ( +sq 403)]—
2 [x'+ (2+q'4 3)'+y']

+ 2[u2+ (77+-', qog 3)']/9+-',-(g'+s)'

12 (r22+r32) r12 = 2[)u+ (77+—2qog 3)77]+2 [ux+ (77+ 2qog 3)y] —31 [u'+ (27+ 2qog 3)']+ 41 (q'+s)',
r22 r32 = 2(q'+s) ()+4x+—-', u). (6)

q14 +q24 +g34' =3[x'+y'+ (s+q'v' —:)']+-;[u'+(ll+ lq'v' 3)']+l (q'+ s)',

2 (q24'+ q34') —q14' = 2[ux+ (o+ 2q'& 3)y]—
3 [u'+ (s+ 2q'& 3)']+4(q'+s)'

q24
—

q34 = 2 (q +s) (x+ 3u),

gi 2 +g13 +q23 = 2 [u + (V +2 q Q 3) ]+3(q +S) /2,

-', (q12'+ q13') —q23' ——u'+ (s+2q'Q 3)'——,'(q'+s)',

g12 —
g13 = 2 (q +S)u.
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Expanding and neglecting ali smal1 quantities of the second order we obtain

8rr+8r~+3r&+hr4 =s+-,vg 2+sg —„
', (bred+-3rg+8r3) b—r4 4——f/3 —-', s+2vl 2/9+-', s4 —'„

—', (3r&+br2) —3r& rig 2——+y/g 2 ——,'vg 2+-', sQ -'„

Pr2 —Sr3 ——2 Q -', ($+-,'x+-', u),

kg&4+ 8g24+ Sg34 ——zg 6+v/g 3+-',s,

2 (3qs4+3g24) —3qi4 =kyl 3+ ~ (—v+-,'s v' 3)/& 3,

3g24 —3g34 =x+u/3,

aegis+ 8gi3+8q~3 = (v+ 2s v'3) Q 3,

2 (3g12+8g18) —Sg23 = —
2 (—v+ 2 sf 3) Q 3,

It follows from Eq. (7) that

~gIg ~gI3 =+.

(Srl+ Sf'+ 8f3+8l 4) Q 6 (8g12+ 8g13+8g14+ 8g2$+ 8g24+ 3g$4)

which is the equation of linear dependence, and by using it we may rewrite Eq. (3) as:

U=-', [k& P —',8g,P+k2 P -';8q&;8g;„+kagbr„'+k4(+br, )'+k~ g —', 3r; bg;, $, (9)
i, 7, nial f 7 f A

kI. =XI—-,'X2, k2 ——E3—X2, k3 ——X4——',E:,
k4 = -', X5+3Eg+K6& 6, ~5 +7 +6~

making use of only five independent force constants. The k's are related to the E's by

(10)

The form of Eqs. (7) suggests that a further simplification may be obtained by introducing new co-
ordinates de6ned by:

n =x+4u/3,

p =x—2u/3,

P = y —4v/3+2s/Q 3,

a =y+2v/3 —s/g 3,

y = —2z+ (g'v+ s/g 3) Q 2,

r = 2s+ (4v/3+ 2s/g 3) Q 2.

We then substitute in Eq. (9) the expressions for the various bg, ; and br; in terms of the new variables
and we obtain:

V = .[~(P+n'+—I')+&(~'+P'+ v')+ C(p'+ ~') +2D($~+ v P+ I v) +&r'g

= —', [(2$'+En'+2Dgn) + (Art'+BP'+2DrIP) +(2 I'+By'+2D'f y) +Cp'+ Co'+I v'$ (13)
= Ug($, ~)+ Ug(v, P)+ Vr(f', y)+ U2(p)+ Vm(v)+ U3(r).

' The exact expression which will be used later is:

Z -'bg" —g 6Zbr. =2[Zbr' —4($'+g'+f') ——' Z -'bg ')/go

4 This substitution is greatly simplified by making use of the identities

al +a2 +a3 —3(al+a2+a3) + 3 t 2(a2+a3) alg + 2(a3 a2)
aIbI. +a2b2+a3b3 =—-', (a1+a2+a3) (b~+b2+b3) +-', p-', (a2+a3) —a1$1 -2'(b2+b3) —b1$+-,'(a3 —a2) (b3 —b2),

aI'+a2'+a3'+a4' =——,'(aI +a2+a3+a4) +-,'L-,'(a~+a2+ a3) —a4$'+-', I
-', (a2+a3) a] g'+ —,'{a2—a3)

(&2)
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This form of the potential energy function is very convenient' for the study of the vibrations of the
molecule YX4. The constants in Eq. (13) are related to the k's by:

A =4k, /3; 8 = ~kg ——,'km+kg/12 ——2k5/Q 6; C= ~(ki+2k2);

D = i'ka —k5/Q 6; E=-,'[k&+-', k&+-,'k3+k4+k&(3/2) ']. (14)

This general expression for the potential energy has the disadvantage of involving Ave independent
force constants while (in the absence of isotopic shifts) the spectrum of the symmetrical tetrahedral
molecule consists of only four fundamental frequencies. It is possible, however, to reduce the number
of these constants by means of suitable physical assumptions. These assumptions and the special
potential energy functions they give rise to having been discussed by Urey and Bradley, ' we shall
consider here only the connection between the general expression and some special cases. The
potential energy expression which includes central forces and the forces perpendicular to the lines
of bonds is:"
V'= (BV'/Bg)'(g lb'; —6& Q hr,)+ '(O'V'/i-tr')' P br + '. (O'-V'/ag')' P -,'bq„'

st 7 7

The prime is used to distinguish this function from the general V. Henceforth all quantities referring
to V' (the potential energy with four force constants) will be marked by a prime. Similarly we shall
indicate by a double prime the central force case and by a triple prime the valence force case.

To compare Eqs. (2) and (15) we have to express the last term in Eq. (15) in terms of the 8r, and
the bg;;.'

r'bn, ; = -', [bq, ;—sin Q(hr;+ br;)]/cos 0 =-',bg;;43 —(br, +br;)/42.

(O'V'/Br')'=f&' (O'U'/Bq')'=f3' (8U' B/g)' q/'=f4'

(16)

(1&)

With the use of Eqs. (17), (16) and (8') we may write:

V'= l [(gf2'+fs' f~')Q 2&r—I;, +(f&'+(3/2)f2'+»f4') p br,'+f2' g ', br, br;-
7 st 7

—(3/2) 'f.' r. ~r ~V 16fi'(k—'+~'+ i')] (18)
s f 7

~ In some cases, however, it is better to define

~'=(nv'2+0)/ 4 3, 0' = (0~'2+7) lV 3, r' =(~—r4 2) l43,
and write

v' =(0—v4 2)/43,

V= V, (g~ a)+V, (q, p)+V, (f, y)+V, (p)+V, (0)+U, (7-). (13')

This change of variables is equivalent to a rotation of the y and s axes such that the y axis becomes parallel to the di-
rection A1 A» . Hence g', g', p', y' are suitable variables in any case in which' there is a preferred direction A1~A» in the
molecule.

6 H. C. Urey and C. A. Bradley, Phys. Rev. 38, 1969 (1931).
'a The last term in this expression —a sum of six terms depending on the square of the change in angle between two

bond lines —is not equivalent to the sum of four terms depending on the square of the displacement of the bond line
from its equilibrium position (the term in k2 in Eq. (1) of reference 6). Hence our potential energy function differs to
that extent from the expression (1) in reference 6. The only result of this difference, however, is that our frequency
w(~)( ~ given by Eqs. (19) and (31) depends in a different way on the "valence" force constant than the correspond-
ing frequency v2 in the above reference.

7 Eq. (16) is obtained hy differentiating 2r;r; cos 20;;=r +rP —gP and retaining only the linear terms in the br,
and Bq;;,
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comparing the coefficients in Eq. (18) with those in Eq. (2)' we obtain as the connection between the
f' and the constants in Eq. (13)
&' =4(fi'+fz' ~f4')/3; 8' = (fi'+ g f2'+3f3'+f4')/12; C' = ~ (4f2'+f3' f'—) '

D'= ,'(fi—'. '-f-2'—+. 4f4'); &' = (fi'+4f3')/1 6 (l ~)

Of these five quantities only four are linearly independent. The equation of linear dependence may
easily be found to be

D' = ~os' —2C' —8Z'.

Eq. (19) may then be solved uniquely for the various f's giving

(20)

f,' = -', A '+ 208' —4C' —16K'; f2' ——128'+4C' —16K';

f3 = —I—„A —58 +C +SL' f4' = —T'-„-2'+48' —4E,'. (2l)

Additional equations of linear dependence are obtained for the central force case where f~"——0 and
the valence force case where fq"'=f4"'=0.

PART II
' To obtain the kinetic energy expression we begin by referring the positions of the particles to a

fixed coordinate system XYZ, which may be made to coincide with the moving system xys by means
of a small rotation in space. The kinetic energy T is expressed in terms of the displacements BX, 6 F,
bZ of the various particles from their positions of equilibrium. For the jth particle:

hX =6x+Py'+Oz' 8Y' =- —Px +by;+zz; 8Z;= —Ox —spy +8z;, (22)

combining Eq. (4) with Eq. (22) we obtain the direct connection between the various 8X, 5F, 8Z
and our nine variables $, g, f, x, y, z, u, v, s. We have also three relations of the type:

(23)

expressing the conservation of linear momentum. (m; denotes the mass of the jth particle and may
have different values for the two molecules YX&X"' and YX&X&*.) The kinetic energy is, of course:

(24)

Consider first molecule YX3X . Let nz& ——3f, nz4 ——m+6m, m3 ——m2 ——m& ——m. Ke may now substitute
in Eq. (24) for the various 8X, b F, 8Z their values in terms of g, j, f', x, j, z, u, v, 8. (Calculations are
greatly simplified by the symmetrical way in which the variables are defined. )

We obtain then:

T 2i~ I (1 &&) iL4&(jr+ i72+t i) y 34 (1+3& &&) ((x+&oev~ 2) z+ (y+. &0&pe ~)z+p)
—6iie($(x+9 8$ 3)+rj(9+9 j'Q 3)+lz))+3[(u+zQ A/3) +i' +&8 +4(e +z +p )Q. )}, (25)

where e=Dm/(4m+Am) and p = M/(4m+M). We eliminate q'8, q'P and qoj by means of the equa-
tions of conservation of angular momentum (BT/88=0; BT/8z =0; BT/8/=0) and transform to
the new set of variables a, P, y, p, 0, r We then have. T in the form:

(26)
where

' Attention must be paid to the presence of a term in (P+q'+& ).
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T&')(g, u, p) =i2m(1+3''2 —ep) '[4p(1+3'!2)@+is(1+2&—ep)a'-+~~(1+5m/2 —ep) p2

+l "p—p'E(~+2p)]
(2&)

T 0, y, r) =zm(1 —ep) [4pg'+8(1+2& —ep)v'+i'6(1+& —~p)~' ~—evr+epf(2& —r)].
On account of Eq. (26) we may break up the nine rowed determinant into two three rowed ones, one
of which is squared:

{ '),T&» —P&')
~

}'=P, ~),T(~) y(~)~=P~ (28)

Expanding Eq. (28) we get the equations for the frequencies. Instead of numbering the frequencies
we shall merely indicate by a series of subscripts as to what variables, hence to what types of motion,
they correspond. Double frequencies will be indicated by two sets of subscripts each in a separate
parenthesis.

Letting '„~m/-(m+'m) = «

[m X&g &, &„s&
—P)m X+P2mX —P8] =0, m') '(g„)—RIm'~'+ Ecm'A —R3 ——0,

Pi ',A(1 ——p-«)/p+—SB(1 ', «)+2—«D-+4C(1 —«),

P, =AC(i —«p«)/p+32BC(1 —3«/2)+8«DC+2i'AB D'-)(1 —g«—p«)/p,

P, =SC(AB —D')(1 —3«/2 —p«)/p,

Ri=-,'A(1 p«)/p+SB(—1 —2«) 4«D+16E(1 —«),

R2 ——4AE(1 —K p«)/p+128BE(1 —3«) —64«DE+2(AB D')(\ 2—««p—)/p, ,

R3 ——32E(AB —D')(1 —3« —«p,)/p.

(29)

It may be pointed out that whereas the results in Part I were approximate these expressions are
exact and hence valid for any value of «. In particular Eq. (29) may be used to compute isotope shifts
due to the presence of the heavy isotope of hydrogen.

If «'«1 Eqs. (29) take the somewhat simpler form

[m"(), () 4C(1 «)]i{m'X'(r )(&8) m, "[4A(1 p«)/p+SB(1 —-';«)+2«D]

+2(AB —D')(1 —2« —p«)/p}'=0,
(30)

[mX(,)
—16E(1—«)]{m'X'&r» —mX[-,'A(1 —p«)/p+8B(1 —2«) —4«D]

+2(AB —D')(1 —2« —«p)/p} =0.

For molecule FX2X2, m~=M; m4=mj=m; m3 ——m2=m+Am. We obtain then instead of Eqs.
(25) to (30), Eqs. (25') to (30') given belo~.

T—im(1 2'I p)
—1{4p($2+~2+j2)+i(1+2~ 2p'I) [(x+qoeg 2+4'/3+2q0$/g3)2

+(i+q'"& '+4'/3)'+(s -2q'"/&3)']+4—'pLE(*+q'0&-'+«/3+2q''/&3)

+q(j+q'j g'3+4&/3)+I'(s 2q'j/Q3)—]}+-,'mP[(x+q'8&-', 32u q'f/&3—)'— —

+(~+q'4'& ')'+(s+q''/&3)']+~(1+2&)(1 2&) '(s'+q'V'+q"e') } (25)

where e'= e/(1+a), $, g', P', u, P', y, p, 0, v are suitable variables for thiscase inwhich there obviously
is a preferred direction Ai'A4' in the molecule. It is also convenient to define 8'=8/ 23+2//Q3,
P'=0&'3 P/Q3 and use BT—/88'=BT/BP' BT/Bj =0. Then we obtain Tas:

T=Ti'(3, ')+Ti"(i'', ~')+T~(p)+T"(~'!" ' r)' (26')
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where

Tg'($, ri) = 2m(1+2»')(1 —2pc'+»' —2»' ) ~[4p(1 —»')$2+»(1+2»' —2p»')n" +2»'pro],

Ti"(f', i') =2m(1 2—p»'+') 'L4p(1+»')i "+»(&+'» -2—p')~" 2'p—f'~']

T2(p) = 2m[-'-(1+2»') p'],
T*(j', P', 0, r) = 2m(1 —2p»') '(1 —2»') '[4p(1 —2»') j"+~~(1 —2p»')P"

+ ';(1 —-2p»' —8»."/3+Sp»"/3) 0'+ —,', (1—2p»' —4c"/3+4pc"/3) ~' —-';»"(1—p) 0 r'Q 2

—c'(1 —2p»') 0 P'/Q 6+ »'(1——2p»')r'8'/g 3+4pc'(1 —2»') j'ccrc~ —+2p»'(1 —2»')r)'7/Q 3].
The determinantal equations are

~

XTg —Ug! =0,

which on expansion give:

m2X'&»,
&

—[4A(1 —2p~)/p+8B(1 —3g) 4KD]m—k+2(AB —D') (1 —3g —2pic+4plc')/p = 0,

m~X2~ t ~ &

—[»A (1 —2 p~)/p+SB(1 —K) +4aD]mX+2(AB —D') (1 —a —2 pic)/p. = 0,

mX(, )
—4C(1 —21c) = 0,

m') '(„p .,)
—Q~m') '+Q2m'X' —QamX+Q4 ——0,

Qg
——-', A (1 2pz) / p+—(SB+4C+168)(1—2 Ic),

Qg= 64'(1 —21c)'+2(AB —D')(1 —21c)(1. 2ic)p/ p

+4C[»'A (1 —2 g —2 p g+ ,'4 pic') / p+ 8—B(1—4K+ -',8z') + -', 16~'D]

+16EPA(1 21c 2px+—,'8 p~—')/p+8-B(1 —41c+-',4a') ——',16~'D]

Q3 ——64'(1 —21c)[»'A(1 —2~ —2pic)/p+SB(1 —41c)]+2p '(AB —D') [4C(1—4K —2plc+ —,'Sa'

+-'316 pa')+16K(1 4a 2p~+ '—4~'+—'20pK'—)]-
Q4 = 128'(AB —D') (1—4a) (1—2~ —2 pm) /p.

(2&')

(28')

(29')

If we had assumed for the masses m4 ——m~ ——m+6m and m»=m2=m, the expressions for X&» &

and ) (t.~ ) would have been interchanged. The assumption actually used has the advantage of simpli-

fying calculations.
For a'«1 the fourth power equation becomes

[m X(p), (,)
—4C]' = 0, mX(„) —16'= 0,

m'h'«p
&

—PA(1. —2p~)/p+SB(1 —2lc)]m), +2(AB —D')(1 —2a —
2ap)/ p0,

[m'A(. ) 4C(1 ——2 K)][m) (,) —16K(1—2 Ic)]=0.

Since for YX4 (i.e., for «=0), the frequencies are given by

[m'~'&» &, «u&, &t»
—(»A/p+SB)m~+2(AB —D')/p]3=0,

(30')

(31)

we see that the substitution of X* for X in FX4 partially removes the degeneracy of the motion and
gives rise to six frequencies. For FX2X2* the degeneracy is completely removed even though two of
the frequencies differ only by terms of the order of magnitude of ~'.

The application of the above results to experimental dhta together with a discussion of the intensi-
ties is postponed until a later paper.

In conclusion I wish to thank Professor E. O. Salant for his interest and advice in this work.


