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The vector model for the electrostatic interactions of a
system of n electrons, as originally given by Dirac and as
used by J.H. Van Vleck, suffers from the restriction that it
allows the energy matrix to be set up completely only for
a single spatial configuration. In the present paper this re-
striction is removed. It is shown how the complete energy
matrix may be found by means of the vector model, what-

ever the number of configurations involved. As an example
of the method, the energies of the two "-D states arising
from the atomic configuration d' are calculated. Calcu-
lations by this method are simpler than the corresponding
calculations using Slater wave functions in that the energy
matrix factors according to characteristic va)ues of 5.

&~IRAC' has given a very elegant method for
determining the energy levels due to a

single configuration of an n electron system, all
other configurations being neglected. This method
leads in a simple way to the vector model used
by J. H. Van Vleck' in a previous paper in this
journal. However, the restriction to a single
configuration is a serious one; for example, if
there is degeneracy other than spin degeneracy
Dirac's method may give only the mean energy
of a number of states. In the present paper this
restriction will be removed; it will be shown how,
by a simple extension of Dirac's argument, the
inter-configurational elements of the energy
matrix may be obtained.

Suppose we have a configuration A, specified
by I orthogonal orbits, (ui

~
xys). (n&

~
xys),

. (n„~xys), which are all different. We can
obtain n! wave functions of the system by

applying in turn all the permutations of the
orbits (i.e. ,

a' s) among themselves to the wave
function

= (~i
~
xi&isi) (~2
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xg 2s~) (~n l xnpnsn)

Consider any one of these wave functions, PP~.
It is clear that the same result is obtained if,
instead of applying the permutation P to the
orbits, we apply the reciprocal permutation to
the coordinates x;, y;, z;, that is

PP= (P*) 'P.

The superscript x indicates a permutation which
operates on the coordinates.

The portion of the energy matrix in which the
states arising from the given configuration
intersect each other is a matrix, II"",of nt rows
and columns, whose elements are given by

(P n ~II~Pin) =J((P P")"IZPbf"dr =J((P' 'P")~IIP i, 'P"dr= Jf(P~, 'P")*—P*i, 'IIif"dr

P'P ' *II d7-= P,Pg ' " IX "dT= PP 'n II o. 2

as can be seen from (i), from the fact that the
Hamiltonian function II is invariant under P*~ '

~ P. A. M. Dirac, The I'rincip/es of Quantum Mechanics,
Chapter XI. The connection between the energy matrix of
a single configuration and the representations of the permu-
tation group has also been given by E. Wigner, Zeits. f.
Physik 40, 883 (1927).

' J. H. Van Vleck, Phys. Rev. 45, 405 (1934). This
paper will be referred to as I,

and so commutes with it, and from the uni-
tary property of the operator P &. It is to be
understood that the operator preceding P"~ acts
only on P"", and not on the remainder of the
integrand. Let H~""= (Pn~H~ cx). Then it is
seen from (2) that the coefficient of HI""in'
the energy matrix is itself a matrix, whose
elements are zero except when P=I' P~ ', iq.
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which case they are unity. But the elements
of the matrix representing P are given by
(P u~ 1 ~PPqa), and so are zero except when
P, =PP;, i.e. , when P=P,P~ ', in which case
they also are unity. Thus the coeKcient of II&"
is simply the matrix representing P, and II~~
can be written

HA A g H A.cfP (3)

Similarly, the portion of the energy matrix
arising from a configuration B, specified by the
orbits (a~' ~ xys), (n„'

~
xys), ss

HBB P,H BBP (4)

If the states Pgs are ordered in the same way
as the states PP", as we shall always suppose
done, the matrix P in (3) is identical with P
in (4).

We must now consider the portion of the
energy matrix, H"s, in which the states PP"
intersect the states PP . The argument which
leads to (2) now gives the result

(P,n ~H~PQCX') (P PQ A ~H~A') ~ (5)

Let Hl "s= (Pa
~

H
~

n'). Then, comparing (2)
and (5) and remembering that the states PP~
and Pps are similarly ordered, we see that the
coefficient of II~~ in H" is the same as the
coefficient of H~~" in FX"~, i.e. , is the same as the
matrix representing P. In this sense we can write

principle. In general, the degree of the secular
equation which must be solved to find the energy
levels can be greatly reduced if only the states
allowed by the exclusion principle are considered.
To do this we must obviously take into account
the spin variables, as well as the positional
variables. For an n electron system there exist
2" linearly independent functions of the spins.
Using these 2" functions as a basis, we can.
construct the matrices representing the oper-
ators, P~, which permute the spins among them-
selves. It has been shown by Wigner' that the
representations of the P's allowed by the ex-
clusion principle are obtainable from the repre-
sentations of the P~'s by means of the matrix
equation

P ~Ps

the plus or minus sign being taken according as
the permutation in question is even or odd.

Dirac has shown that P~;;, which permutes
the spins of electrons i and j, can be expressed
in terms of the spins by the relation

P';; =-', (1+4s; s;);
hence we can write

P = —-'(1+4s"s )

and any permutation P can be expressed in
terms of the spins by writing it as a product of
interchanges.

HAB P H ABP (6)

Eq. (6) has been established using a particular
representation. We must now show that it holds
whatever the representation, provided always
that P is represented by the same matrix in (4)
as in (3). If we apply a canonical transformation
Sg to IT~", which then becomes Sg 'IT~"Sg, and
a transformation 513 to II ~, which becomes
5~ 'II~ Sg, then II~~ becomes 5A 'II~~SJ3. The
proviso stated above requires that 5~ ——S~', in
consequence II"~ transforms in the same way
as H"~ and Hss, and (6) remains valid in the
new representation.

RESTRICTIONS IMPOSED BY THE EXCLUSION

PRINCIPI. E

Not all of the n.'states arising from a given
configuration are permitted by the exclusion

MODIFICATION S REQUIRED WHEN THE ORBITS
ARE NOT DIFFERENT '

We must now consider the modifications
required in the foregoing arguments when the
orbits of a configuration are not all different.

For brevity let us refer to the orbits of any
configuration, n&, n&, ~ o. , simply by the
numbers 1, 2, n. Suppose the orbits 1 and 2
of configuration B are identical. In this case we
will say we have a pair of filled orbits. The per-
mutation P» satisfies the equation P»' ——1,
hence P» has the characteristic values ~ 1.. But
if orbits 1 and 2 are identical, any wave function
is left unaltered by P», and so the only non-
vanishing states are those for which P» =1. In
terms of the vector model, this is simply the

' E,. wigIIer, Gruppentgeorie, p. 277.
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statement that the spins of two electrons in
identical orbits must be anti-parallel (see refer-
ence 2, $ 1).

It has been shown' in I that if the perturbations
due to other configurations are not considered,
the energies of the states arising from the con-
figuration 8 are the same, except for an additive
constant, as if we disregarded the orbits 1 and 2

entirely, and calculated the energy for the re-
maining (e—2) electron problem. However, if
we wish to include other configurations we must
adopt a different attack.

In order to use the formula for the interaction
of configurations, (6), we must formally consider
the orbits 1 and 2 as different, that is, we must
distinguish between them. The states Pgs will
no longer be orthogonal, for if P'=P12P the
states P'fs and Pits are actually identical. The
modification in the secular equation required
when the states are not orthogonal is a familiar
one; we must calculate the matrix elements of
H —S" rather than the matrix elements of H.
Thus (4) must be replaced by

(IS—W') =Qr (II—W) i P (9)

A similar modification is not required in (6), as
the states arising from the configuration 8 will
still be orthogonal to those arising from any
other configuration, A.

Suppose the orbits of A are all different. Let g
be the degree (number of rows and columns) of
the matrices representing the P's. The complete
energy matrix, for both configurations, A and 8,
is of degree 2g. Its form differs from that shown
in Fig. 1 only in that it consists of four squares,
each of degree g. Let us use a representation of
the P"'s in which P12 is diagonal. In such a
representation there will be a number of rows,
r in number, for which P12 has the characteristic
value 1, while for the remaining (g r) rows-
P12 has the characteristic value —1. But we have
seen that when orbits 1 and 2 are identical the
only permissible states are those for which
Pig=1. The (g —r) rows and columns arising
from 8 for which P» = —1 must accordingly be
struck out of the energy matrix, which then
takes the form shown in Fig. 1. The symbol P
will be used to denote the matrix obtained from
P by deleting the improper (g r) rows, —and

@BA (e—w)

Fro. 1.

P will denote the matrix obtained by deleting
the improper (g —r) rows and columns. In place
of (6) and (9) we now have

BA Q IS BAPBA .

(IS W) ss = Q p(II—W') sPss—(1O)

If the permutations P' and P are connected
by the relation P' =P»P, we obviously have

The entire group of n! permutations can be
divided into one set of n!/2 "independent" per-
mutations, and a second set of n!/2 permutations
which can be obtained by multiplying each per-
mutation of the first set on the left by P». For
example, the six permutations Pg P12 P]3 P23,
P123, P132, can be divided into an "independent"
set P&, P13, P23, and a "dependent" set
P12 P12Py P12$ P12P2$ P 1)2 P12P18~

(II W4c)r ~= (II—W4c)vs~, —(C=A, 8).
Moreover P' ~=P ~, since

P'(i;j) =QiP»(i; k)P(k;j ),

and in the r rows we have retained Pi2(i; k) =b, i-, .
The contribution of P' and P to the energy is
accordingly

(IS Whse)r "P' —'+(II Whse) p"P"—
=2(IS Whse) ps4P" ~. —
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of (10) we can write

IIBA 2P r II BAPBA

(11)
(II W) —B=2P'p(II W)p—P B,

where the sum is taken only over the n!/2 per-
mutations of an "independent" set. As all the
exchange and higher order permutation in tegrals
of unity appearing in (11) are clearly zero, the
second expression in (11) is simply

(II W)BB—=2+' II BBPBB 2W1—

&J.IIz.""p- +'& I'hajj ~ BApBA)t

BApBA b(z'pIIp p —'Hj'1)

The matrix H can be obtained from HBA by
use of the Hermitian character of the energy
matrix, HAB=HBAt. The entire energy matrix
has the form shown in Fig. 2, if we put o =b=2.

diagonal. The only rows and columns arising
from 8 which are retained in the' energy matrix
are those for which both X~2 and F34 are 1; all
others must be struck out. The contribution of
any permutation I' to the energy matrix will be
the same as the contribution of each of the per-
mutations P»p, P34P Pjgp34P. In place of (11)
we now have

IIBA 4Q r II BAPBA .
(12)

(Q W) BB 4P I II BBPBB 4 W]

where the summation is to be taken over n!/4
permutations which do not differ merely by
interchanges of identical orbits of B. The
matrices PB" in (12) will of course have a smaller
number of rows, and the matrices I' B a smaller
number of rows and columns, than the corre-
sponding matrices in (11).In order to renormalize
the energy matrix each row and column arising
from B Inust be divided by 2. The final form of
the energy matrix is given by Fig. 2 with @=2,
b=1.

The above arguments are readily generalized.
Suppose we have any set of configurations 8&,
R2, RA... Let r,. be the number of pairs of filled

orbits in the configuration R;. We shall always
denote the first pair of filled orbits by 1,2, the
second by 3,4, and so forth, and employ a
representation in which P&~, F34, P2„&„,
are diagonal. This is possible, since these per-
mutations all commute. Then if r; & r;, the
matrix IZR'R~, in the normalized form, is given by

Fro. 2.
IIRiRj = g 2ri rjgi II RiRjpRiRj— (13)

It is often inconvenient to have —28' appear
on the diagonal, for example if we wish to use
the spur theorem. This difhculty can be avoided
by renormalizing the energy matrix, which we
can do by dividing each row and each column
arising from the configuration B by Q2. The
final form of the energy matrix is given by Fig.
2 with a=&2, b=1.

The problem arising when there are two pairs
of filled orbits in the configuration 8 can be
handled in the same way. If the orbits 3 and 4
are identical, as well as 1 and 2, we must use a
representation in whIch both j 32 and j'~4 are

where the summation is taken only over n!/2"'
permutations which do not diRer merely by
interchanges of identical orbits of R;. The
matrices I'R'R~ are obtained from the matrices
I' by striking out the rows which violate the
condition that an interchange of identical orbits
of 8; has the characteristic value 1, and striking
out the columns which violate the condition that
an interchange of identical orbits of R; has the
characteristic value 1. The matrix H & ' is

obtained from the relation HR~R'=HR'R& . Eq.
(13) is the desired generalization of Dirac's
result, (3). Eq. (13) is the same as (3) when

z=~, r, =o,
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ORTHOGONAL AND NON-ORTHOGONAL ORBITS

If the different orbits are orthogonal, as we have so far supposed to be the case, the number of
terms which it is necessary to consider in setting up the matrix H~'~' can be considerably reduced by
taking into account the fact that the Hamiltonian function representing the electrostatic interactions
between electrons contains no terms involving the coordinates of more than two electrons. It is
evident from the form of the Hamiltonian function that if in the integral IIp"'"' more than two
electrons are in different orbits, the integral will be zero. But this will surely be the case if I' is any
permutation involving more than two orbits, i.e. , any permutation other than the identity, I'I, or a
simple interchange, I'~~. It should be noted in this connection that permutations involving an inter-
change of identical orbits do not appear in (13). When 2=j, (13) may accordingly be written

IIR;R [~ RR i++I.I R;RP RR]
k(l

(14)

Interchanges of identical orbits are to be omitted from the summation. Here H~&~'~' is the ordinary
"Coulomb" energy, while the coeAicients Hpy) ' are the usual exchange integrals.

When the orbits are not orthogonal, as in molecular problems, (13) is still valid if we write IX—W
in place of H. The method for solving the resulting secular equation has been discussed in I.

CAI.CULATION OF THE4 MATRICES REPRESENTING THE P S

We have seen that any permutation I' can be expressed in terms of the spin variables by means
of (8). From the form of (8) it is evident that P is invariant under a rotation of spin axes. The P's,
and the energy, which is a function of the I"s, can accordingly have no matrix elements between
states of different S or 2VIq, and for each characteristic value of S we obtain a representation of the
P's which is independent of M

The first task in finding these representations is to express the spin wave functions belonging to a
given S and M&, for an m electron system, in terms of one-electron spin functions. The representative
of any P, i.e. , any permutation of spin orbits, can then be calculated, and P obtained by use of (7).

'I he wave functions are found by repeated application of the familiar formula for the compounding
of two vectors S~, S~ to a resultant S,

SgS2 —~ SgS2
BMB —~0$ B03EB 34'By04'$33rB 3— —

C.eneral formulas for the coefficients s»8„„&~ „have been given by Wigner. 4 The matrices I-'»,
I'34, will be diagonal if we begin by compounding s& and s2 to a resultant S&~, s3 and s4 to a resul-
tant S34, etc. , and then proceed to compound S~~ and S34 to 5' and so forth until the total spin, S,
is diagonal. Only one value of M~ need be considered; it is simplest to take MB=S. For the single
state with S=n/2 all the electron spins are parallel, and it follows directly from the vector model,
(8), that any odd permutation is represented by —1, any even permutation by +1.

The case n = 4 will serve as an example of the method, and also of some devices which considerably
shorten the labor in more complicated cases. From four electrons we obtain one quintet state, three
triplet states, and two singlet states, as can be seen from Fig. 1 of reference 2. The wave functions,
QB»$3411, of the three triplet states can be expressed in terms of two-electron spin wave functions as

11= (1/Q 2) L4'11($1$2)$10($3$4) 4'10($1$2)$11( 4)$j3,$

11= fll($1S2)$00($3$4) q f 11= i/00($1$2)$11($3$4) .

The two electron wave functions are given by

'P»($'$4) = $'$1'' (16)

4 E. Wigner, reference 3, p. 206.
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where (; is the spin wave function of the ith electron for m, =-„and ))„ is the spin wave function for
= —1

CP ~

For the first and second of the states (15), the spins of electrons I and 2 are parallel, so P» = —I;
for the third they are anti-parallel, so P12 = 1.Similarly, the characteristic values of P34 are —1, 1, —1.
This is a rather trivial illustration of a fact which is very useful when n is greater than 4; if we have
found the P's for the cases e=r and +=p we can immediately write down, for the case n=r+p,
all the P's which involve only the first r or the last p orbits. The labor involved in calculating the
matrix elements of the remaining P's can be greatly reduced by taking advantage of relations between
the P's, obvious symmetry properties of the wave functions, and the fact that the matrices repre-
senting simple interchanges are both Hermitian and unitary. For example, from (15) and (16) we find

13$ 11 (I/ "l 2) tt ll+ 2)p 11+24 11

This equation determines the last column of the matrix representing P». If both sides of (i7) are
multiplied by Ps, the left side becomes PsPs»f"» PsiPsp '——ii, with P~),=P~Ps»P '. Choose
P P (i3) (24), Then P k =P», and inspection of (I5) immediately shows that P ()3) (24) f )i lP ii,

(13) (94) p 1 l. p ii, P ()3)(.4) p")i ———p")i. Hence

and the second column of the matrix representing P813 is determined. The third column can now be
found by using the fact that P» is unitary and Hermitean. The matrix representing P» is found

by means of the relation P 23=P 12P 13P 12, which, in view of the diagonal form of P 12, shows
how P 23 may be obtained by simply changing certain signs in P"'». Similarly, P &4 is determined by
P 14=P 34P ]3P 34 and P 24 by P 24 —P 34P 23P 34.

Using (7), we find for n=4, $=1,
0 0

P12= 0 —1 0,

0

P34 —— 0 0,

0

1
2

0 0 1 0 0 —1 1
2

0

2

1 1
2 2

P Q
1 1 P23= —4 2

q 1

.1
2 P24=

I 1 . 1
& 2 2

In a similar way we obtain for n = 4, 5=0,

P12 P34 P13 P24
3 1

P14 P23

1 3
2 4

1
2

The representation of higher order permutations can be found by multiplication of these repre-
sentations of the interchanges.

The representations of P12, P~3, and P23 which we have just found for n=4, S=O are also the
representations of these permutations for n = 3, 5= ~1, for, on removing the fourth electron, a state
S=0 of the four electron problem evidently goes over into a state S=—,

' of the three electron problem.

APPLICATION TO THE ATOMIC CONFIGURATION d3

As an example of the use of (13) we shall calculate the energies of the two 'D levels arising from the
atomic configuration d'. It has been shown' in I how the vector model can be used, as an alternative
to Slater's method, to find the energies of the other levels arising from this configuration, but of
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course either method gives only the mean energy of the 'D states. To separate them we must set
up the complete secular determinant for 3EIJ.——2.

The orbits having m&=2, 1, 0, —1, —2 will be denoted by db, d~, do-, d —~, d —6, respectively. The
four configurations which have M~ ——2 are

A: (der, d —~, d8), 8: (do, do. , d8), C: (d7r, dm. , do.), D: (db, d6, d —5).

All the orbits of A are different, so the matrices I';;""are simply those given in (18). The orbits 1

and 2 are the same in 8, C, D, so P;;x", (X=8, C, D), is the second row of I';;, and I';;x",
(X, V= 8, C, D), is the element in the second row, second column of P;;. The energy matrix for the
doublet states is shown below.

H AA H AA

AA+ 1H AA

AA H AAj

BA H BAj
CA H CA j

4 -LH 3
—H23 j

H AA+H AA
AA 1 AA——2H13 ——2H23

yg[H BA

—-H13 —-H23

——', H13 —-', H23 ]

y 3tH BA H BA)

2H13 2H23

H BB IH BB
I 2 iH BB

IT —-'H
1 Zy CB
2cJ.23

CA H CA j

CA CA——2'Hl 3
——2'H23

H 'B—-'H 'B
I —

2 ——2H23

H CC 1H CC
13 ——',H23

y. tH DA H DAj

q2LH, "
—-'H13 —-'H. 3 ]

HDB —-'H DB
I 2 ——,'H
DC &II DC

——2H23

DA H DA j y 2' DA H DB 1H DB
I 2 DC

2&&23

H DD &H DD
y zy DD
2 H23

For brevity we have written H»'" in place of II&„",and so forth. The coe%cients II&~' ~ can
readily be expressed in terms of the integrals

(cKp; 76) = (dn
~
xgy&s&)*(dP

~
xmyns2) f12 (d r ~

xly]s]) (do
~
x 2y2s)2drg dry,

and these in turn in terms of the Slater-Condon parameters I''0, F&, F4. To quote a few examples,

II,""=(~—~; ~ —~l+(~3; ~6)+(—~3; —~3); IIgp"" ——(~—~; —~~); II, '= (oo; oo) y2(o3; o3);
II BB g BB

( 3. 3 ). II BA
(

. ). II BA jj BA p. II CB p. II CB H2 CB ( . 3)

Three of the Ave characteristic values of the energy matrix are already known; namely 'IT, 'G, 'F.
The mean of the two 'D levels can be found by subtracting the known characteristic values from the
spur of the energy matrix. In a similar way, the mean square of the 'D levels can be found by sub-
tracting the squares of the known characteristic values from the spur of I7'. This spur is
Sp II'=P;;~II,; ~', i.e. , it is simply the sum of the squares of the elements of the energy matrix.
The energies of the two 'D states are then given by

2D~ 1~~X(2P ~2) 1 w)th ~ —2D +2D P (2D )2+ (2D )2

On carrying out the arithmetic we check the result previously obtained by Shortly and URord'
by means of Slater wave functions. One advantage of the present method is that the secular deter-
minant factors according to characteristic values of 5; the Slater wave functions do not lead to such
a factorization.

l wish to thank Professor J. H. Van X leek for his very kind advice and aid.

' C. W. UGord and G. H. Shortley, Phys. Rev. 42, 167 (1932).


