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Dirac has shown that the secular problem presented by
the permutation degeneracy is formally equivalent to a
problem in vector coupling for which the Hamiltonian
function is —32K;;(1+4s;-s;) where s;, s; are respectively
the spin vectors of orbits 7, j and K;; is the exchange
integral which connects ¢ and j. The vector model can
be used in place of Slater’s determinantal wave functions
to calculate atomic spectral terms, provided one still
retains much of Slater’s powerful method of diagonal sums.
The configuration @3 is treated as an example. Configura-
tions of the form sa* (a=p, d, f---; 0<k<4l,+2) are
particularly amenable to the vector model, as it enable$
us immediately to write down the energy of sa® if that of
a* is known. One thus finds that the two states S=Srt3}
built upon a given configuration Sk, Ly of the core aF

should have a separation proportional to Si+3% and
independent of Li. Experimentally, this prediction is
confirmed only roughly, like the interval relations found
by Slater, because perturbations by other configurations
are neglected. Various applications to molecular spectra
are given. The Heitler-Rumer theory of valence, which
neglects directional effects, has a particularly simple
interpretation in terms of the vector model.

In configurations of the form p» both spin-orbit and
electrostatic energy can be calculated by the vector model
without use of the invariance of diagonal sums. For this
particular configuration the Pauli principle is equivalent
to a constraint 2s;-s;= —(1;-1;)2—(1;-1;)+% connecting
the relative orientations of spin and of angular momentum
vectors.

1. INTRODUCTION

HE method commonly used for calculating energy levels in problems involving permutation
degeneracy is that due to Slater.! It appears to have been rather generally overlooked that

Dirac’s? vector model is, as we shall show, likewise often very convenient for many computations in
complex and molecular spectra. The beauty of the vector method is that it gives a simple kinematical
picture for the results and does not require the explicit determination of proper final wave functions.?
Yet we must grant that many physicists find wave methods easier than matrix ones and to a large
extent it is a matter of taste and training whether the Dirac or Slater method is the more tractable.
Both of these procedures are simpler than full-fledged group methods and are alike in that they owe
their strength essentially to recognition at the outset that the allowable ‘‘characters’ for the permu-
tation group are very severely limited by the Pauli principle, so that the group technique is more
general and complicated than needed.

Before removal of the permutation degeneracy, a typical orbital wave function of the system may
be taken to be the product

D

of the wave functions of the # individual electrons, which we shall suppose separately normalized to
unity. We shall throughout use the term ‘‘orbit” to designate the quantum numbers, etc., of one
electron, considered individually, and the term ‘“‘state’ to specify the condition of the entire system
of all n electrons. We shall always assume that the only permutation effects which need to be con-

V= ¢1(x1, Y1, Zl)'PZ(x‘b V2, Zz) e '\Pn(xm YVny %n)

1]. C. Slater, Phys. Rev. 34, 1293 (1929).

2 P, A. M. Dirac, Proc. Roy. Soc. A123, 714 (1929), or
The Principles of Quantum Mechanics, chapter XI. A
brief resumé of Dirac’s method is also given in chapter XII
of the writer’s Theory of Electric and Magnetic Suscepti-
bilities.

3 At first sight it seems as if we would need to find the
wave functions if we desire intensities rather than simply
energy levels. However, Condon and Ufford find that
oftentimes the intensities can be found from the principle
of spectroscopic stability without determining the final
wave functions; Phys. Rev. 44, 740 (1933).
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406 J. H. VAN VLECK

sidered are simple exchanges. The higher order permutations will be treated by R. Serber in a paper to
appear in the Physical Review shortly.* They do not enter if the wave functions of the various orbits

are orthogonal and are usually neglected even if they are not. Orthogonality of the ¢’s will be assumed
unless otherwise stated.

We shall, like Slater, use the notation K;; for the exchange integral

K= f : ‘flh*(xl, V1, B0 W* (%2, Vo, 22) HY (%1, Y1, 20) Ya(%, Ve, 52)dT1d T2, (2)

and J;; for the Coulomb one

Jij=f' ' 'fl//i*(xu V1, 20 (X2, Vo, 22) (€2/719)¥i(1, 1, 21) ¥ (%2, Vo, 22)dT1d 7. 3)

Clearly the Hamiltonian operator H has the structure
H= Zif(x,-, Vi, 2iy ad- - /ax,, a-- '/ayi, d-- /321) +27‘>i32/7'ij-

We shall throughout omit the Coulomb terms arising from Z;f(xs, ---, 9-- -/9z;), as they enter
merely as additive constants in the problems which we shall consider. We shall use Mulliken’s Greek
notation for the spatial quantum number; thus 2pmr; means n=2, I=1, m;=+1 (or N\=41 if the
axial quantum number is denoted by A, as in molecular problems). We use the term ‘‘configuration”
for the totality of states which arise when the orbital quantum numbers of all the orbits are specified,
apart from permutations of electrons among the orbits. This agrees with the use of the word con-
figuration in molecular spectroscopy, where three quantum numbers are used to specify an orbit, but
atomic spectroscopists do not distinguish between different values of the spatial quantum number.
When there is danger of confusion, we shall speak of atomic and spatial configurations. Thus 2p72pe,
2p7? are two different spatial configurations but represent the same atomic configuration 2p% A
single configuration may have several possible values for its resultant spin S and a given value of S for
the configuration may yield more than one energy level. The frequency of occurrence » of any S is
obtained by the “branching rule’” which is illustrated in Fig. 1 and which is constructed by build-

ing up the configuration electron by electron.

2 Electrons in equivalent orbits are not to be

counted in constructing the branching patterns,
3 as their resultant spin can only be zero because
2 of the Pauli principle. The analyvtical formula for

S ! T 0

where k=3n—.S, and » is the number of free
orbits.?

For the present we shall consider only the

secular problem connected with a single configu-

| > 3 4 ration. The problem of treating simultaneously

the permutation degeneracy and the interaction

of two or more configurations is naturally more

m complicated (unless this interaction vanishes, as

Fie. 1. often happens) and will be examined in Serber’s
article.*

Qo -

4 R. Serber, Phys. Rev. to be published, April 1, 1934.
5 Cf., for instance, J. H. Van Vleck, The Theory of Electric and Magnetic Susceptibilities, p. 324, Eq. (14).
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Slater’s way of solving the permutation problem is to superpose on (1) the Pauli spin functions,
permute the arguments, take antisymmetric linear combinations and then construct the secular
determinant. Dirac has shown that, instead, we can utilize the theorem that the energy levels are
the same as those of a Hamiltonian function

H=2jiJij+ Zp>iKii®ii= 25T 17— 325K i;(1+4si-8;) 4)

provided we confine our attention to one configuration. Here s; (half Dirac’s ¢;) is the spin vector
associated with the orbit 4, measured in multiples of #/2w, and ®;; is the permutation matrix associated
with interchange of orbits 7 and j. All expressions printed in bold-face type are vector mairices. The proof
of (4) we can omit, as it is given by Dirac.? The result (4) is, however, fairly obvious from the following
considerations. First we remember that the characteristic values of ®;; are 1 and that the resultant
spin quantum number of 7, j has respectively the values 0, 1 when ®;;=-+41, —1. We shall have
frequent occasion to use the relation

22,->,-s,~sj~= (Esi)2—2s¢2=S(S+1)~%n, (5)

where S is the total-spin quantum number for a system of # non-equivalent orbits. When bold-face
type appears on the left and ordinary italic type on the right of an equality, it means that the left
side is a matrix and the right side is a typical characteristic value of the matrix. Thus s?=s;(s;+1).
This convention obviates the necessity of inserting indices on the left side. The factor £ is involved in
(5) since for a single electron s;(s;+1) =2. When we specialize (5) to » =2, the only possible values of
S are 0, 1. Hence the characteristic values of the bracketed factor in (4) are =1 and this factor is the
same as @;; since these two matrices are simultaneously diagonal with the same characteristic values.
As Dirac also briefly mentions, the procedure must be modified when a pair of orbits «, &’ be-
longing to a configuration are identical. Here one must drop from the summation in (4) the term
involving K,,, for there is no distinction between exchange and direct Coulomb energy between two
identical orbits and the proper mutual energy is already included in J,.+. Let ¢ be any third orbit not
.belonging to the pair. Then since K ,,=K 4 and since s,+S, =0 because of the Pauli principle, we
have
—3K o[ 1+480-8,]— %an'[l +4sa-8¢]=— K[ 1+2(satSar) Sq] =—Ka. (6)
Let Roman and Greek subscripts be used for orbits which occur once and twice in the configuration.
Such orbits we shall call respectively ‘“free’” and “filled”’ (or ‘“‘paired’’) orbits. In place of (4) the proper
formula is now

= Ei>iEJii_ %(1 +4s;- si)Kii:H' Z;, n[ZJJ'u _Kiu:H' En>ﬂ[4juﬂ - 2Kml:|+ ZuS e (7)

In this connection it is to be understood that each pair of identical orbits gives rise to only one term
in the Greek summations.

Eq. (4) or (7) shows that, except for additive terms, there is a formal mathematical similarity between
the permutation problem associated with a configuration of n free orbits and the problem of n angular
momentum vectors, each of quantum number %, whose coupling energies vary as their scalar products.
The configuration can also involve any number of filled orbits, since by (7) such orbits contribute only
an additive constant to the energy. Formulas for the coupling energy of 3 and of 4 angular momentum
vectors have been given, respectively, by Giittinger and Pauli® and by Johnson.” Their results can
immediately be adapted to our problem but are more general than we need since they did not
specialize the quantum numbers of the component vectors to the value 3. This specialization simplifies
the formulas materially and enables them to be obtained often by Goudsmit’s inspection method.?

6 W. Giittinger and W. Pauli, Zeits. f. Physik 67, 762
(1931).

7 M. H. Johnson, Jr., Phys. Rev. 38, 1628 (1931).

8S. Goudsmit, Phys. Rev. 35, 1325 (1930). The in-
spection method consists in noting that the constants
involved in a quadratic secular equation can often be

uniquely evaluated if its behavior is known for extreme
cases of the coupling parameters. This method will be
used to formulate the secular equations for the states of
minimum spin in the three and four electron problems, in
an article by A. Sherman to appear in Reviews of Modern
Physics.
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The secular equations appropriate to the cases =35, 6, 7, 8 will be considered in a later paper by
Serber and Sherman and have, as a matter of fact, already been formulated by Eyring and colleagues?®
for the important states of minimum spin. The latter, however, did not use the vector model but,
instead, a Slater procedure based on electron pair bonds. Heisenberg’s theory of ferromagnetism
involves unfortunately the case n= N, where N is the enormous number of atoms composing the
microcrystal. Here accurate solution of the secular equation is clearly impossible. The mean energy
and mean square energy belonging to a given spin S of the microcrystal can, however, easily be
computed by the vector model. This has been done by the writer.l® The results are the same as
obtained by more complicated group theory. Knowing these means one can, of course, determine the
constants of Heisenberg’s assumed Gaussian spread of energy levels. Quite irrespective of ferro-
magnetic applications, the formula for the mean energy W of those states of a configuration which
have a total spin S'is often very useful. It is

W=C—3[1+ (4 +4S—3n) /n(n—1)]Z:K s, (8)

where C is an additive constant representing the effect of all Coulomb terms and of exchange terms
which involve filled orbits (types j, u; u, 7; and u, uin Eq. (7)). As Dirac has also shown, formula (8) is
proved by using (4) or (7) and noting that, on the average, each s;-s; absorbs 1/(#*—#) of the sum (5)
inasmuch as there are in(n—1) pairs of structure j>1.

2. ATOMIC SPECTRA

In the calculation of atomic spectral terms there is the degeneracy connected with spatial orienta-
tion as well as that connected with the permutation problem. Hence the secular problem usually
involves more than one configuration. Nevertheless as Slater! has ingeniously shown, this compli-
cation can very often be circumvented by utilization of the invariance of the spur and the fact that
with given L, .S the energy is independent of the quantum numbers M, Ms. Here M, M denote,
respectively, the projections of the orbital and spin angular momenta L, S along some arbitrary spatial
direction. We shall not consider spin-orbit coupling, so that introduction of the quantum number J is
unnecessary and the Hamiltonian function is diagonal in M1, M s. Slater always starts with what we
shall call an m,, m, system of representation, in which the electrons are individually space quantized,
so that My =2my, Mg=Zm,. Ordinarily, two or more spatial configurations will lead to the same
values of M1, Mgs. Nevertheless, development of an elaborate inter-configurational theory is un-
necessary as far as the sum of the roots of the secular equation is concerned. Indeed it is a well-known
theorem that this sum equals the invariant spur or diagonal sum of the matrix elements of the
Hamiltonian function regardless of what transformations are made and the spur in question clearly is
by definition independent of the troublesome off-diagonal elements which represent the interaction of
the various spatial configurations. Furthermore, a certain number of individual roots in the sum for a
given M, M s are known if we have already solved the secular equations for larger values of My, M s.
This is true since a state of given L, S appears once in the secular equation for each pair of values of
M, Mg consistent with the inequalities

. My=—L, —(L—1), ---,L;  Ms=-—S, —(S—1), ---, S. 9)

Let us begin with the state of maximum M, M s consistent with the given atomic configuration and
progress to states of lower and lower M1, Mg. If at each step the degree of the secular determinant
never advances by more than one unit and if it is of degree unity for M rnax, M smax as is usually true,
all the roots can be calculated without an inter-configurational theory. As Slater shows,! these

9 A. Sherman and H. Eyring, J. Am. Chem. Soc. 54, 10 I, H. Van Vleck, The Theory of Electric and Magnetic
2661 (1932); H. Eyring and G. E. Kimball, J. Chem. Phys.  Susceptibilities, p. 340.
1, 239 (1933).
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conditions are always met if we confine our attention to a single atomic configuration and if, in
addition, this configuration contains no more than one multiplet of any one type. For an example
consider the atomic configuration d®. Here, by well-known principles, the multiplets are

*[], 2G, *F, 4F, 2D, *D_, *P, *P. (10)

One can easily calculate, as we shall show, the energies of all the states (10) except that one obtains in
this fashion only the mean energy of the two 2D multiplets which, following Ufford," we shall denote
by 2D, and 2D_. To isolate the energies of 2D, 2D_ or to include perturbations by other configurations,
it is necessary to have recourse to a more comprehensive theory, such as has been developed by
Ufford and Shortley? with the Slater method and which will be examined by Serber? in the light of the
vector model.

Slater! develops the following theorem: the exchange part of the diagonal sum for the energy can be
calculated by using an m,, m, system of representation and giving an exchange integral K;; the coefficient
—1 if the spins of the corresponding orbits are parallel (i.e., if my,=m, = £3%) and the coefficient zero if
they are anti-parallel. This result is readily deducible from our vector model as follows. The diagonal
elements such as are involved in the spur have the physical interpretation of being mean values.
If the z axis is that of quantization, the angular momentum vectors precess about the z axis so that
only the z component is constant and has a mean value different from zero. The precession rates for
the various vectors are different, so that the average product equals the product of the averages. Thus

—%[1 +4s;- Si] = —'%[1 +4SziSz]'] = - %[1 +4ﬂlsi1’ns]']. (1 1)

Eq. (11) embodies the same kinematical principle as in Landé’s or Goudsmit’s well-known use of the
permanence of I'-sums in strong fields; instead of appealing to our kinematical intuition via the
correspondence principle one could, of course, also derive (11) by simple matrix algebra.’® Clearly, in
agreement with Slater, the expression (11) equals —1 if m,=my==4% and vanishes if |m,| =1,
Moy = — Mg

Once (11) has been established, the calculation of the levels proceeds in a well-known fashion based
on the spur theorem and first described by Slater. Hence details or examples need not be repeated
here. Thus, in applying the Dirac model to atomic spectra, one draws very heavily on the powerful
Slater technique of diagonal sums and the main difference is that the theorem stated in the preceding
paragraph can be proved by the vector model instead of by using determinantal wave functions.

In Slater’s original procedure, in order to determine the energies of the states of a given multiplicity,
it was necessary first to find the energies of the states of higher multiplicity belonging to the atomic
configuration under consideration. This is true since the results for a particular multiplicity are usually
obtained by ‘‘subtracting out” from the diagonal sums for given M., My all the roots belonging to
states with S> M. With the aid of the formula (8) based on the vector model (but which could
doubtless also be established by other means) it is possible to determine the energy levels for any one
multiplicity without the knowledge of those for the higher multiplicities. Another way of saying the
same thing is that with (8) one can avoid using the intermediary of individual space quantization
for the spin, though such quantization is still needed for the orbit, so that one can begin with the
energy values for an m;, S rather than m,;, m, system of representation. The former is, of course,
nearer the final L, S system. This is only a nominal advantage since the amount of labor saved is
not great and since usually one desires the energies of all multiplets belonging to a given configuration.
Nevertheless, the m,, S procedure is an interesting variant from the m,;, m, one and can also serve as a
useful arithmetical check on the latter.

To illustrate and so make more lucid the statements of the preceding paragraph, we shall calculate

11 C. W. Ufford, Phys. Rev. 44, 732 (1934). 13 A, Landé, Zeits. f. Physik 19, 121 (1923); S. Goudsmit,
12 C, W. Ufford and G. H. Shortley, Phys. Rev. 42, 167 Phys. Rev. 31, 946 (1928); W. Heisenberg and P. Jordan,
(1932). Zeits. {. Physik 37, 263 (1926) (matrix proof).



410 J. H. VAN VLECK

the energies of the doublet levels belonging to the configuration d® without determining those of the
quartets. Out of all the multiplets listed in (10) for d?, the only one yielded by the spatial configuration
M =5 is 2H, since all the others demand M ;,<35. In this configuration there is one free orbit and one
closed pair, so that the situation is that covered by (7) when we restrict the ¢, u summations to one
term each, with no j or 5 at all, and identify 4, u with dm, dé? respectively.'* Hence by (7)

WEH) =2J(ds; dr)+J(ds; d8) — K (ds; drr). (12)

There are two spatial configurations dédn?, dé*de compatible with A/, =4. Both are of the type just
discussed, viz., one free orbit and one pair. Hence by (7) and the invariance of the diagonal sum

WCEH)+WEG) =2J(ds; dn)+J(dr; dw) — K(ds; dm)+2J(ds; do)+J(ds; ds) — K (ds; do). (13)

When one comes to M, =3, the state of affairs is somewhat different. Here by (10) there are both
quartets and doublets, viz., 2H, 2G, ?F, *F. From the branching rule given in Fig. 1, one sees that the
spatial configuration dédmwde admits one quartet and two doublets. The energy spur x for the two
doublets is

x=2W=2[J(db; dr)+J(dr; do)+ J(d5; do)]. (14)

This result is obtained by taking #=3, S=% in (8) and evaluating the constant C which in the present
case consists entirely of Coulombic energy, inasmuch as all three orbits are free. To form the complete
spur for Mr=3 one must add the part contributed by the other configuration dé*dwr_ belonging
to M1=3. Hence

WEH)+WEG)+WEF) =x+2J(ds; dr_)+J(ds; ds) — K (ds; dr_) (15)

since dé*dm_ involves one closed pair and so is treated by the same principle as involved in (12).

When M =2, there is one spatial configuration dédrdr_ which involves only free orbits and which
hence contributes two doublets. Also there are three configurations déde?, d8*ds_, dr?ds which involve
a pair in each case. Hence applying three times the procedure contained in (12) and once that in (14),
we find

WCH)+W(CG)+WEF)+WEDy)+ WED-) =[2J(dé; do)+J(do; do) — K (d$; do) ]
+[2J(dés; dé_)+T(dé; dd) —K(dd; do-) 1+ [2J(dm; do)+T(dm; dn) —K(dm; do) ]
+2[J(do;dm)+T(dé; dn_)+T(dm;dw_)]. (16)

It is, of course, only a trivial matter to solve (12), (13), (15), (16) for W(H), W(*G), W(2F),
WD)+ W(ED-). If one also desires W(2P) one must also compute the diagonal sums for M =1 but
we shall not do this explicitly as no new principles are involved. By means of Slater’s tables!® or
Brinkman’s'® evaluation of the product of three spherical harmonics by the symbolic method, the
J’s and K’s may be expressed in terms of the Slater-Condon F’s and G’s. One thus finally finds the
same formulas for the energy levels of d? as those given by Condon and Shortley.1” The isolation of
2D, 2D_ with the extended Dirac method will be given by Serber.*

Almost closed shells. Shortley’s!'8 results on shells which are more than half completed can be nicely
and succinctly formulated in terms of the vector model. Suppose that one has an atomic configuration
of the form a®b™ ¥, where a, b symbolize s, p, d, f etc., and where r=4[,+2, y=3. Clearly r has the
significance of being the maximum number of electrons allowed in the b shell by the Pauli principle.
One has the following rule: 4 part from an additive constant common to all the multiplets, the energy levels
belonging to a“b™¥ are given by the same formulas as those of a*b¥ if in the latter one replaces J;; by — J;;

14 We henceforth write dw, d§ for dmy, dé,. It is thus 16 H. C. Brinkman, Zeits. f. Physik 79, 762 (1932).
to be understood that #;>0 unless a negative sign is 17 E. U. Condon and G. H. Shortley, Phys. Rev. 37,
appended, as in, e.g., dr_. 1025 (1931).

15 T, C. Slater, Phys. Rev. 34, 1312 (1929). 18 G. H. Shortley, Phys. Rev. 40, 185 (1932).
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and if one takes the exchange potential to be +3[ 1 —4s;-s; 1K 5, rather than —3[1+4s;-s;1K;;as1n (4),
whenever 1 refers to an electron in the group a® and j to one in b¥, or vice versa. Here the expression Kt is
defined by Kf(ndm; nilm) =K (ndm,;n;l;—m:y). No sign reversals (or substitutions of K 1 for K)
in either the Coulomb or exchange terms are, however, to be made when they connect orbits which
both belong to a® or both to bv.

A corollary of the above rule, obtained by taking x=0, is that the levels of the configuration
b7V are, apart from a constant, the same as those of b¥. If u=4I,+2 and if one applies the rule twice in
succession, first reducing a*~%b™ to a*b™¥ and then a®b™ ¥ to a%b¥, there are two successive sign
changes which cancel and so one sees that the energy levels of a*~*b7 are the same as those of a*b?,
except for a constant.

The proof of the rule we shall omit, as it has already been given by Shortley'8 except for formulation
in terms of the vector model. The demonstration is substantially the same with either the Slater or
Dirac method, centering about Eq. (11) appropriate to the m,, m,; system of representation, and
applies only to problems amenable to the method of diagonal sums.

3. MOLECULAR SPECTRA

In molecules, there is no longer the degeneracy with respect to M 1, and so this degeneracy cannot be
used to depress the degree of the secular equations. The energy is still independent of M g (neglecting,
as always, spin-orbit coupling). As in the preceding section, use of individual space quantization for
the spin in evaluating the diagonal sums can be avoided by using Eq. (8). Because the M1, degeneracy
is lost, the information derivable from the diagonal sum of the energy is naturally much less than in
the atomic case.

In the molecular case the orbital wave functions are in general no longer orthogonal. Nevertheless
the corrections for non-orthogonality are easily made if we consider only the terms arising from
simple permutations. This is not rigorous, since triple permutations, for instance, do not yield wave
functions always orthogonal to the original wave function but this ‘“‘higher order non-orthogonality”
is not usually of paramount importance and is often neglected in the literature. (It will, however, be
considered by Serber.4) Let

W=f(Jra, J1s, + - Jiw, Jos, ++ Inaw, Kuay -+ -, Knvoaw) an)

be the solution obtained by disregarding all corrections for non-orthogonality, of whatsoever kind.
Here N denotes the total number of orbits, both free and filled. Let A;; be the value of the integral (2)
when H is stricken out. To include accurately the effect of non-orthogonality as involved in simple
permutations, one may use the following rule: substitute K;;—A;W for each K;; in (17),! solve this
modified form of (17) for W and take only the root which agrees with (17) when every A;; vanishes.
That this is the proper answer is readily demonstrated from the fact that the secular determinant
involves the matrix elements of H— W, with W appearing off the principal diagonal when the wave
functions are not orthogonal.

4. Cask THAT CERTAIN COMPONENT SPINS ARE GOOD QUANTUM NUMBERS

The total spin vector S commutes with the Hamiltonian function and its magnitude is a constant
of the motion which can immediately be quantized. This means that in Mulliken’s terminology, the
total spin S is a ‘‘good quantum number.” Sometimes the resultant spins of certain groups of orbits
which constitute only a portion of the complete system? may also be good quantum numbers. If

19 Here the subscripts 7, j relate to both free and filled
orbits rather than free orbits only as in (7).

20 We do not mean the trivial case that the ‘“‘certain
groups” consist entirely of filled orbits. Filled groups
have rigorously zero resultant spin by the Pauli principle.
On the other hand, it is not necessary that the orbits

involved in Eq. (18), etc., be all free. For instance, in the
application to sa*, some of the k electrons belonging to
a* may have identical spatial quantum numbers and so
occur in filled pairs. Since, by (7), filled orbits introduce
only an additive constant in the Hamiltonian function,
they never introduce any complication.
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K;; is independent of 7 for 2=k and j > %, (18)

then the magnitude of the resultant spin Sy;=s;4---+s; of the first £ orbits may be quantized
simultaneously with that of the total spin S, so that

Si2=Si(Sk+1), S?=S(S+1).
To prove this, we note that when (18) is satisfied, Eq. (7) becomes
H=C—3Z =t (1+48:-8) Kij— 324 jmps1e o> (1+48:-8,) Kij+-D, (19)
with C as in (8) and also with the abbreviation
D= =151 alk+4S,-5,]1K;. (20)

The important thing is that D is a function of S; rather than of s, - -s;, separately. Now it is easily
verified that S;? commutes with s;-s; if 7, j are both in the group 1- - -k or both in the group 2+1- - - .
Also S;? obviously commutes with S; and with s; for 7> k. Hence S;* commutes with the complete
Hamiltonian function (19) and with S, and so can be quantized. (In the general case where (18) is
not satisfied, S;% cannot be quantized since it does not commute with s;-s; if 7, j relate to different
groups.) '

In case K;; is independent of j as well as of 4 in (18), the magnitude of spin Ss;=s8, 1+« -+s;
can also be quantized so that Ss5;2=S55,(S>:+1). Then Eq. (20) reduces to

D= —3K1,[k(n—k)+4S;-S51]= — 3K {k(n—k) +2[S(S+1) = Si(Se+1) = Ssr(Ssx+1)]},  (21)

and, except for an additive term (21) which can be evaluated immediately,” our z-electron problem
factors into the £ and #— & electron problems. Formula (21) can always be used to simplify (20) when
k=n—1, as then there is only one possible value for j in (18).

Some important cases in which the preceding theorem can be used to good advantage are the
following:

I. Atomic configurations of the form sa* (a=p, d, etc; 0<k<4l,+2). One of the nicest applications
is to an s electron outside an incomplete shell of equivalent electrons.?? Because of the spherical
symmetry of the s wave function, the Coulomb and exchange integrals, J(s; a), K(s; @) connecting the
s electron with any given electron of the a group are independent of the spatial quantum number of
the latter and so do not involve any of the Greek indices. (These statements do not apply to inter-
atomic integrals involving s electrons in molecular problems, since the wave functions of s and a are
not concentric if they relate to different atoms.) Hence we can apply (19) and (21), taking S-,=1% and
n=Fk-+1. So we find

W=W(a*) —3K. {k+2[S(S+1) = Si(Sx+1) =37} +kJ,, (22)

where S, and W(a*) are, respectively, the spin and the energy of the configuration a* without addition
of the s electron. It is particularly to be noted that in configurations of the form sa*, the spin of the
“core’ is rigorvously a good quantum number (when we neglect, as we do throughout, spin-orbit
distortion and perturbations by other atomic configurations). This point does not appear to have been
generally realized by spectroscopists.

One can use (22), for example, to calculate the levels of the configuration sp? in terms of the Slater-
Condon F’s and G’s if the corresponding formulas for p? are already known. This application was
used in a previous discussion of the carbon spectrum by the writer.?* The formulas thus obtained for
sp® agree with those calculated by Johnson?* with Slater’s method.

21 When, on the other hand, K;; is not independent of j  tioning to him that configurations of the form sa* are more
in (18), one cannot use (21) and D ceases to be an additive  easily treated by the vector model than by other methods.
constant or even a diagonal matrix. 23 J. H. Van Vleck, J. Chem. Phys. 2, 20 (1934).

22 The writer is indebted to Dr. R. Schlapp for men- 24 M. H. Johnson, Jr., Phys. Rev. 39, 209 (1932),
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According to (22), the interval kAv between the two states S=S;=43 of the atom which can be
built upon a given spin configuration .S; of the core should have a value
hAv=2|K | (S+3) (23)

independent of the azimuthal quantum number L; of the core. To test this prediction the following
data are available?®: 26

TiI: 3d%4s: 1p—3P=1970, 1D —3D=2740, 1G—3G=3120, 1H—3H=2670,
’ $[*P—5P]=2410, 3[3F—5F]=2480 cm™
Co I: 3d®s: 2P—4P=4500, 2F—*F=3710 Fe I: 3d"4s: 3P—5P=5210, 3F—5F=4940 cm™!

Ni II: 3d%4s: 2P—*P=4300, 2F—*‘F=4820 Ti II: 3d*4s: 2P —*P=6620, 2F—*F=4560 cm™!
If (23) were strictly valid, the various intervals quoted for a given ion should be equal. The very
appreciable deviations from equality are doubtless due mainly to perturbations by other configura-
tions and, to a lesser extent, to the influence of spin-orbit forces. It is well known that such pertur-
bations often cause the intervals between the different levels of a configuration to have ratios which
differ widely from those calculated by means of the Slater-Condon F’s and G’s, and (22) or (23)
represents the same order of approximation as involved in F, G relations.

Ia. Configurations of the type a*msns(m>=n) can be treated by means of (19), (20), but one can no
longer use (21). Such configurations will be considered more fully by R. W. Merrill.

II. Body-centered arrangements. Consider a molecular or crystalline structure in which % identical
atoms are equidistant from the remaining atom k-1 and suppose that in each atom the only electron
not in a closed shell is in an s-state. Then one may use (22) with Sy symbolizing the collective spin of
the k atoms and W(a*) their energy in the absence of atom k1. This type of application of the vector
model has been discussed by Eyring and colleagues?” and need not be elaborated here. It shows that
the secular problem for the body-centered cube is no more difficult than for the pure cube, if directional
valence be disregarded. ‘

II1. For checking purposes it is sometimes useful to see if (19) is satisfied when the simplification
(18) is artificially imposed in problems in which actually (18) is not satisfied. It is well to make K;; also
independent of j in (18), as then one can use (21). Thus errors in arithmetic might be detected in
complicated formulas by seeing that they reduce properly when artificial simplifications are imposed.
This principle has been used by Seitz and Sherman??® in molecular problems.

IV. Heitler-Rumer theory. In the chemistry of the light elements the valence electrons (other
than those of H atoms) are all in incomplete 2-quantum orbits and are in four kinds of states: viz.,
2s, 2p64, 2pay, 2po.. Here 2po, means a 2po orbit when the spatial quantization is relative to the x
axis, etc. To simplify calculations, it has often been assumed in the literature, notably in the work of
Heitler and Rumer,?® that the inter-atomic Coulomb and exchange integrals connecting the two
quantum orbits of one atom and an orbit ¢ of a second atom are the same for all four kinds, so that

% | wish to thank Mr. R. Serber for perusal of Bacher
and Goudsmit’s book to obtain the separations listed in
this table. The numerical figures are often only reliable to
50 cm™ or so since the various terms have a multiplet
structure whereas we are interested only in electrostatic
energy. In each case an attempt has been made to subtract
out the spin-orbit energy but this correction can only be
made approximately when the Landé interval rule is not
obeyed.

26 When singlet-triplet separations are quoted in the
table, it is to be understood that the two terms whose
difference is taken are both built on doublet states of the

core ¢k, Similarly triplet and quartet core states are
implied in connection with the doublet-quartet and triplet-
quintet separations, respectively. Note that in Ti I, the
3P terms involved in P —3P and 3P —5P are unlike, viz.,
3d3(2P)4s%P and 3d3(*P)4s3P, respectively. In comparing
the singlet-triplet and triplet-quintet separations in Ti I,
the latter have been multiplied by % in the table since (23)
has twice as large a value for S=4% as for S=1.

27 A. E. Stearn, C. Lindsley and H. Eyring, to appear in
J. Chem. Phys.

28 F, Seitz and A. Sherman, J. Chem. Phys. 2, 11 (1934).

29 W. Heitler and G. Rumer, Zeits. f. Physik 68, 12 (1931).
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A2po.; @) =AQ2pay; @) =A(2po.; ) =A(2s; ).

Actually this is not true (except that 4 (2po.; ¢) =A (2pay; q) if ¢ is a po, or s orbit and z is the inter-
atomic axis). The assumption (24) is in a certain sense equivalent to saying that all valence electrons
are effectively in s states. In reality two electrons at most could be in a common s state and even then
their resultant spin would be zero, precluding free valence. We have shown elsewhere® that it is
usually a poor approximation thus to ignore directional valence but our point is now that if this is
done, one has a mathematical problem which has a particularly simple interpretation in terms of the
vector model. When all the 2-quantum exchange integrals can thus be considered identical, the spin
of each atom becomes a ‘‘good quantum number’’ since the exchange integrals can be taken outside
the summation over the electrons of an atom. With the Heitler-Rumer theory one can easily convince
oneself that the valence attraction is maximized by making the spin of each atom assume its maximum
possible value. To illustrate these ideas consider the molecule CNOH. Because of the Pauli principle,
the number of free valence electrons for the C, N, and O atoms are respectively 4, 3, 2, so that we may
take Sc=2, Sx=3/2, So=1. Apart from intra-atomic terms, Coulomb terms and exchange terms
involving closed shells, the Hamiltonian function (7) is thus

(4=1J or K). (24)

(25)

Except for an additive constant, this is a four-vector problem of precisely the general type considered
by Johnson” and his results are immediately available. Usually one is interested only in the secular
equation for the two states of zero spin. Since this equation is a quadratic, it may be evaluated by
Goudsmit’s® inspection method without even resorting to Johnson’s work. In other molecules treated
by Heitler and Rumer there is often only one state of minimum spin and then the results may be
obtained particularly simply. In CNH, for example, the exchange energy is thus 3Kox+ Kcug—3Kan
since the spins of N and H must be parallel to each other and anti-parallel to that of C in order to
neutralize the spin of the latter.?® If the molecule is composed of only two atoms, we have the ele-
mentary two-vector problem and the inter-atomic exchange energy is given by (21), with S;, Ssx
denoting the spins of the two atoms and Kj, the inter-atomic exchange integral. This result has been
mentioned by Dirac himself,*® who notes that this diatomic formula is the same as that previously
obtained by Heitler?? with rather abstruse group theory. Born® re-derives the same formula with
Slater’s method, without noting that the vector model is still simpler when one has only s electrons.

The model of the benzene molecule without directional valence which has recently been considered
by M. Markov* is clearly simply the six-vector problem with the value 3/2 for each constituent
spin, since Markov assumes three equivalent valence electrons for each CH group. The geometrical
symmetry of the benzene ring makes the problem much more tractable than if the groups were
unevenly spaced.

V. Distant atoms. Even if the inter-atomic exchange integrals are not regarded as the same for all
types of two quantum orbits, it may still be a valid approximation to regard the spin of the atom as a
good quantum number. This will be true if the atom is so remote from other atoms that the intra-
atomic exchange integrals are large compared to inter-atomic ones. In (4) or (7) we can then, in
accordance with the well-known theory of vector coupling,?® replace s;-s; by

30 The coefficient of K¢y is 3 because — 3[3 X4+44Sy-Sc] 3 P, A. M. Dirac, Proc. Roy. Soc. A123, 733 (1929).
=3 when Sy =%,Sc=2,Sn+c=1%. Similarly —2[14-Sg-Sc] 32 W. Heitler, Zeits. f. Physik 47, 855 (1928); Phys.

=1 when Sy=3%, Scig=3%; and —3[3+4Sg-Sx]=—-3
when Sginx=2. Note that in the three vector problem
presented by Sg, S, Sm it is usually impossible to di-
agonalize simultaneously S’n.ic, S’cim, S?m+n and in
consequence Sn+c, Sc+m, Su+n do not usually represent
good quantum numbers. However, the particular case
S=0 in which we are interested is an exception and is
achieved only when S?y ¢, S%c+m, S?m+n are simultaneously
diagonal and correspond, respectively, to quantum num-
bers Sxic=1%, Scim=%, Span=2.

Zeits. 31, 197 (1930).

3 M. Born, Zeits. f. Physik 64, 729 (1930), Eq. (55).

3¢ M. Markov, J. Chem. Phys. 1, 784 (1933).

3 Cf., for instance, Hund, Linienspektren, p. 123. It
must be cautioned that (26) cannot be applied to a system
composed of two identical atoms or radicals e, b when
Sa#%Ss. The reason is that there is then a degeneracy
difficulty arising from the fact that the energy is the same
for So=x, Sy=y as for Se=y, Sp=x, making it necessary
to consider off-diagonal elements in S, Sj.
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(5:-S4) (Sa-Su) (Sy-57)

T T TR ISl

S(S+ 1) _Sa(Sa+ 1) _Sb(Sb+ 1)
| | o

254(Sa+1)S5(Sp+1)

in cases where ¢ and j relate to electrons of different atoms a, b, respectively. The kinematical principle
involved in (26) is that only the components of s;, s; parallel to S,, Ss, respectively, are effective when
we discard off-diagonal matrix elements and so take average values. Eq. (26) may be further simplified
by using the relation

28;-Su = Su(Sa+1) = Suei(Su—i+1) +5:(s:+1) , (27)

if the spin S,—; of atom e exclusive of electron 7 is a good quantum number: this will be the case if
(a) atom @ has only two valence electrons, in which case S,_;=3%, S,=0, 1; (b) if a has only equivalent
valence electrons except for 7 and if in addition ¢ is an s electron or (c) if @ has its maximum multi-
plicity S, = 37 where # is the number of free electrons. The expression S-s; may be similarly simplified
if conditions analogous to (a), (b), (c) are met in atom b.

In case the exchange integrals within radicals are large in absolute magnitude compared to those
connecting electrons of different radicals, the remarks of the preceding paragraph (except item (b))
all apply with the word ‘“‘radical”’ everywhere substituted for “atom.”

As an illustration, consider the interaction of an H atom with a C atom so distant as not to destroy
the Russell-Saunders coupling of the carbon atom, though close enough so that the inter-atomic forces
overpower the spin-orbit coupling, which can hence be disregarded. These conditions are equivalent
to saying that the atomic L, S, but not J, remain good quantum numbers. Apart from the contri-
butions of the closed 1s and 2s shells, the inter-atomic energy for the states built on the 3P state of C
is given by the following formulas:

W(EPLsED) =a+b—3(c+d)[1+(1£H) (2= -1 -2], (28)

W(3P1s4Z)=2b—2d, W(EP1s?Z)=2b+d (29)

inasmuch as here S,=1, Sp;=3%, S=1+%, S,_;=1 in (26), (27). We have used the abbreviations
a=J(2pa; 1s), b=J(2pm; 1s), c=K(2ps; 1s), d=K(2pm; 1s).

The index 1s, of course, relates to the H atom. The formulas for the states built upon 1D or 1S are

W(D1s2A) =2b—d, W(D1s2II) =a+b—%3(c+4d), (30)

W(D1s22) =2(3a+3b) —3c—1d, W(S1s22) =2(3a+%b) —3c—2d. (31)

In obtaining these results we have utilized the fact that the orbital wave functions for = states of the
C atom are of the form

W= a‘l’%v(l) ‘!’2170(2) + B‘/’Mﬂ-&(l) ‘//211#—-(2) +’Y¢2:a1r-(1>‘//2:nr+(2)

with @, B, y=(3)}, ()}, Bifor 1D; ()i, — ()4 —(5)¥for 1S;0, (3)?, —(3)* for 3P. This is proved by
the Wigner® formulas or otherwise.

VI. Atoms with strongly coupled cores. The same principles as involved in ¥ can also be utilized in
atomic problems where the electrons outside the core are not all of the s type, so that the spin of the
coré is not rigorously a good quantum number, but where the core is so firmly bound that its spin can
nevertheless be quantized with good approximation.

VII. Electron pairs. Very often, because of directional valence, the exchange forces between two
electrons 7 and j of different atoms are large compared to all other exchange forces acting on 7 and j
which depend on the alignment of s; and s;. Then the resultant spin s;4s; will represent a good

3% E. Wigner, Gruppentheorie, p. 206; J. H. Bartlett, Jr., Phys. Rev. 38, 1623 (1931).
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quantum number, which will have the value 0 for the state of deepest energy in the usual molecular
case K;;<0. Then if ¢ is any electron other than 3, j

Si-S,=8;-S,=3(si+s;)-s,=0 sothat —3i[1+4s;-s,]=—3 whereas —1i[1+4s;'s;]=+1.

Under such circumstances we say that 7, 7 form an electron pair (not to be confused with the pairs
involved in filled orbits) and we have the theorem that the exchange coefficient is +1 between two
members of a pair and is —% between a member of a pair and any electron outside the pair. This
principle is constantly used in any molecular calculation for which electron pairing is a good ap-
proximation.?” It has already been employed in (30), (31) since the two electrons of C form a pair in
the singlet cases.

As an illustration, consider a CH molecule at a C—H distance so small that the inter-atomic forces
disrupt the L, S structure of the C atom. This is the case at the actual inter-nuclear distance. Then
we can no longer neglect the matrix elements connecting 1D1s2II and 3P1s2II or 'D1s22 and LS 22,
which was done to obtain (28)—(31). Quite approximately the H electron is paired with a 2pe electron
in the deepest state 2pm2pols 21, replacing the intra-atomic pairing involved in Eq. (30) and so the
formula for this state is a4b-c— 3d rather than (28) or (30). Formulas for the other states of CH at
close distances will be given by J. R. Stehn in a paper in the Journal of Chemical Physics.

VIII. Combination of (IV) and (V). One can obtain, for example, Heitler and Rumer’s results on
NH.— NH; (hydrazine), by applying simultaneously the principles involved in 7V and V. The spin of
each NH; radical can be treated as a good quantum number because the binding forces internal to the
NH. radicals are larger than those between two such radicals. Inside NHs,, the spin of the N atom and
the collective spin of the two H atoms are good quantum numbers in virtue of the hypothesis (24)
and the equidistance of the two H atoms from N. We can use (26), (27) if we substitute S;, S; for s;, s;.
(This modification is necessary because the spin of the N atom is not a one-electron unit.) The state
of deepest energy is obtained by taking S;=S;=Sx=%, S.=5:=Sxu,=% So-i=Se—;i=Su,=1.
If we neglect the forces between H atoms of different radicals, the exchange energy connecting the two
radicals is thus®® —3(3X3+4S;-S;) Kan = — 3Kxn-

Other examples of the vector model in inolecular structure will be given by A. Sherman in an article
on valence to appear in Reviews of Modern Physics.

5. THE INTERACTION OF A GROUP OF EQUIVALENT p ELECTRONS

The vector model has a very striking application to a group of equivalent p electrons. Here, once
the energy levels have been determined for £?, it is possible to derive expressions for the energies of the
configurations p°- - - p° without appealing to the method of diagonal sums at all. We might charac-
terize our treatment of d® in Section 2 as based on the intermediary of an S, m; system of quantization,
whereas we shall show that for $*- - - $® not even this intermediary is necessary and one can write
down formulas for the energy directly in the .S, L system. The trick is to note that when we are
restricting ourselves to one particular configuration, the matrices are of finite, low degree, so that
certain matrix identities are readily established.

First consider the interaction of two equivalent p electrons. Here the terms allowed by the Pauli
principle are 'D, 3P, 1S. Now since

2s;-8;+5=S5(S+1),  2L-L+4=L(L+1) (32)

»

we see that s;-s;, 1;-1; are both diagonal for these terms. Furthermore the characteristic values of

37 For other examples and references see J. H. Van Knn <0, the interaction energy of the two NH, radicals is
Vleck, J. Chem. Phys. 1, 177, 219 (1933). positive and hence repulsive with the present type of

38 This result agrees with that obtained p. 39 of the calculation, whereas actually hydrazine is a stable com-
H—R paper®® by the Slater method. Since presumably pound.
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si-s;+3(1;-1;743)2— 2 are all zero by (32) inasmuch as the allowed pairs of values for L, Sare 2,0; 1, 1;
0, 0. Hence we have the matrix identity

2s;-s;=—(L;i-1,)2—(L;-1)) +3, (33)

which, of course is valid in any system of representation, since a null matrix remains a null matrix
under any canonical transformation. Eq. (33) has an interesting kinematical interpretation. It shows
that the Pauli principle uniquely determines the angle between the two s vectors once the angle between the
two 1 vectors is given. Now consider the energy of interaction between our two equivalent p electrons.
In terms of the Slater-Condon F’s and G’s, it is known that3?

W(3P) = F()""SFg, W(ID) = W0+ F2, W(XS) = F0+ 10F2 (34)
Hence we have the identity
W= F0+[—5—31,;'1]'—1257;'51']]:2, or W=F0+[—8+31111+6(l,11)2] (35)

We have written the identity in two forms which are equivalent in view of (33). To prove (35), we
have only to note that (35) reduces to (34) when one uses (32) and substitutes the proper values of L
and S. It may be remarked that the most general function of the relative orientation of two equivalent
p electrons is a polynomial of degree 2 in 1;-1;, for any polynomial of higher degree can immediately be
depressed to a quadratic by means of the identity

(1) = =21 1)*+ (L 1) +-2. (36)

(36) is a consequence of the fact that the characteristic values of ¢=1;-1;are 1, —1, —2 by (32), so
that (¢2—1)(¢+2)=0.
Configurations p- - - p°.. We are now in a position to calculate immediately the energies of p*(n=3,
-++6). We have only to note that here by (35) the matrix of the interaction is

W=3n(n—1)(Fo—5Fy)+2;5:(—31;-1;—12s;-s;) Fo. @37)
This is brought to diagonal form by diagonalizing Zs;-s; and Z1;-1;, for then (37) reduces to
W=4n(n—1)Fo+3[ —5n2420n—3L(L+1) —12S5(S+1) ]F,, (38)
in virtue of (5) and the analogous relation
25 L4+ 2n=L(L+1) (39)

obeyed by the 1 vectors.*®

If we substitute the proper values of #, L, and .S, one finds that (38) gives exactly the same energy
levels as those deduced by Slater and by Condon and Shortley.? For instance, for the configuration p3,
the only terms allowed by the Pauli principle are 2P, 2D, 4S so that in (38) we must use =3 and the
following pairs of values of L, S: 1, %; 2, ; 0or 0, 4. Eq. (38) shows immediately that the energy levels
of p~ are the same as those of p" except for an additive constant, since both configurations involve
the same L, .S pairs. This, of course, agrees with the general theorem on almost closed shells given
near the end of section 2.

Spin-orbit Energy. It is well known that in the expression AL-S for the spin-orbit energy of a group
of equivalent electrons in Russell-Saunders coupling, the constant of proportionality 4 is not the

# J, C. Slater, Phys. Rev. 34, 1316 (1929); E. U. Condon  problems which we consider, individual terms in the
and G. H. Shortley, Phys. Rev. 37, 1025 (1931). To avoid summation in (5) or (39) are not diagonal except when
fractions we use the Condon-Shortley rather than Slater #=2. Instead only the complete sums are diagonal. The
convention in the definition of the F’s. identities (33), (36) are nevertheless valid for any value of

4 It is clearly to be understood that in the coupling .
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same as the value a appropriate to a one-electron system. The standard method of determining 4 in
terms of a and the number of electrons # is that due to Goudsmit.# It is based on the invariance of
the diagonal sum or spur in the passage from m;, m, to S, L quantization, as applied to the matrix
aZl;-s;. In the m;, m, this sum is simply aZm ;m,. With our vector model, one can write down the
spin-orbit energy in the L, S system without using the spur theorem or the intermediary of m,, m,
quantization, by the following procedure which furnishes a rather interesting alternative to Goud-
smit’s method.
In Russell-Saunders coupling, spin-orbit energy has the value

aS);-si=[aZ:(0; L) (:-8)/L(L+1)S(S+1)JL-S=AL-S, (40)

since there is no correlation between the rate of precession of 1; about L and that of s; about S,% so
that we may project 1; along L and s; along S in taking mean values. The final form of (40) is simply
the definition of 4. We have been very careful in (40) to write the average energy as proportional to
the average of the product (1;-L)(s;-S) rather than to the product of the averages of (1;-L) and (s;-S).
It is tempting at first to try the latter, for then the calculation is particularly simple inasmuch as all
equivalent electrons are on a par, making n(l;-L) =L?, n(l;-L) =S2 Then we would have 4 =a/#n,
which is an incorrect formula for the 4 constant since by trying a few simple examples one finds that
it does not agree with the results of Goudsmit’s method of diagonal sums. It does not, for instance,
give a zero A4 for p3 2D. Our vector model immediately removes this paradox by making it clear that it
is not at all correct to replace the average of the product by the product of separate averages.*® Eq.
(33) shows that there is a constraint between 1;-1; and s;-s;, so that the motions of I; and s; are not
independent and consequently

(Li-L)(si-S)#+ (1:-L)(si-S)- (41)

For instance, it might be that the times when 1; is parallel to L are those when s;-S is near its maxi-
mum, and then the left side of (41) is greater than the right side. Thus we cannot in general divide
the bar in Eq. (41). (In the particular case of only two electrons this is allowable, as then each factor
in (41) is constant, and 4 =a/2.)

Since L=21;, S=3s; we see from (40) that the correct formula for 4 may be written

A=aZ;{Z;1:-1)Z(ss-82) } /LLL+HDSS+HD T (42)
First let us consider the configuration p3. Here, s?=32,12=2,
2L 1) 2a(sirsi) ) =3X2X G422 28 s+ 4l L (L 1) (sie ) 1+ 2 50(Li- 1) (s si). - (43)
The prime attached to the summation means that no terms are to be included in which any two of the
indices 7, j, k are equal. The relation
(22pili 1) (22j58i085) =[L(L+1) —2n][S(S+1) —{n ]

when applied to a three electron system gives us

A%l ) (siesk) 42l 1) (s 8) = [L(L+1) =6 JLS(S+1) -], (44)

inasmuch as no terms of the form 1, j, &, [ (4, j, k, [ all unequal) are encountered until there are four
electrons or more. The triple sum on the right of (43) can now be eliminated by means of (44).
Furthermore certain terms in (43) and (44) can be simplified by the relation

4 S, Goudsmit, Phys. Rev. 31, 946 (1928). . 4 We could, however, divide the bar in (26), as in

2 Use of (40) is equivalent to rejection of off-diagonal electrostatic problems there is nothing analogous to the
elements in L, .S and so amounts to assuming that Russell- constraint (33). The bar is incorrectly divided in Goud-
Saunders coupling is a good approximation, as is always smit’s?! spin-orbit Eq. (3), but fortunately he does not
true in light atoms. use his Eq.. (3) in cases where this matters.
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(e 1) (sirs) =3 (L 1)? = 3L 1) =1 = —si-s;—§(Li- 1) — 4, (45)

which is a consequence of (33) and (36). By (44), (45), (5) and (39), the right side of (43) may be
written

FHELLA+1) —6]1+3[S(S+1) — 4]+ LEL+1) —6ILS(S+1) — 4] (46)

when # = 3. The only pairs of values of L, S which occur for p3are 1,1;2,%;0, % and so the expression
(46) vanishes. This is, of course, in accord with the fact that the configuration p*® represents half
completion of the shell ¢ and so is devoid of multiplet structure (in our degree of approximation) by
one of Goudsmit’s theorems. Because (46) and hence (43) vanish for # =3, we have the matrix relation

(1,2+111,+1zlk)(St2+S¢S]+S,Sk) =0. (47)

Since (47) is a matrix identity, it is valid for any group of three electrons ¢, , £ even though occurring
in p4, p5, etc.

To calculate the values of 4 appropriate to % $°% we note that when there are more than three
electrons

Ei{ Ej(li‘ l,‘)Ek(Si'Sk)} = E,(li2+li' 1]+11 lk) (sf"—{—s@-- Sj+S,;'Sk ——%n[(n— 1)(%—2) —2]% X2
—2(n—3)Z;>:{ 3l ;428 8;4 (L 1)) (sis)
or using (42), (45), (47), (5), (39), we finally have

A=—m—3)a/L(L+1). (48)
This gives the proper result, viz., that the 4’s for p4, p° are the negative of those for p?, p. For instance
A = —%a for p*3P. It is interesting to note that (48) is a correct formula for the 4 constants for the

entire range of the p group, checking with Goudsmit’s results in every case.**

The preceding methods cannot be extended, at least in a simple way, to other configurations, such
as, for example, equivalent d electrons or non-equivalent p electrons. The reason in the equivalent
case is that the algebraic equations which are identically fulfilled are of too high a degree to reduce
the problem sufficiently. For instance, with d* the scalar product s;-s; is uniquely determined by
1;-1; but is now a polynomial of degree 4 in 1;-1;, whereas it was of degree 2 in the case of p*. If 7 and j
are non-equivalent electrons, the value of s;-s; ceases to be uniquely determined by 1;-1;. Thus except
for p», one must fall back on spur methods, at least as applied to the L part of the problem. Our
calculations for p” by the full vector method applied to both L and S rather than by our usual Dirac
vector scheme applicable only to S must be regarded as a special procedure which is available only
for the configuration " and which is of interest primarily because of the kinematical insight furnished
into the Pauli principle.

“ For singlet or for S states, the values of 4 given by that (40) reduces to the indeterminate form 0/0 when L
(48) have no meaning, as such states are devoid of multiplet or S vanishes, or that (48) becomes infinite when L=0.
structure. For this reason we need not worry over the fact



